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Resistant starches from dietary 
pulses modulate the gut 
metabolome in association 
with microbiome in a humanized 
murine model of ageing
Saurabh Kadyan 1, Gwoncheol Park 1, Bo Wang 2, Prashant Singh 1, Bahram Arjmandi 1 & 
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Emerging evidence suggests that plant-based fiber-rich diets improve ageing-associated health 
by fostering a healthier gut microbiome and microbial metabolites. However, such effects and 
mechanisms of resistant starches from dietary pulses remain underexplored. Herein, we examine 
the prebiotic effects of dietary pulses-derived resistant starch (RS) on gut metabolome in older (60-
week old) mice carrying a human microbiome. Gut metabolome and its association with microbiome 
are examined after 20-weeks feeding of a western-style diet (control; CTL) fortified (5% w/w) with 
RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; 
reference control). NMR spectroscopy-based untargeted metabolomic analysis yield differential 
abundance linking phenotypic differences in specific metabolites among different RS groups. LEN 
and CKP increase butyrate, while INU promotes propionate. Conversely, bile acids and cholesterol 
are reduced in prebiotic groups along with suppressed choline-to-trimethylamine conversion by 
LEN and CKP, whereas amino acid metabolism is positively altered. Multi-omics microbiome-
metabolome interactions reveal an association of beneficial metabolites with the Lactobacilli group, 
Bacteroides, Dubosiella, Parasutterella, and Parabacteroides, while harmful metabolites correlate 
with Butyricimonas, Faecalibaculum, Colidextribacter, Enterococcus, Akkermansia, Odoribacter, and 
Bilophila. These findings demonstrate the functional effects of pulses-derived RS on gut microbial 
metabolism and their beneficial physiologic responses in an aged host.

The proportion of world’s population aged 60 years and above is expected to double by the year 20501. This 
underscores the need for preventive strategies aimed at reducing risk of chronic cardiometabolic and neuro-
cognitive disorders among the elderly due to their senesced immunity and increased vulnerability to nutritional 
risk. Promoting healthspan in elderly will not only reduce their susceptibility to diseases but also curtail the 
rising cost of medical treatments2. Emerging evidence highlights the fundamental role of the gut microbiome 
in host immune and metabolic health, conferring resilience to various intestinal and cardiometabolic diseases 
throughout the lifespan3,4. Gut dysbiosis, characterized by decreased abundance of beneficial microbes such as 
short-chain fatty acids (SCFAs)-producing bacteria, overgrowth of pathobionts, and accumulation of detrimental 
metabolites in the gut environment, leads to impaired resilience against non-communicable diseases (NCDs)5. 
Although there are several hallmarks of ageing process, research in past decade focusing on biology of ageing has 
proposed microbiome disturbance as one of the crucial contributory factors behind ageing-related health loss6. 
The ageing process is associated with the age-dependent depletion of beneficial genera (e.g., Bifidobacteria) and 
an increased population of opportunistic/pathogenic bacteria (e.g., members of phylum Proteobacteria) in the 
human gut7. Diet is one of the strongest regulators and modulators of gut microbiome. While a western-style 
diet can induce gut dysbiosis, a fiber-rich diet can reverse at least partly, these impairments8. Thus, regulating 
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and fostering a healthier gut microbiome through a prudent dietary regimen could be a proactive strategy for 
improving the overall health of the elderly.

Dietary fibers exert physiological responses by acting as prebiotics. They remain largely undigested in the 
upper intestine and are fermented by colonic microbiota, leading to the generation of beneficial metabolites 
that positively influence host health9. Incorporating ‘nutrient-dense’ dietary pulses in the daily diet can enrich 
the dietary fiber content, conferring specific health benefits to the host10–12. Importantly, dietary pulses-derived 
starch, previously considered a major by-product of commercial protein extraction from pulses, has recently 
received remarkable interest owing to its prebiotic potential after its conversion to resistant starch (RS)2,13. RS 
offers precision modulation of the gut microbiota-metabolite interplay, which may depend upon their discrete 
structures and types: RS type-1 (physically-inaccessible starch), RS type-2 (native-ungelatinized starch), RS 
type-3 (retrograded starch), RS type-4 (chemically-modified starch), and RS type-5 (starch-lipid complexes)14. 
RS exerts various physiological effects via its microbial fermentation to SCFAs (butyrate, acetate, and propionate) 
in the colon. Acetate, a major SCFA, inhibits pathobionts’ growth by reducing colonic pH; butyrate, on the other 
hand, possesses immune-modulatory properties and plays a central role in furnishing energy to colonocytes, 
thus maintaining intestinal integrity; lastly, propionate acts as a gluconeogenic substrate after being translocated 
to the liver, improving glucose metabolism and aiding in lowering blood cholesterol levels2,15.

To gain deeper insights into the functional fingerprints of RS on host-microbiota interactions, an integrated 
multi-omics approach utilizing metabolomics and metagenomics is crucial to uncover key microbiota-associated 
metabolites that may mediate distinct beneficial effects to the host16. While studies have linked gut microbiome-
metabolome modulations with health benefits associated with cereals- and tubers-derived RS, such effects per-
taining to pulses-derived RS have been mainly reported in in-vitro fermentation models, and in-vivo mecha-
nisms remain unclear17–20. Moreover, to the best of our knowledge, no data exist on the alteration in microbial 
metabolic processes upon consumption of pulses-derived RS in aged hosts, who are otherwise at greater risk 
of nutritional deficiencies. In our recent studies, we demonstrated that these RSs ameliorate gut and metabolic 
health by enhancing intestinal epithelial integrity, reducing inflammation, and fostering beneficial and SCFAs-
producing microbiome clades in a humanized murine model of aging21. These findings propelled us to further 
investigate the functional lineaments of the gut microbiome to gain deeper insights into their prebiotic effects 
and mechanisms. In this addendum study, we aim to examine how the incorporation of RS from different dietary 
pulses in a western-style diet modulates the gut metabolome in ageing mice carrying the human microbiota. 
We also integrate and examine metabolomic-microbiome interplay to generate diverse metabolite footprints. 
Our results reveal novel and distinct signatures of gut microbial metabolites associated with SCFAs production, 
altered bile acid and amino acid metabolism, and specific mutualistic and competitive interactions across dif-
ferent taxa. These finding highlight the potential of discrete structures of these dietary fibers to induce targeted 
alterations in gut metabolomic pool and advance our understanding of the function and performance of the gut 
microbiome using RS intervention, particularly in the ageing gut.

Results
Resistant starches derived from different dietary pulses distinctly modulate the gut metab-
olomic arrays.  Principal coordinate analysis (PCoA) of the NMR-based fecal metabolomics data reveals 
specific variation patterns in the metabolite profiles of treatment groups compared to CTL (Fig. 1A). Although 
no significant differences in the clustering of PTB and BEP are observed, LEN (p = 0.056) and CKP (p = 0.072) 
explain considerable variation in the metabolomics arrays relative to CTL. In comparison, INU generates a 
significantly distinct (p = 0.029) metabolite profile compared to CTL. Subsequently, we apply Log2-fold change 
(FC) analysis on differential metabolites, ascertained using Volcano plots (Fig. 1B). Amongst all groups, only 
one metabolite in each of BEP and CKP exhibits significant FC ≥ 1 (p < 0.05) compared to CTL. Additionally, 
the metabolites with FC ≥ 1 but insignificant p-value are arranged in the following ascending order: INU = LEN 
(4) > CKP = BEP (3) > PTB (1). We analyze the metabolites’ abundance in individual samples using Z-scores and 
depict them in a heatmap, wherein each molecule is ranked based on abundance for combined and separate 
sexes (Fig.  1C). Broadly, metabolites including acetoin, lactate, total bile acids (TBAs), and cholesterol yield 
distinct clusters of abundance in females, while valine, phenylalanine, tyrosine, isoleucine, and leucine predomi-
nate males. Overall rank scores yield distinct arrays in the number and dynamics of abundant metabolites after 
dietary intervention.

Specific gut metabolomic signatures associate with resistant starches from different dietary 
pulses.  Firstly, we shortlisted and identified the top 10 metabolites that exhibited the greatest increase (% 
log change) in individual RS groups compared to the CTL group, as presented in Fig. 2A. We observed several 
group-specific metabolites such as ethanol and taurine [PTB]; UDP-glucose [BEP, CKP], fumarate [BEP, CKP, 
INU], and nicotinate [BEP, INU], which exhibit a high increase. Subsequent analysis in terms of feature impor-
tance scores to observe top 20 strongly predictive and discriminatory metabolites among different RS groups 
versus CTL also yield distinct arrays of metabolites (Fig. 2B), some of which are unique from the % log change 
arrays. Specifically, glycine, acetate, glutamate, and adenine shared prediction for all treatment groups, whereas 
acetoin, leucine, serine, thymine, methionine, TBAs, and cholesterol predict specifically for the CTL group. 
Among SCFAs, propionate predicts only for INU while butyrate is involved with LEN and CKP groups.

Subsequent correlation analysis reveals the association of specific metabolites with different treatment groups 
(Fig. 2C), aligning well with earlier rank assessment and feature important scores. Metabolites including glucose, 
fumarate, 2-oxoglutarate, acetate, glutamine, glycine, glutamate, adenine, and uracil correlate positively with RS 
groups, while phenylalanine, isoleucine, leucine, 5-aminopentanoate, acetoin, methionine, TBAs, and cholesterol 
show negative correlation. UDP-glucose and choline show a direct correlation with all RS groups except PTB. 
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Notably, butyrate exhibits strong positive correlation with LEN and CKP, but negative association with INU. 
Propionate shows a strong positive correlation with INU, weaker positive association with LEN and CKP, and 
negative association with PTB and BEP. The changes in the proportion (normalized) of SCFAs for each group are 
further visualized in Fig. 2D, wherein lactate and butyrate are highest in LEN followed by CKP while acetate and 
propionate are highest in INU. Besides, butyrate in LEN is significantly abundant (p < 0.01) compared to INU. A 
ternary plot further highlights the proportion of these SCFAs varying among RS versus CTL groups (Fig. 2E), 
with INU samples forming divergent clusters of low butyrate and high propionate levels.

Moving further, the execution of biomarkers discovery algorithm i.e., the linear discriminant analysis effect 
size (LefSe)-based cladogram, demonstrates distinct hierarchical clusters of chemical taxonomy (devised as per 
human metabolome database) that are upregulated or downregulated in RSs versus CTL groups (Fig. 2F). The 
LefSe analysis identifies several significant (LDA score ≥ 2.0; p < 0.05) discriminant metabolites associated with 
each group (Fig. 2G). Glycine and UDP-glucose are the only metabolites upregulated in PTB and BEP, respec-
tively. LEN significantly enhances acetate and butyrate each belonging to clades of carboxylic acids and fatty acyls, 
respectively. CKP demonstrates an abundance of amino acids (alanine, glutamate) and nucleic acid derivatives 
(UDP-glucose and adenine). Interestingly, CKP exhibits no significant abundance of individual SCFAs; however, 

Figure 1.   Resistant starches derived from different dietary pulses distinctly modulate the gut metabolomic 
arrays. Prebiotic effects of dietary fiber (resistant starches versus inulin) in modulating the gut metabolomics 
profiles in older mice colonized with human gut microbiome. (A) PCoA analysis (Bray–Curtis dissimilarity 
index); (B) Volcano plot showing differential metabolites (fold-change ≥ 1; P ≤ 0.05 in dark color; and FC ≥ 1; 
P > 0.05 in light color); (C) The abundance profiles transformed to Z scores and rank of the groups in all, male, 
and female mice. CTL control western-style diet group, PTB pinto beans, BEP black-eyed peas, LEN lentils, INU 
inulin.
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Figure 2.   Specific gut metabolomic signatures associate with resistant starches from different dietary pulses. 
Prediction, correlation, and identification of gut metabolites specific to dietary fiber (resistant starch or inulin) relative 
to standard western-style diet group. (A) Metabolites with the greatest increase (% log change) in each group. (B) Top 
20 most strongly predictive metabolites based on relative importance score used to assess the contribution to classifier 
accuracy, and extended error bar plots for those taxa between control, resistant starch, and inulin groups. Corrected 
p value (Welch’s two-sided t test) are shown in here. (C) Correlation of metabolites in resistant starches versus inulin 
groups relative to control group. (D) Relative abundance of lactates and SCFAs (acetate, butyrate, propionate). (E) 
Ternary plot showing the ratio of the three major SCFAs. Ratio is calculated after log-transformation of values; the 
marker size is determined by the sum of three SCFAs. (F) LEfSe cladogram: the four levels of hierarchy are based on 
the chemical taxonomy of Human Metabolome Database (HMDB). (G) LEfSe scores (LDA ≥ 2; P < 0.05). CTL control 
western-style diet group, PTB pinto beans, BEP black-eyed peas, LEN lentils, INU inulin.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10566  | https://doi.org/10.1038/s41598-023-37036-w

www.nature.com/scientificreports/

the cladogram reveals an overall enrichment of fatty acyls clade. INU significantly alters the metabolomic pool 
relative to CTL, with overall enhancement of metabolites belonging to organic acids and derivatives (acetate, 
glycine, glutamate) and reduction in metabolites belonging to lipid and lipid-like molecules (TBAs and choles-
terol), alcohols (ethanol) and carbonyl compounds (acetoin).

Integrated multi‑omics analyses reveal RS‑specific modulations in microbiome‑metabolome 
correlation networks.  Recently, we demonstrated how RS differently modulate the gut microbiome in 
mice21. To explain the functional effects of microbiome modulation on metabolomic fingerprints, we herein 
integrated the two datasets and applied correlational analysis between major RS-modulated taxa (4 phyla, 12 
families and 25 genera) and 41 microbial metabolites (Fig. 3A) to understand RS-specific modulation of the 
microbiome-metabolome correlation networks (Fig. 3B).

At the phylum level, Firmicutes is significantly correlated with a higher abundance of xanthine and leucine 
and a reduced abundance of glutamate, propionate, and acetate, whereas the enrichment trend for these metabo-
lites is inverse for Bacteroidota. Proteobacteria exhibit a strong negative correlation with butyrate, 3-hydroxy-
isobutyrate, thymine, 3-methyl-2-oxovalerate, 5-aminopentanoate, xanthine, TBAs, and cholesterol. Actino-
bacteria demonstrate a positive association with alanine, threonine, and thymine, while negatively influencing 
fumarate and glucose. At the family level, Streptococcaceae impacts 18 metabolites, exhibiting a strong positive 
correlation (p < 0.01) with metabolites including trimethylamine (TMA), thymine, isoleucine, leucine, lactate, 
alanine and acetoin, and a negative correlation with glucose, glycine, and tyrosine. Enterococcaceae influences 
17 metabolites, exhibiting a strong negative correlation with uracil, glucose, fumarate and choline, and a posi-
tive correlation with lactate, acetoin, TMA, and 3-methyl-2-oxovalerate. Family taxa directly associated with 
an increasing TBAs and cholesterol include Oscillospiraceae, Streptococcaceae, and Marinifilaceae. Propionate is 
positively associated with Bacteroidaceae and Tannerellaceae. Ruminococcaceae shows a strong positive correla-
tion with TMA, lactate, acetoin, and a negative correlation with formate, fumarate and nicotinate. Bacteroidaceae 
show a positive association with acetate, propionate, glutamate, and glycine, whereas 5-aminopentanoate, leucine, 
thymine, and xanthine are negatively associated. Lactobacillaceae correlates with a decreased abundance of serine, 
ethanol, and acetoin but with an increased abundance of butyrate.

Amongst genera, the metabolomics pool is prominently influenced by the Streptococcus (18 metabolites) and 
Lactococcus (18), followed by Enterococcus (17), Dubosiella (14), Akkermansia (12), Faecalibaculum (11), Bilophila 
(11), Bacteroides (8), Blautia (8), Frisingicoccus (8), and Parabacteriodes (8). Acetoin (10 taxa), xanthine (10), 
TMA (9), lactate (8), propionate (8) leucine (7), and valine (7) are the most influenced metabolites across all taxa. 
TBAs and cholesterol, which strongly associate with CTL, are positively associated with Butyricomonas, Colidex-
tribacter, Odoribacter, and Streptococcus, but negatively correlated with Blautia, which is abundant in INU group 
as per our preceding study21. Abundance of ethanol is directly associated with genera Lactococcus, Bilophila, 
Akkermansia and Faecalibaculum, while it is inversely associated with genera Dubosiella and Lactobacilli group. 
The higher abundance of ethanol in the PTB group may be partly associated with relatively lower abundance of 
Dubosiella and Lactobacilli group, as observed in our previous report21. TMA shows a strong positive associa-
tion (p < 0.01) with Faecalibaculum, Enterococcus, Akkermansia, Lactococcus, Bilophila, and Frisingicoccus, and 
a negative association with Dubosiella. Choline shows an inverse association with Enterococcus, which is linked 
to sex-specific differences in the PTB group where Enterococcus was more prevalent in males than females21, and 
so are the choline levels in this study (Fig. 1C). Among SCFAs, butyrate is positively influenced by Streptococcus, 
Lactobacilli group and Odoribacter, while negatively by Blautia and Akkermansia. Acetate production is posi-
tively correlated with Parasutterella, Barnesiella, Bacteroides, and Bilophila, whereas Lachnospiraceae_NK4A136 
and Faecalibaculum decrease acetate abundance. Propionate production is increased with increased abundance 
of Barnesiella, Frisingicoccus, Parasutterella, Butyricimonas, Lachnoclostridium, Bilophila, and Parabacteroides.

Further stringent insights into microbiome-metabolome crosstalk using significantly ranked correlation 
networks (R2 = 0.85; p < 0.01) demonstrate group-specific alterations in metabolomic profiles as a function of 
microbiota (Fig. 3B). In the CTL group, an inverse association of amino acids such as leucine, isoleucine, phe-
nylalanine with CAG-352, lysine with Frisingicoccus, tyrosine with Holdemania, and glycine with Desulfovibrio is 
observed. Increased glycine levels in PTB could be associated with decreased Desulfovibrio21. Besides, Dubosiella 
is positively correlated with propionate and TMA within CTL, while such a relationship is inverse in the LEN 
group, which may be attributed to changed abundance of microbiota and metabolites in the latter group. In PTB, 
the balance of acetoin is based on the relative abundance of Blautia and f-Lachnospiraceae;g_uncultured, while co-
occurrence of lactate and valine is associated with f-Peptostreptococcsceae and Phascolarctobacterium, respectively.

In the BEP group, the abundance of Phascolarctobacterium is directly associated with propionate and butyrate, 
while Turicibacter is associated with serine metabolism, and Adlercreutzia and Dubosiella are associated with 
xanthine metabolism. Within the LEN group, acetate is positively associated with Parasutterella, TMA with 
Faecalibaculum, and valine, formate and phenylalanine with Adlercreutzia. Additionally, aspartate and ornithine 
metabolism in LEN are mutually exclusive with Odoribacter and Lactococcus, respectively.

The CKP group exhibits a more complex microbiota-metabolite network due to its highest bacterial diversity21. 
The abundance of metabolites, such as acetoin, lactate, and TMA, is directly dependent upon the presence of 
genera Enterococcus, Eggerthella, Erysipeatoclostridiaceae, Romboutsia, and Lachnospiraceae-NK4A136, many 
of which are reduced in CKP21. Moreover, Turicibacter and the latter two genera are negatively associated with 
glycine metabolism. Furthermore, choline abundance is negatively associated with Butyrocimonas, Bacteroides, 
and f-Lachnospiraceae;g_uncultured, the latter two of which are increased for CKP21. In the INU group, there 
is mostly a positive correlation for the microbiota-metabolite network. The production of lactate and acetate is 
positively influenced by Intestinimonas and f-Lachnospiraceae;g_uncultured. The latter also impacts TMA along 
with Bilophila and an uncultured family of o-Rhodospirillales. Furthermore, the predominance of Dubosiella 
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Figure 3.   Integrated multi-omics analyses reveal modulations in microbiome-metabolome correlation 
networks specific to resistant starches from different dietary pulses. Microbiome-metabolome correlation 
of dietary fiber (resistant starch or inulin) relative to standard western-style diet group. (A) Correlation of 
gut metabolites with the major bacterial phyla, families and genera (*P < 0.05; **P < 0.01). (B) Microbiome-
metabolome correlation network based on Spearman’s rank correlation coefficients. Each node represents one 
genus (white) or metabolite (gray); two nodes are linked if the correlation coefficient value is > 0.85 and P (FDR-
corrected) is < 0.01. CTL: control western-style diet group; PTB pinto beans, BEP black-eyed peas, LEN lentils, 
INU inulin.
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exhibits a direct and inverse influence on fumarate and butyrate production, respectively, which might be the 
reason behind low butyrate levels in INU group. Also, the accumulation of propionate and glutamate is directly 
linked to Barnesiella, while malonate presence is associated with Blautia and Enterococcus.

These findings highlight that the intestinal levels of these metabolites are tightly regulated by the complex 
interplay of metabolic reactions occurring within the gut microbes, which are continuously involved in the 
biosynthesis of metabolites by one group and its cross-feeding by another group of microbes. Furthermore, we 
also observe association of several metabolites with previously measured physiological, neurobehavioral, and 
intestinal tissue parameters21 (Fig. 4). Specifically, lean body mass shows the strongest association with metabo-
lites, wherein tyrosine and valine are positively correlated, while lactate, acetoin, and TBAs exhibit an inverse 
correlation. Additionally, cecum weight positively correlates with choline, glucose, and serine, while thymine 
and butyrate show an inverse association. Valine and leucine exhibit a positive correlation with liver weight.

Resistant starches from dietary pulses may impact specific metabolite pathways in the 
gut.  Metabolic pathways impacted after RS intervention are summarized in Fig. 5. Our enrichment analyses 
show that RSs have an impact on six pathways: amino sugar and nucleotide sugar metabolism, arginine biosyn-
thesis, D-glutamine and D-glutamate metabolism, glutathione metabolism, pentose and glucuronate intercon-
versions, and pyrimidine metabolism. All groups except for PTB affect metabolic pathways, with INU having 
the greatest impact followed by CKP, LEN and BEP. UDP-glucose is the only metabolite significantly enriched 
in all four RS groups and is involved in amino sugar-nucleotide sugar metabolism and pentose-glucuronate 
interconversions. In CKP group, glutamate abundance is associated only with the enrichment of D-glutamine 
and D-glutamate metabolism. In contrast, in INU group, the enrichment of the former pathway, along with 

Figure 4.   Associations of metabolites with physiological, neurobehavioral, and intestinal tissue parameters. 
Associations between metabolites and respective parameters were assessed using linear models in MaAsLin 2 
(q-value *< 0.25). MTT area under curve for meal tolerance test, ITT area under curve for insulin tolerance test.
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arginine biosynthesis, is linked to significant enhancement of glutamate and fumarate metabolites. However, the 
predictive nature of these metabolic pathways may limit the precise interpretation of the results. Hence, it calls 
for further comprehensive assessment using more sensitive analytical tools and more inclusive models.

Discussion
Emerging evidence demonstrates the beneficial effects of dietary fibers on host health by positively modulating 
the gut microbiome. However, studies that delineate mechanistic insights into microbial metabolic processes 
occurring in gut milieu during the digestive fermentation of RS are limited. Furthermore, the modulating effects 
of dietary pulses-derived RS on gut metabolomic pool in ageing milieus remain largely unexplored. Recently, 
we reported the prebiotic effects of pulses-derived RS on gut microbiome, glucose metabolism, and intestinal 
function in older mice colonized with human microbiota21. Propelled by these compelling findings, we herein 
aimed to elucidate the shifts in the metabolic function of gut microbiota in these ‘humanized’ mice. As mentioned 
above, these RS-driven modulations in the metabolomic profiles encompass SCFAs (formate, acetate, butyrate, 
propionate); hydroxy acids (lactate); aromatic amino acids (phenylalanine, tyrosine), branched-chain amino acids 
(isoleucine, leucine, valine); carbohydrates (glucose), TCA cycle intermediates (fumarate), nucleosides (UDP-
glucose, uracil, xanthine, adenine), ethanol, bile acids, cholesterol, and diet-microbiota originated metabolites 
(choline-trimethylamine). Some of these metabolites have previously been found to be altered in HFD-induced 
animal models compared to healthy controls16,22. The net abundance of gut metabolites is dictated by the complex 
ecological events occurring between gut microbes, host epithelial cells, and microbial-host co-metabolisms of 
indigestible dietary molecules. Metabolites originating from gut microbes dominate the distal gut as metabo-
lites from dietary meals are majorly absorbed in the small intestine23. Thus, the distinct RS-specific metabolic 

Figure 5.   Resistant starches from different dietary pulses may impact specific metabolite pathways in the gut. 
Metabolic pathway analysis and metabolite set enrichment analysis (MSEA) based on metabolites associated 
with dietary fiber groups (resistant starch or inulin) relative to standard western-style diet group. Metabolites are 
mapped to KEGG metabolic pathways. Scatter plots of pathway impact and − log p value and relative abundance 
of metabolites related to significantly enriched metabolic pathway. CTL control western-style diet group, PTB 
pinto beans, BEP black-eyed peas, LEN lentils, INU inulin.
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outcomes generated by the gut microbiota reported in this study corroborate that even nuanced structural dif-
ferences in RS may induce divergent gut microbiome-metabolomic signatures5.

We observe differential abundance of butyrate upon consumption of LEN and CKP, and of propionate for the 
INU group. Generally, butyrate production is enhanced in the presence of Firmicutes, while Bacteroidota favor 
acetate and propionate production24. This microbiota-driven metabolite abundance might be explained by the 
predominant Firmicutes in LEN, while Bacteroidota are dominant in INU21. The relatively higher proportion 
of acetate and propionate in the INU group could be partially explained by the higher abundance of Parasut-
terella, Bacteroides, and Parabacteroides, and as well as the lower prevalence of Lachnospiraceae_NK4A136 and 
Faecalibaculum, as reported in our preceding study21. Moreover, propionate biosynthesis at phylum level occurs 
via two modes: the lactate pathway regulated by Firmicutes and the succinate pathway by Bacteroidota25. Our 
correlational analyses reveal a positive association of propionate with the phylum Bacteroidota and many of its 
genera, including Bacteroides and Parabacteroides. Members of these genera are succinate-producers, whereby 
succinate act as a substrate for other commensals for conversion into propionate26, thus suggesting the dominance 
of the succinate pathway in the INU group. The lower production of butyrate in INU could be due to lower levels 
of lactate and/or lactate-derived butyrate-producers as lowered lactate-to-butyrate conversion during in-vitro 
fecal fermentation of fructo-oligosaccharide (FOS) has been reported27. Butyrate biosynthesis is regulated by 
different metabolic pathways, with either acetate or propionate as precursors, and is pH-sensitive, with high 
production rates observed at low colonic pH values27. Although we did not quantify fecal pH levels, it is likely 
that the relatively higher lactate levels, coupled with Firmicutes abundance in LEN, favored butyrate production. 
Previous reports have shown a direct association of lactate with butyrate in RS-fed cats28. Collectively, variations 
in fecal SCFAs concentration among different treatment groups could also be ascribed to the cumulative effects 
of production, absorption, microbial cross-feeding, and complex feedback interactions occurring between bacte-
rial metabolites and host epithelial tissues29. Although the beneficial effects of SCFAs on host health have been 
amply demonstrated in many diseased states, there are instances where abnormally high levels of SCFAs could 
induce metabolic30, immunological31 and neurodevelopmental dysregulations32. Thus, future research aimed 
at defining the appropriate (homeostatic) levels and proportions of SCFAs that promote optimal health would 
help to address this discordance.

Recent studies have elucidated the existence of an intricate relationship between bile acids and the gut 
microbiome in regulating host metabolism under different pathophysiologies33,34. For instance, high levels of 
primary bile acids have been observed in patients with diarrhea-predominant irritable bowel syndrome35. The 
bile acids-binding capacity of RS could aid in weight management, glycemic index modulation, and cholesterol 
reduction36. In this study, we observe a negative correlation between fecal concentrations of TBAs and choles-
terol in all treatment groups compared to the CTL group, with a more pronounced effect exhibited by the INU 
group. Similarly, Ke et al.37 reported an enrichment of TBAs in HFD-induced obesogenic mice, which were later 
reduced to appreciable levels after a 12-week synbiotic intervention comprising oat β-glucan and probiotic strains 
of Bifidobacterium animalis and Lactobacillus paracasei. Besides, the predominance of TBAs in gut favors the 
growth of gram-negative bacteria over gram-positive ones38. This could explain the positive correlation of gram-
negative genera (Butyricimonas, Colidextribacter and Odoribacter) with TBAs and cholesterol in the CTL group. 
Colidextribacter and Odoribacter have previously been associated with hypercholesterolemia and epididymal 
adipose weight, respectively39,40 whereas Butyricimonas has also been associated with HFD feeding in mice22.

The impact of HFD on amino acid metabolism is well documented16,22. The CTL group shows enrichment of 
aromatic amino acids (phenylalanine and tyrosine) and branched-chain amino acids (isoleucine and leucine). 
Higher abundance of these fecal aromatic amino acids was reported earlier in HFD-fed rats16. It is well recognized 
that gut microbiota degrades these essential amino acids, with certain Clostridium species catabolizing pheny-
lalanine to tyrosine and then to 4-hydroxyphenylacetate under anaerobic conditions41. The high abundance of 
glutamine and glutamate in all treatment groups suggests the immunomodulatory potential of RS, as previously 
reported in our study21. Glutamine has been shown to promote IL-10-producing intraepithelial lymphocytes, 
while glutamate can potentiate immunotolerance in the gut-associated lymphoid tissue42,43. The inverse associa-
tion of methionine with treatment groups may also suggest a beneficial effect, as dietary restriction of methio-
nine has shown to reduce inflammation and improve gut permeability in HFD-fed mice44. Interestingly, we also 
observe a higher abundance of threonine in the LEN group, which suggests a positive impact, as studies have 
shown that dietary supplementation of threonine could reduce obesity-linked perirenal and epididymal fat45. 
Fecal levels of glycine, a metabolite involved in conjugation of primary bile salts in the liver, were increased in all 
treatment groups, suggesting its release during the deconjugation of bile salts by gut microbiota. Bacteroides are 
primarily involved in this deconjugation process46 and are also found to be associated with glycine in our study 
(Fig. 3A). However, serum levels of glycine have been reported to increase post HFD-feeding22. Nonetheless, 
dysregulated amino acid metabolism has been previously linked to gut dysbiosis, with serum glycine deficiency 
implicated in non-alcoholic fatty liver disease47. Further investigations are needed to determine whether these 
changes in the gut are also reflected in the serum metabolome.

TMA, a gut microbiota-derived metabolite, is implicated in exacerbating the risk of cardiovascular diseases. 
Gut bacteria harboring specific enzyme complexes (e.g., CutC/D and CntA/B) have the ability to liberate TMA 
from high-fat foods containing TMA moieties such as choline, phosphatidylcholine, and L-carnitine, which is 
converted into the proatherogenic trimethyl amine N-oxide (TMAO) by hepatic flavin-containing monooxy-
genase (FMO) enzymes48,49. Choline is positively correlated with all the treatment groups except PTB, which is 
expected because the basal western-style diet itself contains small amounts of choline and fat sources (e.g., lard) 
(see supplementary Table S1 online). Apart from its involvement in TMA metabolism, choline is considered 
essential for the host as it serves as a precursor for neurotransmitter acetylcholine and facilitates the biosyn-
thesis of cellular phospholipid membrane50. The negative association of choline with PTB might be related to 
high prevalence of Enterococcus in this group, which in turn showed a strong inverse association with choline. 
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Some Enterococcus taxa have been reported to carry the choline TMA-lyase gene (cutC) 51. Interestingly, this 
genus also showed positive correlation with TMA production, pointing towards choline-to-TMA conversion in 
PTB. Furthermore, the results showed that TMA had a positive correlation with INU, while it was only weakly 
or inversely associated with LEN and CKP. These findings suggest that the latter two RSs may play a role in sup-
pressing the choline-to-TMA metabolism by restructuring the gut microbiome. The role of TMA-derived TMAO 
in cardiovascular outcomes is still debatable as it could also have beneficial impact on the host by promoting 
protein stabilization through activating its compensatory stress response action52. Nonetheless, it should be an 
interesting topic for further studies to examine the plasma TMAO levels and cardiovascular health markers 
among such interventions to clarify its plausible harmful and protective mechanisms.

In addition, we identify varying concentrations of several intermediate metabolites such as lactate, acetoin, 
pyruvate, ethanol, UDP-glucose, and others. The net production of these metabolites depends on the complex 
interplay between different gut microbiota species through fermentative glycolytic pathways and nucleotide 
sugar metabolisms. Of these metabolites, UDP-glucose was significantly enhanced in the BEP and CKP groups. 
Although the exact role of UDP-glucose in RS intake is unclear, it has been previously implicated in modulat-
ing gastric motility53 and improving hepatic insulin sensitivity by facilitating the incorporation galactose into 
glycogen synthesis54. Ethanol is another endogenous metabolite produced during the heterofermentative cycle 
of many gut microbes, which can reach the liver and get converted into acetate and acetaldehyde55. We observe 
a positive association of ethanol in the PTB group, presumably due to the lower abundance of the Dubosiella and 
Lactobacilli group, which have previously been found to be reduced in alcoholic liver injury models but restored 
after treatment with Antrodin A, extracted from the mycelium of Antrodia camphorate fungus56.

In our previous study, we reported that the treatment groups (especially LEN, CKP, and INU) increased the 
abundance of Dubosiella, while concomitantly reducing Faecalibaculum21. This trend has also been reported in 
a preclinical study involving resistant dextrin supplementation in HFD57. Interestingly, the metabolites (acetoin, 
lactate, trimethylamine, and ethanol) which showed a negative associated with Dubosiella exhibited a positive 
association with Faecalibaculum. On the other hand, the correlation of other metabolites (adenine, glycine, ura-
cil, and valine) was positively linked with Dubosiella but negatively with Faecalibaculum. Little is known about 
the association of these taxa with gut metabolites, as both taxa belonging to Erysipelotrichaceae were recently 
discovered58. Nonetheless, recent studies have shown a positive association of Faecalibaculum with markers of 
hepatic insult, such as malondialdehyde, triacylglycerols, and alanine/asparate aminotransferases56. Additionally, 
our findings partially align with previous studies59 that reported a direct association of TMA production with 
both Dubosiella and Faecalibaculum. We also observe a positive association of Bilophila, a potential pathobiont, 
with TMA and ethanol, which aligns well with earlier studies60,61. Furthermore, we find a positive correlation of 
Akkermansia with TMA, ethanol, and acetoin while butyrate is negatively correlated. The association of plasma 
TMA with A. muciniphila has been recently reported in diet-induced obesity models62. Although the beneficial 
role of A. muciniphila in ameliorating obesity-associated metabolic dysfunction, improving glucose and lipid 
metabolism, along with intestinal immunity, has been documented63–65, studies demonstrating its negative asso-
ciation with specific aspects of the host health are also available. Recently, the adverse effects of supplementing A. 
muciniphila post-antibiotic treatment in mice has been shown to exacerbate colonic tumor burden66. Moreover, 
fecal abundance of A. muciniphila in a chronic stress-induced mouse model of Parkinson’s disease has been 
found to be increased along with decreased fecal butyrate and increased serum lipopolysaccharide levels67. The 
inverse association of Akkermansia with butyrate could be explained by its mucin metabolism into propionate and 
acetate and its lack of genes involved in butyrate production25,66. However, it might indirectly promote butyrate 
production by supporting the growth of non-mucin butyrate-producing taxa from families Ruminococcaceae 
and Lachnospiraceae25, which may have enhanced butyrate production in LEN and CKP groups wherein the 
members of these two families were increased21. These contrasting effects of A. muciniphila on the intestinal 
health of the host can be attributed to the strain-level phylogenetic differences, which are closely linked to its 
distinct functional and metabolic features68.

Conclusions
To our knowledge, this study is the first to report on the specific modulations induced by resistant starches 
from various dietary pulses in the gut metabolome and microbiome-metabolome interactions within ageing gut 
milieus. The phenotypic differences observed in the gut microbiome-derived metabolites are closely correlated 
with the production of SCFAs and the altered metabolism of bile acids and amino acids. More specifically, the 
levels of butyrate are correlated with the intake of LEN and CKP, while propionate production is correlated with 
INU intake. Through integrated multi-omics correlational analyses of microbiome-metabolome arrays, we reveal 
complex RS-specific mutualistic and competitive interactions occurring across different taxa and metabolites. 
This highlights the potential of discrete structures of dietary pulses-based fibers in inducing targeted modulation 
of the gut metabolomic pool. Our study provides novel and valuable information on the mechanistic understand-
ing of NMR-based metabolomic function of the gut microbiome in mitigating obesity-related disorders. Further 
studies utilizing other comprehensive metabolomics approaches (e.g., LC–MS, GC–MS), as well as metatran-
scriptomics and metaproteomics approaches, are necessary to validate and provide deeper insights into gut 
microbial metabolites in host-metabolic pathways, thereby ascertaining their precise functional consequences.

Materials and methods
Extraction and preparation of RS from pulses.  Starch extraction from pulse seeds was performed in 
accordance with our previously described method69. RS was obtained via simulated gastric digestion from puri-
fied starch as previously described by Tuncil et al.70 with slight modifications. Briefly, 12 g of starch were gelati-
nized in 240 mL sodium phosphate buffer (pH 6.9) and cooled to 37 °C, followed by incubation for 15 min in 



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10566  | https://doi.org/10.1038/s41598-023-37036-w

www.nature.com/scientificreports/

presence of two mL of salivary amylase (Sigma-Aldrich). Hydrolysis was carried out under continuous stirring, 
and the pH was adjusted from 6.9 to 2.0 using 6 M HCl. Subsequently, digestion was initiated using sequential 
steps of enzymes addition: pepsin (37 °C, pH 2.0, 30 min) and four mL pancreatin (37 °C, pH 6.9, 90 min). The 
hydrolyzed starch was dialyzed (6–8 kDa, 36 h) and the leftover undigested starch was freeze dried for 72 h.

Animal studies.  Animal experimentation was conducted as per our previous protocol21. Briefly, the native 
gut microbiota of 55 weeks old C57BL/6J mice was depleted and cleansed via four days of ad-libitum feeding 
with an antibiotic cocktail (ampicillin [1 g], Metronidazole [1 g], Neomycin [1 g], and Vancomycin [0.5 g] per 
liter of drinking water), followed by a four-hour fast before administration of four doses of oral gavage with poly-
ethylene glycol (200 μL per dose; 425 g/L). Thereafter, fecal samples from five human donors (age: 50–55 years) 
were pooled and transplanted into mice as described previously21. Mice were randomly allocated into six groups 
(n = 14–16/ group; 7–8 for each sex) based on a 20-week dietary intervention: CTL (western-style high-fat diet 
control), four treatment groups containing CTL diet supplemented with RS (5% w/w) from pinto-beans (PTB), 
black-eyed peas (BEP), lentils (LEN), and chickpeas (CKP), and one positive control (INU) containing 5% w/w 
inclusion of inulin in the CTL diet, in line with our previous studies71. Fecal samples for metabolome and micro-
biome analysis were collected and stored at − 80  °C until further analysis. Mouse experiments are described 
according to ARRIVE guidelines (https://​arriv​eguid​elines.​org).

Metabolomics analysis.  Fecal samples from the control and treatment groups were extracted using water 
according to a previously described protocol72 with minor changes. Briefly, samples were extracted by vertex-
ing for 5 min with deionized water. The extracted samples were then mixed with a phosphate buffer (pH = 7.4) 
in D2O to make a final solution containing 10% D2O, 0.1 M phosphate, and 0.1 mM Trimethylsilyl propionate 
(TSP). After centrifugation, the samples were transferred to a 5 mm NMR tubes for data acquisition using a 
Bruker Ascend 400 MHz high-resolution NMR (Bruker Biospin, Germany. A 1D first increment of a NOESY 
(noesygppr1d) experiment with water suppression was applied to all samples with 64 scans. All NMR spectra 
were phased and referenced to TSP in TopSpin 4.06 (Bruker BioSpin, Germany). NMR processing was carried 
out in Amix 4.0 (Bruker BioSpin) and the NMR spectra were bucketed using our previously reported automatic 
method73 to minimize peak overlap and splitting. Metabolite indentation was carried out using Chenomx 8.6 
(Chenomx Inc). Total intensity normalization was applied before further data analysis. The raw dataset contain-
ing quantitative information of identified metabolites for each sample in this study can be retrieved from the 
supplementary material.

Gut microbiome analysis.  The gut microbiome was measured according to our previously described 
methods3,71,74–78. Genomic DNA was extracted from 200 mg of the fecal specimen using the QIAmp PowerFecal 
Pro DNA Kit (Qiagen) following the manufacturer’s instructions. The hypervariable V4 region of the bacterial 
16S rRNA gene were amplified using Universal primers 515F (barcoded) and 806R in accordance with the Earth 
Microbiome Project benchmark protocol (https://​earth​micro​biome.​org/). The library was pooled at equal molar 
concentrations and sequenced for paired-end (2 × 300 bp) sequencing using an Illumina MiSeq sequencer (using 
Miseq reagent kit v3; Illumina Inc., San Diego, USA). Microbiome bioinformatics analysis was conducted using 
QIIME2 (ver. 2-2022.8) 79. Raw sequence demultiplexing, filtering, trimming and denoising qwew carried out 
through DADA280. All identified amplicon sequence variants (ASVs) were aligned with the MAFFT81 andASVs 
were assigned with a naïve Bayes taxonomy classifier developed for the sklearn classifier against the pre-built 
from the 99% SILVA 138 database82,83.

Bioinformatics and statistical analysis.  Metabolome analyses were executed using ‘R’ or ‘Python’ pack-
ages. To explore and visualize differences between the CTL and RS-treated groups, a PCoA based on Bray–Curtis 
dissimilarity was conducted, and statistical significance was assessed using the PERMANOVA84 with 999 ran-
dom permutations. To identify the most predictive metabolites, supervised classification was performed with 
the q2-sample-classifier plugin for QIIME2 via nested stratified fivefold cross-validation with Random Forest85 
classifier grown with 1,000 trees. STAMP v 2.1.3 software86 was explored to compare the difference in mean 
proportion of 95% confidence intervals between the CTL and RS-treated groups. Linear discriminant analysis 
(LDA) effect size (LEfSe)87 was used to identify the difference in metabolites, and Human Metabolome Database 
(HMDB) chemical taxonomy88 is utilized to assign metabolites and depict taxonomic cladogram. A network 
between the bacterial taxa and metabolites was constructed by calculating the Spearman correlation and sig-
nificant associations (Spearman correlation coefficient > 0.85 and Benjamini–Hochberg corrected p value < 0.01) 
were visualized using Cytoscape v3.9.189. The association between metabolites and physiological, neurobehavior, 
and intestinal tissue measures were analyzed using multivariate association analysis, MaAsLin290. The benja-
mini–hochberg corrected p-value (q-value) threshold was set to 0.25. Metabolic analysis and MSEA based on 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) Mus musculus library were performed with Metabo-
Analyst v5.091. The enrichment method and topology analysis are conducted using the global test and relative-
betweenness centrality in metabolic analysis.

Ethics approval.  This study was carried out in accordance with the guidelines of the Institutional Animal 
Care and Use Committee. The protocol was approved by the Institutional Animal Care and Use Committee at 
Florida State University (PROTO202100008).

https://arriveguidelines.org
https://earthmicrobiome.org/
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Data availability
All datasets generated for this study are included in the manuscript/supplementary files. All the raw sequenc-
ing datasets are deposited in the NCBI Sequence Read Archive (SRA) public repository database under SRA 
BioProject number PRJNA902407.
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