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Deep learning for deterioration 
prediction of COVID‑19 patients 
based on time‑series of three vital 
signs
Sarmad Mehrdad 1, Farah E. Shamout 2,3,4, Yao Wang 1,2 & S. Farokh Atashzar 1,2,5*

Unrecognized deterioration of COVID‑19 patients can lead to high morbidity and mortality. Most 
existing deterioration prediction models require a large number of clinical information, typically 
collected in hospital settings, such as medical images or comprehensive laboratory tests. This is 
infeasible for telehealth solutions and highlights a gap in deterioration prediction models based 
on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the 
patient’s home. In this study, we develop and compare two prognostic models that predict if a 
patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process 
routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models 
are also provided with basic patient information, including sex, age, vaccination status, vaccination 
date, and status of obesity, hypertension, or diabetes. The difference between the two models is 
the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally‑
dilated version of the Long‑Short Term Memory model (LSTM) for temporal processes, and Model #2 
utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the 
models using data collected from 37,006 COVID‑19 patients at NYU Langone Health in New York, 
USA. The convolution‑based model outperforms the LSTM based model, achieving a high AUROC of 
0.8844–0.9336 for 3 to 24 h deterioration prediction on a held‑out test set. We also conduct occlusion 
experiments to evaluate the importance of each input feature, which reveals the significance of 
continuously monitoring the variation of the vital signs. Our results show the prospect for accurate 
deterioration forecast using a minimum feature set that can be relatively easily obtained using 
wearable devices and self‑reported patient information.

The significant shock imposed by the novel coronavirus (COVID-19) pandemic fundamentally challenged the 
delivery and management of health care services  globally1. According to the World Health Organization, more 
than 620 million patients have been diagnosed with COVID-19 as of October 2022, and there are around 6.52 
million  deaths2. Since March 2020, 96.2 million patients have been admitted to emergency departments across 
the United  States3.

Patients with COVID-19 can experience rapid deterioration entailing the need for invasive measures 
associated with high morbidity or  mortality4. During the pandemic, patient prognosis was challenging, especially 
in the early days when the knowledge about the disease was limited, and any modifications in admission protocols 
could significantly alter the patient  outcomes1. This highlighted the importance of routine patient monitoring 
to ensure that patients with the highest risk of deterioration receive early  attention5.

Due to the saturation of healthcare systems and concerns over unnecessary exposure, many outpatients 
or those in nursing centers were advised to monitor symptoms remotely and report through  telemedicine6. 
Hence, patients would avoid visiting emergency care facilities unless symptoms were considered significantly 
severe and would require immediate and specialized  attention7. Although this practice could reduce exposure 
and unnecessary loads on emergency  services8, it could also result in poor patient prognosis. In fact, for some 
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patients, especially those with comorbidities, the development of symptoms was followed by sudden, drastic, 
and unexpected deterioration resulting in morbidity, even after discharge from a  clinic9.

Considering the scale of data gathered from a plethora of patients with COVID-19 admitted to emergency 
departments worldwide, many Deep Learning (DL) and Machine Learning (ML) methods were developed for 
early  diagnosis10, patient severity  assessment11, or prognosis  prediction12,13. These methods include the use of a 
Convolutional Neural Network (CNN), Variational Auto-Encoder (VAE), Gradient Boosting Machine (GBM), 
Multi-Layer Perceptron (MLP), Decision Tree (DT), Generalized Linear Model (GLM), Support Vector Machine 
(SVM), and Long-Short Term Memory (LSTM), to name a few. The datasets used in the aforementioned studies 
can range from Electronic Health Records (EHR) and Clinical and Comorbidity characteristics (CCC) to imaging 
data such as Chest X-Ray (CXR) and Computed Tomography (CT) Scan. In Table 1, we summarize relevant work 
based on the choice of datasets and models for the different prediction tasks. Due to the large volume of research, 
it would not be possible to cite all relevant papers; hence Table 1 provides a balanced list.

While most of the existing work focuses on diagnosing COVID-19 rather than patient prognosis, many studies 
heavily rely on large input feature sets, specifically high-dimensional imaging, such as chest CT or X-ray scans, 
and other non-imaging modalities, such as laboratory test results. In addition, many existing models do not 
exploit variations in data over time. Even though such data for computational models have shown great potential, 
there is a lack of seamlessly-scalable models based on minimal feature sets collected over time. We specifically 
prioritize data that can be collected not only in hospitals but also in nursing centers or patient homes, such as 
using wearable devices, e.g.,  smartwatches14.

In this study, we propose two deep neural networks to model time series of three vital signs only to predict the 
deterioration amongst patients with COVID-19. The ultimate goal of this work is to provide a light and scalable 
prediction model to support clinical decision-making for a wide range of patients in the long term, including 
at-home patients, outpatients, and inpatients. To minimize the size of the input feature space, we focus on three 
basic vital signs, namely, oxygen saturation (SpO2), heart rate (HR), and temperature. This design choice is 
motivated by the wide availability of wearable devices, such as smart watches, that can monitor these vital signs. 
We specifically exclude other vital signs, such as blood pressure, because they cannot be measured using readily 
available wearable systems.

To develop and evaluate the porposed models, we use real-world data collected at NYU Langone Health 
between January 2020 and September 2022. The model predicts deterioration at time horizons of 3 to 24 h using 
the vital-signs time-series data collected in the 24 h preceding the time of prediction (corresponding to the 
beginning of the prediction horizon), defined as in-hospital mortality, admission to the intensive care unit (ICU), 
or intubation. We refer to the sequential vital-sign data as SEQ data in the remainder of this paper. The model 
is also provided with a small set of features reflecting CCC, including sex, age, vaccination status, vaccination 
date, and status of obesity, hypertension, and diabetes (referred to as non-SEQ data).

The first model includes a temporally-dilated LSTM (TD-LSTM)  network48 to process the SEQ data and 
an MLP that combines the last hidden state of the LSTM and the non-SEQ data. The LSTM network utilizes 
temporal dilation to enable access to more extended memory dynamics without exponentially increasing the size 
and complexity of the computational framework. The second model utilizes a residual temporal convolutional 
network (TCN)49,50 for SEQ data processing, and similar to the first model, an MLP is used to combine the 
output of the residual TCN blocks with the non-SEQ data. TCNs will preserve the causality of the time-series 
signal while using exponentially dilated convolutions to effectively extract features from the input signal’s full 
spectrum. For each prediction horizon, a separate model is trained and optimized using the focal cross-entropy51 
loss through a three-phase training procedure.

The results show that, in the 3 to 24 h prediction time horizons the model based on TCN achieves an Area 
Under the Receiver Operating Curve (AUROC) of 0.8842–0.9237. While the results are not directly comparable 
to those in existing work due to differences in data pre-processing, the model achieves a comparable performance. 
For example, the model in Ref.52, which uses CXR images and other clinical variables, achieves 0.765 AUROC 
in predicting deterioration within 24 h. In order to assess the significance of the various CCC features and the 
importance of the temporal history of vital signs, we also perform a sensitivity analysis through an occlusion 
experiment. Overall, our work highlights the feasibility of achieving high model performance for deterioration 
prediction amongst patients with COVID-19 using minimal feature sets, which are easy to obtain not only in the 
hospital setting but potentially also in nursing centers and at patient homes. The following remarks are added to 
further clarify the main focus of this paper.

• Remark #1 This paper report on an investigation that has shown for the first time that with deep temporal 
processing of only three vital signs and a set of patient’s clinical characteristics, computational models (such as 
those reported in this paper based on TD-LSTM and TCNs) have the power to predict the health deterioration 

Table 1.  Summary of related work. Overview of related work on the diagnosis of patients with COVID-19, 
patient severity assessment, and patient prognosis.

Paper Task Data Machine learning model
15–36 Diagnosis CXR, CT Scan, EHR, CCC CNN, GBM, VGG19, APACHE, ResNet50, VAE, LSTM
37–42 Severity assessment CXR, CCC SVM, DenseNet, CNN, MLP
43–47 Prognosis CXR, CT Scan CNN, DenseNet121-FPN, GLM, GBM, XGBoost, DT, AlexNet, Inception-V4
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of the patients with COVID-19 ahead of time. This paper also investigates the contribution and importance 
of each of the vital signs and a set of comorbidity. The outcome can have a significant impact on clinical 
and therapeutic management in hospitals. It should be noted that this paper does not claim to propose a 
new neural network architecture or a training optimization algorithm, as it is out of the scope of this paper. 
Rather we focus and report on the possibility of health deterioration prediction using only three vital signs 
processed by the proposed deep neural network architectures.

• Remark #2 The dataset used in this study pertains to the patients with COVID-19 positive tests, but the 
COVID-19 infection may not necessarily be the primary reason for their hospital admission. Also, it is 
not possible to isolate the reason for deterioration as COVID-19 can play a compounding effect besides 
other comorbidities, the primary reason for admission, and underlying conditions altogether could result 
in deterioration. This paper does not claim to generate a general model for any abnormal health condition; 
instead, specifically, we focus on patients with positive COVID-19 tests.

• Remark #3 The proposed models in this paper are trained on COVID-19-positive patients, and the paper 
suggests that three major vital signs can be processed by the proposed models to predict the deterioration 
of COVID-19-positive patients. The paper does not claim that the proposed models can be used for other 
respiratory illnesses, as this would require different data collection and possibly different architecture designs 
and training, which is out of the scope of this paper.

Methodology
Dataset. All methods were carried out in accordance with relevant guidelines and regulations. In this 
retrospective study, we use the “NYU Langone De-identified COVID-19  database53” collected from patients at 
the NYU Langone facilities between January 2020 and September 2022. The COVID-19 De-identified Clinical 
Database is a de-identified dataset of clinical activity at NYU Langone Health obtained from Epic starting 
January 1st, 2020. The data has been stripped of unique identifiers and dates have been shifted by an arbitrary 
number of days for each patient, which means that these data are not subject to HIPAA restrictions on research 
use, and thus IRB was exempted. More information can be found  here53.

Data pre‑processing. We define inclusion and exclusion criteria. First, in the case of multiple patient 
encounters, we use the patient’s most recent encounter. Then, we include patients who either tested positive for 
COVID-19 at the facility or were already diagnosed with COVID-19 at the time of their admission. Next, we 
include in-patients with vital sign measurements. The vital signs of these patients, including SpO2, temperature, 
and HR, are periodically measured and recorded roughly every 4–5 h. For each patient, age, sex, vaccination 
status and time, and the presence of comorbidities, including obesity, diabetes, and hypertension, are also 
recorded.

Similar to previous work  (see52 and reference therein), we define deterioration as the occurrence of the 
composite outcome of mortality, ICU admission, or intubation, i.e., any of the three events. For patient encounters 
with several adverse events, we only consider the occurrence of the earliest deterioration event. It should be noted 
that if there are multiple deteriorations of the same type (e.g., ICU admission) recorded for a patient more than 
a week apart, we only consider the latest as the reference time of deterioration for the patient. For patients who 
had deteriorated, we extracted vital sign data in the 48 h preceding the time of deterioration.

We use this data to define “positive” windows for each prediction horizon, where t = 0 represents the end of 
the window and t = − 24 represents the start of the window, such that, for example, in the prediction horizon 
of 24 h, deterioration would have occurred at t = 24.

For patients who did not experience deterioration and were discharged, we use the 48 h window preceding 
the last vital-sign recording and similarly use those to formulate the “negative” windows. We exclude all samples 
containing less than 48 h of vital-sign monitoring, either preceding the deterioration time or discharge time.

To pre-process the time-series data, we first normalize the data using Z-score normalization based on each 
vital sign’s mean and standard deviation. Since the vital signs are measured at irregular intervals, we resample 
each time series to obtain regularly sampled input for the LSTM and TCN networks. This resampling is done by 
first interpolating the raw non-uniformly sampled data through cubic spline interpolation and then sampling 
the interpolated signal every 15 min. In Fig. 1, we show a schematic summarizing the pre-processing of the raw 
time-series data, which we refer to as the SEQ data.

As for the non-SEQ data, we encode patient sex, vaccination status, hypertension status, and obesity status as 
binary (0 or 1). For diabetes status, we use one-hot encoding to represent if a patient is non-diabetic ([1, 0, 0]), 
diabetic without complications ([0, 1, 0]), or diabetic with complications ([0, 0, 1]). We grouped the age into 18 
different sub-groups and replaced each age with the corresponding age sub-group (value between 1 and 18). For 
vaccination time, we count the number of elapsed months between the time of the second COVID-19 vaccination 
shot and the day of the time of prediction ( t = 0).

DL‑based deterioration prediction model. We choose to develop and compare the performances of 
a LSTM-based model and a TCN-based model, because these two model architectures are commonly used for 
modeling time series data. Our proposed LSTM-based deep neural network architecture consists of TD-LSTM 
layers and fully-connected (FC) layers. The overall architecture of this network is shown in Fig. 2, and we refer 
to it as the Recurrent Sequential Vital Sign Network (RSVS-Net), consisting of two modules. The SEQ data is 
processed by a module comprised of an LSTM network and a single FC layer, while the non-SEQ data is processed 
by a second module consisting of an independent FC layer. The final prediction is based on both modalities.

The TCN-based network proposed in this study includes residual TCN blocks, and FC layers. We refer to this 
model as Convolutional Sequential Vital Sign Network (CSVS-Net). The module that is processing the SEQ data 
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Figure 1.  Data pre-processing pipeline. We encode the non-SEQ data and pre-process the SEQ data: (i) 
normalize via Z-score normalization, (ii) model the time-series using cubic spline interpolation, (iii) and 
resample at every 15 min.

Figure 2.  Architecture of the LSTM-based deep neural network. The SEQ vital sign network processes the SEQ 
data through an LSTM-based network, whereas the non-SEQ module encompasses the non-SEQ data.

Figure 3.  Architecture of the TCN-based deep neural network. The SEQ vital sign network processes the SEQ 
data through a series of residual TCN blocks followed by a FC layer, while the non-SEQ module processes the 
non-SEQ data.
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in this network consists of a series of five residual TCN blocks with exponentially enlarging kernel dilations, 
and a single FC layer. The non-SEQ data processing module of the CSVS-Net is the same as the one in RSVS-Net. 
The architecture of CSVS-Net is shown in Fig. 3. For brevity, we refer to the residual TCN blocks as R-blocks 
throughout the rest of this paper.

RSVS-Net architecture details. LSTM networks are well-known for their ability to learn from SEQ data and have 
been widely used in studies where the time-series data is integral to the learning of the system and predicting 
future  events55,56. The temporal module consists of a temporally-dilated LSTM, which takes three vital signs as 
input at each time step, and has three layers, each containing 32 hidden units. The final hidden state of the LSTM 
network, consisting of a dimensionality of 32, is processed by an FC layer with an output dimensionality of 16. 
The non-SEQ data, with a dimensionality of 9, is processed by a single FC layer, which computes an output of 
dimensionality of 16.

Finally, the latent representations of the two modalities are concatenated as a vector of dimensionality of 32 
and then processed by an FC fusion layer with an output dimensionality of 8. This is then followed by a single 
FC layer with sigmoid activation and an output dimensionality of one, which represents the prediction that a 
sample precedes deterioration or is not within the specified time horizon. All of the FC layers use hyperbolic 
tangent activation except for the last layer, which uses sigmoid activation. The RSVS-Net model has 22,209 
trainable parameters.

CSVS-Net architecture details. TCN models have gained increasing attention recently for time-series data 
 analysis49,50,57–59. In TCNs, convolution is causal, meaning that the convolution output at time t will only rely on the 
signal at time t or  earlier49. In the CSVS-Net, the SEQ data module comprises five serialized R-blocks. Each block 
has two dilated causal 1D convolutional (DC-Conv) layers. In addition, each R-block has a residual connection, 
so the network would become more effective in learning the extracted features and the modifications applied to 
the input signal by the DC-Conv layers. At the end of each R-block structure, the output of the last DC-Conv 
layer and the R-block’s input will be summed. Therefore, these signals should have matching dimensions. To 
ensure this criteria is satisfied throughout the model, in the first residual R-block, a 1× 1 convolutional layer 
with linear activation function is implemented in the residual connection to match the input data dimension to 
the output of the DC-Conv layers.

In CSVS-Net, all of the DC-Conv layers in the R-blocks have 28 filters, and use hyperbolic tangent activation 
function. Hence, the output dimension of every R-block is ( N × 28 ), with N being the number of samples for 
each feature in the vital sign time-series signals. For 24-h observation period for each feature, since we have 4 
samples in each hour, the length of the signal will be N = 1+ (4× 24) = 97 . For analyzing the full length of 
this signal, the architecture of the CSVS-Net should be able to have a receptive field ( Rfield ) big enough to analyze 
the entire signal length. The Rfield parameter can be computed using Eq. (1).

In Eq. (1), K represents the filter size, B is the number of R-blocks in the architecture, and di is the kernel dilation 
used at each R-block. By choosing K = 3 , B = 5 , and di = 2(i−1) , we will have enabled the model to gain receptive 
field of 125. It should be noted that any other chosen number of R-blocks will either result in an insufficient 
or unnecessarily large receptive fields for the model. Finally, a “slicer” layer is implemented at the end of the 
R-block chain, which only passes through the last array of the final R-block’s output. Hence, the dimension of 
the slicer layer output is ( 1× 28 ). Thereafter, this 1× 28 vector is processed by an FC layer with dimensionality 
of 16. The rest of the layers in the CSVS-Net are the same as the ones in RSVS-Net. The CSVS-Net model has 
22,709 trainable parameters.

Three-phase training strategy. In order to optimize the performance of the proposed network, the training 
strategy consists of three phases, as described below.

• Phase 1: Training of SEQ module In the first phase, we train the SEQ module only and freeze all other layers. 
The output of the FC layer in the SEQ module is connected to another FC layer that computes the prediction. 
After this training phase, the weights are used to pre-initialize the SEQ module in the next phase, and we 
remove the second FC layer used to compute predictions during pre-training in the first phase.

• Phase 2: Training of fusion layer In the second phase, we compute the representations of the SEQ data after 
initializing the associated module with the weights obtained in the first phase, and then freeze the SEQ 
module. We then train the FC layer, FC fusion layer, and the FC output prediction layer using the non-SEQ 
data.

• Phase 3: End-to-end fine-tuning of RSVS-Net and CSVS-NetIn the last phase, we initialize the parameters of 
the entire network using the weights obtained in the first two phases. The network is trained end-to-end, to 
improve the overall network performance.

Model training and evaluation. To train and evaluate the models, we divide the entire dataset into training, 
validation, and testing sets, with percentages of 66.6% , 16.6% , and 16.6% , respectively. Each dataset has the 
same distribution of positive and negative samples. The final performance results are obtained by evaluating the 
trained models on the test dataset.

(1)Rfield = 1+ 2× (K − 1)×

B∑

i=1

di .
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We train the models using the training set for 200 epochs using the three-phase training strategy. For the first 
and second phases, we choose a learning rate of 0.0001 based on initial experimentation and a learning rate of 
0.00001 for the final fine-tuning stage. For all phases, we use the ADAM  optimizer60 with β1 = 0.9 , β2 = 0.999 , 
ǫ = 10−8 . After training for 200 epochs, the best model is selected based on the epoch with the least validation 
loss across all epochs. We evaluate the models on the test set. We use the binary focal cross-entropy  loss51 in 
order to manage class imbalance in the dataset. We evaluate the models’ performance using three widely used 
metrics for binary classification: accuracy (with a 0.5 threshold to convert the predicted probability into binary), 
AUROC, and Area Under the Precision-Recall Curve (AUPRC).

Results and discussion
Patient cohort. In Fig. 4A, we show the application of the inclusion and exclusion criteria. This resulted in 
37,006 patient samples, including 6104 positive samples and 30,902 negative samples. Table 2 summarizes the 
characteristics of the patients. In Fig. 4B, we show the differences in vital signs of the two cohorts at t = 0 , while 
in Fig. 4C, we show the differences in vital signs between the two cohorts at t = − 24 . Using t-test statistical 
analysis, it can be seen that the difference between the two cohorts is statistically significant even as early as 24 h 
before deterioration. This motivates the use of the proposed DL to decode the hidden pattern differentiating the 
two cohorts. In Fig. 5, we show the distribution of the admitted patients over time.

Figure 4.  Application of data inclusion and exclusion criteria and distribution of vital signs. (A) In this 
flowchart, we illustrate the application of the inclusion and exclusion criteria, where n represents the number of 
patients after each step. (B) The boxplot of the vital signs recorded from the patients at the end of the 24-h input 
window (t = 0) corresponds to the prediction time. (C) The boxplot of the vital signs recorded from the patients 
at the beginning of the 24-h input window (t = − 24). We observe differences between the two groups (evaluated 
using the T-test), which motivates the design of the proposed temporal model.

Table 2.  Overview of patient cohort. We summarize in this table the patient characteristics, including 
demographics, and distribution of vital signs, for patients who deteriorated and patients who did not 
deteriorate.

Characteristics Deterioration No deterioration

Patient, n 6104 30,902

Age (years), mean (SD) 66.0 (18.4) 63.1 (18.0)

Sex (females), n (%) 2539 (41.5) 17792 (57.5)

Diabetes w/o complications, n (%) 1510 (24.7) 5582 (18.0)

Diabetes w/ complications, n (%) 114 (1.8) 401 (1.2)

Hypertension, n (%) 2721 (44.5) 11,748 (38.0)

Vaccination n (%) 2388 (39.1) 16,776 (54.2)

Time since last vacination (months), mean (SD) − 0.67 (6.2) − 0.94 (7.3)

Obesity, n (%) 1003 (16.4) 5370 (17.3)

Vital signs feature sets

 SpO2 (%), mean (SD) 95.2 (4.5) 96.2 (2.7)

 HR (Beats per minute), mean (SD) 93.98 (27.1) 82.9 (18.57)

 Temperature ( ◦ F), mean (SD) 98.37 (1.6) 98.2 (1.4)
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Model performance. The final model performances are summarized in Table 3 and also shown in Fig. 6 
after the three-phase training strategy. The performance of the RSVS-Net at the 24 h time horizon reaches 86.67% 
accuracy, 0.8278 AUROC, and 0.5805 AUPRC. Moreover, CSVS-Net achieves 89.75% accuracy, 0.8844 AUROC, 
and 0.7227 AUPRC, at the 24-h time horizon, significantly outperforming the LSTM-based model. As expected 
the prediction accuracy improves as the prediction horizon reduces. We suspect that the convolution-based 
model (CSVS-Net) outperformed the LSTM-based model (RSVS-Net) because the former was able to extract 
and exploit features from all the vital signs in the observation window relatively equally, while the LSTM model 
may reduce the contribution of the far away samples. As shown in Fig. 6, AUROC and AUPRC consistently 
improve at all prediction horizons after each training phase. By comparing the performance of the three phases 
of training, it can be observed that the adopted three-phase training strategy boosts the model’s performance by 
forcing the network to extract information initially from the SEQ data and, in the end, from a combination of 
SEQ and non-SEQ data. The improvement can be seen in accuracy, AUROC, and AUPRC. Although the datasets 
used in similar  studies52 are not the same, the results are comparable to those reported in Ref.52 previously for a 
sub-number of the patients, even though the size of the input space was much larger in previous studies through 
the inclusion of medical imaging data.

Ablation studies. In order to understand the impact of our design choices within the model architecture, 
we compare our models to two other networks. The first model, referred to as Memory-Less Vital Sign Network 
(MLVS-Net), processes the non-SEQ data and only the last set of vital signs collected from the patient, ignoring 
any sequential information. Hence, instead of using a TD-LSTM or R-blocks, we process the vital-sign data (3 
features) with an MLP consisting of two FC layers with an output dimensionality of 16 each. The computed 
representation of the MLP is then concatenated with the representation of the non-SEQ data. We train the model 
in a similar fashion using the three-phase training strategy, and we freeze the weights of the MLP network in 
phase two. The second model, referred to as the non-Sequential Health Status Network (nSHS-Net), only considers 
the non-SEQ data. Hence, the output of the FC layer is processed by a second FC layer to generate the prediction.

We compare the three models in Fig. 7. First, we observe that nSHS-Net performs the worst, implying that 
incorporating vital signs is crucial for the model prediction. When comparing MLVS-Net to RSVS-Net and CSVS-
Net, we observe a better performance with our proposed models across all prediction horizons and evaluation 
metrics. This implies that incorporating sequential information can significantly improve the model’s capability 
in predicting deterioration relative to using a single measurement of vital signs. As already shown in Fig. 6, 
among the two proposed models, the CSVS-Net significantly outperforms the RSVS-Net. The numerical results 
of Fig. 7 are summarized in Appendix I.

Figure 5.  Distribution of samples over time. We show the number of patients who deteriorated vs. those who 
did not deteriorate in our final filtered dataset (n = 37,006).

Table 3.  Model performance. Performance summary of the proposed networks for three phases of training at 
all horizons.

Prediction horizon (h) 3 6 9 12 15 18 21 24

RSVS-Net

 Accuracy 0.8826 0.806 0.8733 0.8741 0.8688 0.8689 0.8706 0.8667

 AUROC 0.8754 0.8595 0.8481 0.8328 0.8322 0.8225 0.8205 0.8278

 AUPRC 0.6565 0.6492 0.6098 0.5936 0.5908 0.5786 0.5783 0.5805

CSVS-Net

 Accuracy 0.9134 0.9098 0.9105 0.9061 0.9028 0.9035 0.9006 0.8975

 AUROC 0.9336 0.9215 0.9102 0.8979 0.8966 0.8968 0.8844 0.8844

 AUPRC 0.8056 0.7892 0.7757 0.7519 0.7434 0.7464 0.7282 0.7227
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Occlusion analysis. In order to assess the influence of each input variable, we conduct an occlusion analysis 
on the final optimized model. In particular, we occlude one feature at a time (by setting the corresponding 
values to zero) and evaluate the performance on the test set. The greater the reduction in the performance 
metrics upon feature occlusion, the more important the feature is for the prediction. The results of this analysis 
are shown in Fig. 8. As shown in Fig. 8A, amongst the non-SEQ features, we observe that age plays the most 
significant role in the model’s performance. The other CCC features have less impact once occluded and do not 
have consistent trends across the different performance metrics and prediction horizons. It should be noted 
that due to the correlation between the various features, some features may be relevant to the prediction task 
yet are not considered to be important by this occlusion analysis. For example, if one CCC feature affects the 
variations in the vital signs over time, then the model would capture the corresponding effect. In this case, 
the occlusion analysis may show that this CCC feature is unimportant. However, when a feature shows low 
sensitivity through the occlusion study, the need for that feature to be given to the model as an “independent” 
input is insignificant. Among the SEQ features, for both models, we observe heart rate as the most important 
feature, followed by SpO2 and temperature. For CSVS-Net, the temperature occlusion shows minuscule effect 
in the model performance. This is an interesting observation, possibly because the CSVS-Net model was able 
to capture the information encoded in the change in temperature using the observations on the change in the 
heart rate and/or SpO2. In other words, the inter-dependencies between the vital signs could be the cause of this 
observation. It should be highlighted that in Fig. 8, we have shown that the vital signs are more important than 

Figure 6.  Performance results after each phase in the training strategy across all prediction horizons.

Prediction Horizon (Hours) Prediction Horizon (Hours) Prediction Horizon (Hours)

nSHS-Net nSHS-Net nSHS-Net

MLVS-Net

MLVS-Net
MLVS-Net

RSVS-Net

RSVS-Net
RSVS-Net

CSVS-Net CSVS-Net
CSVS-Net

Figure 7.  Ablation study results. Performance results for RSVS-Net and CSVS-Net (Input: non-SEQ data and 
SEQ vital sign data), MLVS-Net (Input: non-SEQ data and a single set of vital signs), and nSHS-Net (Input: non-
SEQ only).
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the clinical and comorbidity features, and SEQ vital signs bring additional information than the current vital 
signs only. The observation here matches the aforementioned analysis. Numerical results of Fig. 8 are given in 
Supplementary Appendix I.

Experimenting with shorter observation windows. In the previous section, we show the importance 
and significance of the time history of the vital signs for predicting the deterioration of COVID-19 patients, 
considering an observation window of 24 h. It is also important to evaluate the behavior of the proposed model 

Figure 8.  Occlusion analysis: (A) Occlusion of the clinical and comorbidity characteristics. Observation: 
Occlusion of Age decreases performance more significantly than others. (B) Occlusion of SEQ vital sign data. 
Observation: the HR contributes more significantly to the model performance than the SpO2 and temperature.
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for different windows of observation. Thus, here, we analyze system performance for three shorter windows of 
observation (with lengths of 6 h, 12 h, and 18 h). It should be noted that for this analysis, the proposed RSVS-
Net and CSVS-Net models, which were trained by observing 24 hours of patient data, were “evaluated” for 6, 12, 
and 18 h of the observation period. Both RSVS-Net and CSVS-Net models were not retrained for these shorter 
windows of observation in order to evaluate the performance of a single model for various input windows. The 
results of this analysis are shown in Fig. 9. As can be seen, by decreasing the duration of the observation window, 
the performance drops. The drop in performance caused by the shorter observation is likely caused by the lack 
of information used in the model to predict the deterioration event ahead. This analysis further highlights the 
importance of continual and prolonged monitoring, which may motivate using smart wearable medical systems.

Comparison with COVID‑19 negative patient data. In order to further evaluate the performance of 
CSVS-Net, we trained this model on the dataset containing the same set of SEQ and non-SEQ biomarkers derived 
from the patient cohort without the positive COVID-19 diagnosis (as seen in Fig. 4A). This dataset includes 2508 
deteriorated and 48395 non-deteriorated patient data after pre-processing (mentioned in “Data pre-processing” 
section). The ratio of non-deteriorated to deteriorated patients in this dataset is noticeably higher than the 
COVID-19 positive dataset, which corroborates the effect of COVID-19 on patient health deterioration. The 
performance of the CSVS-Net model on this new dataset and the occlusion analysis are presented in Figs. 10 
and 11, respectively. It can be seen that although the accuracy of this model is slightly higher than the CSVS-
Net model trained on the COVID-19 positive patient dataset, AUROC follows a lower trend in comparison, 
and AUPRC is significantly lower. The low AUPRC conveys that the proposed model is not able to secure the 
same level of sensitivity to differentiate between the to-be-deteriorated and to-be-not-deteriorated subjects, as 
it is able to do so for the COVID-19-positive patient data. This behavior can stem from the heterogeneity of the 
COVID-19-negative patient data, which can point out that health deterioration prediction should be investigated 
using disease-specific models; also, it may highlight that a generic model may not be able to secure the needed 
sensitivity. In other words, the results show that even though the three proposed biomarkers (heart rate, SpO2, 
and temperature) can provide a sensitive prediction of deterioration for COVID-19-positive patients, they are 
not able to secure the same level of sensitivity for a generic patient population.

The results shown in Fig. 11A suggest that among non-sequential biomarkers, occlusion of age has the highest 
effect on the performance of the model trained on the COVID-19-negative patient cohort. This is the same case 
for COVID-19-positive patients for the proposed CSVS-Net model.

(A) RSVS-Net

(B) CSVS-Net

24 hours 18 hours 12 hours 6 hours

Prediction Horizon (Hours) Prediction Horizon (Hours)

Prediction Horizon (Hours) Prediction Horizon (Hours)

Figure 9.  Various observation windows (6 to 24 h). The legend of the figures indicates the observation 
duration. Performance results of the RSVS-Net and CSVS-Net given different observation duration.
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Moreover, in contrast to the CSVS-Net model trained on the COVID-19 positive dataset, the most significant 
SEQ vital sign that affects the model’s performance when trained on COVID-19 negative dataset is SpO2, followed 
by heart rate and temperature, respectively, as seen on Fig. 11B. These results, compared with the results presented 
in Fig. 8B, show that the occlusion of heart rate will result in a more significant drop in the performance for 
COVID-19-positive cases, which may suggest that the temporal dynamics of the heart rate and the corresponding 
temporal variations are distinctly more critical for detecting health deterioration for COVID-positive patients 
than for COVID-19-negative patients. Given this observation, the heart rate may be considered as a potentially 
unique biomarker for COVID-19 health deterioration prediction using the proposed CSVS-Net model.

Figure 10.  Performance comparison of CSVS-Net trained on COVID-19 positive and COVID-19 negative 
cohorts: Observation: The accuracy and AUROC metrics of the model trained on the COVID-19 negative 
cohort are comparable to those of the model trained on the COVID-19 positive cohort, while the AUPRC is 
significantly lower in comparison.

Figure 11.  Occlusion analysis for COVID-19 negative patient cohort: (A) Occlusion of the clinical and 
comorbidity characteristics. Observation: Occlusion of Age decreases performance more significantly than 
others. (B) Occlusion of SEQ vital sign data. Observation: SpO2 vital sign has more impact on the model 
performance than HR and temperature.
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Conclusion
This study is motivated by the high availability of personal medical devices, such as wearable systems (e.g., 
smart watches), that can record time-series medical data and the prospects of using such devices in the context 
of telehealth to predict deterioration. In summary, we propose, develop, and evaluate a deterioration prediction 
model using a large dataset (n = 37,006) collected at NYU Langone Health during the period of January 2020 to 
September 2022. The CSVS-Net achieves a high AUROC of 0.8844–0.9336 in 3 to 24 hours prediction horizons 
and outperformed the RSVS-Net. Our study has several strengths. First, the models use a minimal input feature 
set consisting of a time series of three routine vital signs, i.e., SpO2, heart rate, and temperature. The models are 
also provided with basic patient information, including sex, age, vaccination status, vaccination date, and presence 
of obesity, hypertension, and diabetes, which can be easily collected. Compared to previous  work52 that achieved 
0.765 AUORC, our model achieves a better performance. Furthermore, our models were trained and evaluated 
using much smaller and more accessible data modalities (excluding any sophisticated imaging, such as CT scans). 
We do note that the model in Ref.52 was trained with significantly fewer data points (number of patients) than 
ours, and hence this can be another reason on the difference in performance. In addition, we also performed 
a sensitivity analysis through an occlusion experiment and an ablation study on various inputs including the 
vital signs, to assess the significance of the various clinical and comorbidity features and the importance of 
using time-series vital-signs data. The results showed the importance of modeling the temporal variations of 
vital signs and the possibility of achieving high prognosis accuracy without the need for sophisticated medical 
imaging. Finally, the proposed framework is scalable as it can be extended for other prediction horizon ranges 
and observation periods.

The limitations of the proposed work include the following. First, our observation windows for the vital signs 
are tested only for 6 to 24 h. We showed that reducing the window lengths leads to degraded performance. In 
future work, we are interested in evaluating if further increasing the observation window would significantly 
improve the prediction accuracy. Second, we acknowledge that the final results can be further improved via 
hyperparameter tuning, including the number of network layers, the number of feature channels, and convolution 
kernel sizes, and this is an area of future work.

To conclude, this study highlights the feasibility of an accessible and scalable model to help assist the medical 
workforce in decision-making. The proposed model’s versatility is important, as the data types needed for 
predicting the deterioration can be easily acquired from patients using wearable sensors and a few clinical data 
features that can be self-reported.

Data availability
The database that supports the outcomes of this paper was obtained from the NYU Langone Health’s Medical 
Center Information Technology (MCIT). This database is available to the NYU Langone Health community to 
encourage exploration of the COVID-19 patient population for exploratory research, hypothesis testing, and 
identification of cohorts. Restrictions do apply to the public availability of the database. Data access is upon 
reasonable request and requires permission from NYU Langone Health (more relevant information can be found 
 here53,54). The processed data, including figures and results supporting the conclusion made in this study, are 
given in the paper and can be made available upon reasonable requests from the authors.

Code availability
The deep learning model and programming code for results presented in this manuscript is available from the 
corresponding authors upon reasonable request.
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