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An efficient single shot detector 
with weight‑based feature fusion 
for small object detection
Ming Li 1,2, Dechang Pi 1* & Shuo Qin 1

Object detection has been widely applied in various fields with the rapid development of deep learning 
in recent years. However, detecting small objects is still a challenging task because of the limited 
information in features and the complex background. To further enhance the detection accuracy of 
small objects, this paper proposes an efficient single‑shot detector with weight‑based feature fusion 
(WFFA‑SSD). First, a weight‑based feature fusion block is designed to adaptively fuse information 
from several multi‑scale feature maps. The feature fusion block can exploit contextual information 
for feature maps with large resolutions. Then, a context attention block is applied to reinforce the 
local region in the feature maps. Moreover, a pyramids aggregation block is applied to combine the 
two feature pyramids to classify and locate target objects. The experimental results demonstrate 
that the proposed WFFA‑SSD achieves higher mean Average Precision (mAP) under the premise of 
ensuring real‑time performance. WFFA‑SSD increases the mAP of the car by 4.12% on the test set of 
the CARPK.

In the last decades, computer vision is under extensive research in both academic and industrial applications, 
such as transportation surveillance, smart city, and sports  analysis1. Object detection is the foundation of various 
other computer vision tasks including object tracking, action recognition, and image captioning. Object detection 
consists of two sub-problems, the location of the bounding boxes of objects and the classification of the object in 
each box. The previous traditional object detectors are based on the sliding-window paradigm and hand-crafted 
 features2–4. However, traditional object detectors suffer from huge computational resources, redundant anchor 
boxes, and poor robustness.

In recent years, the effectiveness of convolutional neural networks (CNNs)5 has been verified in various fields 
of computer vision, CNN-based object detectors can be roughly divided into two-stage detectors (R-CNN6 and its 
 variants7,8) and one-stage detectors  (SSD9 and  YOLO10). The two-stage detectors firstly identifying the potential 
regions may contain objects, and then classify the regions one by one. In most scenarios, two-stage detectors 
achieve excellent accuracy with slow detection speed. Conversely, one-stage detectors provide slightly poor detec-
tion accuracy with fast speed through merging the identification of regions and classification into one step. To 
be specific, one-stage detectors aim at mapping image pixels to coordinate of bounding boxes directly. Although 
the detection speed can be significantly enhanced, the detection accuracy in several scenes is insufficient.

Detecting the tiny object in images is highly challenging because of the ambiguous boundaries, complex 
backgrounds, and changing illumination. To address this problem, this paper proposes an efficient WFFA-SSD 
with a weighted-based feature fusion block and context attention block based on the original single-shot detec-
tor. In a weight-based feature fusion block, several multi-scale feature maps are fused with self-adaptive weight. 
Meanwhile, the context attention block is employed to reinforce the local feature in the feature maps. Therefore, 
two feature pyramids are fused to make predictions. The comprehensive experiments are conducted on the 
CARPK and PASCAL VOC datasets, and the experimental results demonstrate that the proposed WFFA-SSD 
outperforms the compared state-of-the-art one-stage object detectors. The contributions in this paper are sum-
marized as follows.

• A weight-based feature fusion block is designed to adaptively fuse information of several multi-scale feature 
maps. Then, the feature maps with large resolutions can obtain more contextual information.

• A context attention block is applied to reinforce the local region in the feature maps.
• A pyramids aggregation block is employed to combine the two feature pyramids to classify and locate target 

objects.

OPEN

1School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, 
China. 2Beijing Institute of Environmental Features, Beijing 100854, China. *email: pinuaa@nuaa.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36972-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9883  | https://doi.org/10.1038/s41598-023-36972-x

www.nature.com/scientificreports/

• The extensive experiments on CARPK and PASCAL VOC dataset demonstrate that the proposed WFFA-SSD 
is superior to the other state-of-the-art one-stage detectors consistently.

The rest of this paper is organized as follows. In “Related work” section, the related works of object detectors, 
multi-scale feature fusion, and attention mechanism are introduced. “Proposed method” section elaborates 
the structure of the proposed WFFA-SSD and the the components. “Experimental results and analysis” section 
conducts the experiments and analyzes the experimental results. “Conclusions and future work” section presents 
the conclusion and the future work.

Related work
In this section, a comprehensive review of the related work is provided. Firstly, the deep learning-based object 
detector is described. Then, multi-scale feature fusion is introduced. Moreover, the attention mechanisms in 
object detectors are discussed.

Object detectors. Based on the excellent achievement of deep CNN in the field of computer vision, 
various deep learning-based object detectors perform superior performance when compared to conventional 
approaches. In R-CNN6, the two-stage scheme with the region proposals is designed. The region proposals are 
mainly employed to filter the potential regions with a high probability to involve objects. Then, the regions are 
provided to CNN for further prediction. As above procedure, the hand-crafted approaches are replaced by the 
two-stage deep learning-based object detectors with high accuracy and speed. Based on R-CNN, Fast R-CNN7 is 
introduced with a multi-task loss to train the classification and bounding box regression simultaneously. Then, 
Faster R-CNN8 is designed with a learning-based region proposal network (RPN) to further alleviate the com-
putational cost of the proposals generation procedure. However, the detection speed of the two-stage detectors 
is insufficient in several scenes.

Compared with the two-stage object detectors, the one-stage object detectors abandon the proposals extrac-
tion to accelerate inference.  YOLO10 is the first one-stage detector that performs classification and box regres-
sion directly on the pre-defined image grid. Unfortunately, the drop in region proposals results in low accuracy 
when the speed is accelerated. The improved versions of  YOLO11,12 further improve the detection accuracy with 
high detection speed. In WOG-YOLO13, the whale optimization algorithm is employed to optimize the hyper-
parameters of YOLOv5. Another popular branch of a one-stage detector is  SSD9, which predicts with multi-
reference and multi-scale feature maps. In  RetinaNet14, focal loss is proposed to address the imbalance between 
positive and negative categories. Then, the RetinaNet achieves a trade-off between accuracy and detection speed. 
In  EfficientDet15, a weighted bi-directional feature pyramid network (BiFPN) and a composite scale expansion 
method are designed. The accuracy of object detection is further improved. However, the detection accuracy 
of one-stage detectors especially on the small object is slightly poor when compared to the two-stage detectors.

As above, it is desirable to design a one-stage object detector with fast detection speed for small objects. 
Because of the distinct features of small objects in images, it is important to make full use of the information in 
the feature maps to further enhance the performance of object detectors.

Multi‑scale feature fusion. In most of the object detection tasks, the low-level feature maps with high 
resolution contain more location and detail information. However, the low-level feature maps lack semantic 
information. The high-level feature maps have more semantic information based on the convolution opera-
tor. The local information on high-level feature maps is poor. Therefore, multi-scale feature fusion is efficient 
to improve the performance of object detectors. The multi-scale feature fusion consists of the early fusion and 
late fusion strategy. In the early fusion strategy, the features maps are fused first, and then the fused features are 
employed to make predictions. For example, the addition operation in  ResNet16 and the concatenation operation 
in U-Net17 are typical early fusion strategies. In the late feature fusion strategy, the detection results of several lay-
ers are combined to further enhance the performance of detectors. In the previous literature, several approaches 
independently make predictions based on the multi-scale features before fusion, and then the results of predic-
tion are processed comprehensively, such as  SSD9, multi-scale  CNN18, etc. The other line applies the feature 
pyramid networks for reference and predict fusing the feature, such as  YOLOv312,  FSSD19, etc.

The feature fusion strategy has been widely applied in object detection. To further refine the features extracted 
from VGG-Net, a discrimination correlation analysis (DCA)-based feature fusion  strategy20 is proposed to 
enhance the performance of detectors with small computational cost. In  FSSD19, a feature fusion module is 
designed to generate a novel feature map and constructed the feature pyramid. In the feature fusion module, 
multi-scale feature maps are combined through concatenation operators. Based on FSSD, the FS-SSD with an 
extra scaling branch and the spatial context analysis are proposed. In the scaling branch, the de-convolution 
module with an average pooling operation is employed to form a feature pyramid. Then, two feature pyramids 
are applied to make predictions together. In  NLFFTNet21, the attention of different positions is calculated to 
capture the long-distance dependency, and the dynamic data augment method is employed to balance differ-
ent classes. In  MFABA22, a multi-scale feature aggregation module is applied to integrate adjacent hierarchical 
features and the multi-scale feature maps are combined to balance semantic feature information. In  CSFF23, 
the feature pyramid network is employed to obtain multi-scale feature maps, and the CSFF is applied to obtain 
discriminative multi-level feature representations. In FPS-Net24, the multiple channel images are grouped into 
different modalities to obtain modality-specific features, and then map the features into a high-dimensional 
feature space for pixel-level fusion and learning.

In the Libra R-CNN25, the multi-scale feature maps are combined to obtain more balanced semantic feature 
information. The comparison of Faster R-CNN and RetinaNet demonstrates that the detection performance 
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on the MS COCO dataset is significantly improved. In the neural architecture search feature pyramid network 
(NAS-FPN)26, a neural architecture search algorithm is employed to customize a feature pyramid network that 
merges features across a range. NAS-FPN produced significant improvements in many object detection networks. 
Besides, An adaptive spatial feature fusion (ASFF)27 strategy was proposed to combine multi-scale feature maps 
through learning weight parameters adaptively. The experimental results indicate that ASFF outperforms con-
catenation and element-wise addition. Through analyzing the weakness of only using deep learning methods, 
a new fusion  logic28 which combines the advantages of knowledge used by a traditional method is proposed to 
further improve the performance of object detectors. To accelerate the inference speed of feature pyramid, the 
 QueryDet29applies a query mechanism. In the first step of QueryDet, the coarse locations of small objects are 
predicted on low-resolution features. In the second step, the accurate detection results are computed on high-
resolution features sparsely guided by those coarse positions. In the ES-Net30, five modules were designed to 
address the information loss of tiny objects and the mismatch between the receptive field of detection head and 
the scale of objects. These modules are the aggregated feature guidance module (AFGM), the split and aggre-
gation enhancement module (SAE), the multi-receptive field fusion (MFF), the efficient stair pyramid (ESP), 
and the dynamic scale-aware head (DSH). In the SO-YOLO31, an expanding feature fusion of shallow features 
module was designed to effectively utilize the shallow features. Besides, the k-means++ clustering was applied to 
optimize the number and size of anchor box, and the redundant YOLO head network branches were removed.

Attention mechanism. In general, the human visual system can quickly identify useful information from 
the external environment. Based on the above idea, various attention  mechanisms32 are designed. The non-local 
neural  networks33 is one of the most important works on attention mechanism. The non-local operations calcu-
late the response at a position. Then, a weighted sum of the features at all positions is calculated and the remote 
dependencies are established through self-attention. This module can be applied to various tasks to improve the 
accuracy of models. The squeeze-and-excitation network (SENet)34, which focuses on the channel-level depend-
encies of the models is designed. In the SENet, the characteristic response value of each channel can be adjusted 
adaptively. Moreover, the convolutional block attention module (CBAM)35 is proposed. The CBAM combines 
channel attention and spatial attention to pay more attention to foreground objects. The selective kernel network 
(SKNet) with a selection kernel unit is proposed to adaptively adjust the size of the receptive field based on the 
input information.

The spatial and channel squeeze-and-excitation (scSE) is proposed for semantic segmentation. Besides, chan-
nel squeeze-and-excitation (cSE) and spatial squeeze-and-excitation (sSE) are designed simultaneously. Based 
on the combination of non-local neural networks and SENet, the global context network (GCNet) which utilizes 
a small number of calculations to optimize the global context modeling capabilities, is proposed. The criss-cross 
network (CCNet)36 is proposed based on non-local Neural Networks. The criss-cross attention module can be 
applied to capture contextual information from remote dependencies in a more effective way. The dual attention 
network (DANet)37 was proposed with two attention modules to a dilated fully convolutional network to model 
semantic dependencies in the spatial and the channel dimensions. The experimental results demonstrate that 
the proposed models achieve excellent performance on the Cityscapes dataset.

As above, there are various multi-scale feature fusion and attention mechanisms in the previous literature. 
However, most of the previous feature fusion mechanisms assumed that the weight of multi-scale feature maps 
was the same. Due to the small objects usually only appear in a part of the feature maps, it is helpful to detect 
small objects by assigning specific weight to each feature map. Therefore, this paper proposed a weight-based 
feature fusion module. Besides, a pyramids aggregation block is also designed to transform the pyramids into 
final pyramid.

Proposed method
The SSD benchmark model. In the baseline SSD, a feature pyramid is provided to detect multi-scale 
objects. To be specific, two layers conv4_3 and conv7 of the backbone network and four newly added layers 
conv8_2 , conv9_2 , conv10_2 , and conv11_2 are employed to construct the features pyramid. Therefore, six feature 
maps with the size of 38× 38 , 19× 19 , 10× 10 , 5× 5 , 3× 3 , and 1× 1 are obtained. Each feature map is respon-
sible for detecting specific scale objects. Based on the feature pyramid, SSD achieves excellent performance for 
detecting multi-scale objects. Let P = {p1, p2, p3, p4, p5, p6} denote the feature maps, where p1 represents the 
feature map with the largest resolution and p2 means the feature map with the smallest resolution. Therefore, 
feature map p6 captures more global information for detecting large-scale objects. However, the information 
on small-scale objects is gradually discarded from shallow to deep layers. Then, it is desirable to effectively the 
multi-scale feature maps to enhance the detection accuracy of SSD.

WFFA‑SSD architecture. To address the problem of scale variations in SSD, this paper proposes the 
weighted-based feature fusion and attention-based single-shot detector (WFFA-SSD). In the proposed method, 
two branches are constructed to generate two feature pyramids. The first one employs the context attention block 
to obtain an enhanced features pyramid. Another branch combines several feature maps with multiple scales 
based on the self-adaptive feature fusion block. Then, the second branch can also generate a feature pyramid. 
Next, two feature pyramids are merged to construct a new features pyramid to make a prediction. The architec-
ture of WFFA-SSD is depicted in Fig. 1. The details of the proposed WFFA-SSD are described in the following 
subsections.

Context attention block. The shape and texture of small objects are ambiguous in most images. However, 
there are some contextual relationships between the small-scale object and the other objects. Therefore, it is 
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desirable to focus on the surrounding region and employ the context information for model representation. 
Therefore, this paper designs a context attention block (CAB) to capture the local scale context features. The 
encoding of the proposed CAB is implemented using the following operations Suppose that the output of any 
layer in the network is a feature map F and F ∈ (R)C×H×W , where C means the number of channels in F, H, 
and W denotes the height and width of F, respectively. F can be used as the input of CAB. At first, a convolu-
tion operator with a 3× 3 kernel attached by a dilation with r = 2 is employed to acquire the larger receptive 
field. Considering the dilate convolution operator will reduce the continuity of the context information, a 1× 1 
convolution is employed to smooth the information of features. To avoid over-fitting and accelerate the conver-
gence of the training model, both convolution operators are followed by the ReLU activation function and batch 
normalization.

Moreover, the softmax function is employed to normalize the feature map.

Then, the element-wise multiplication operator is applied to generate the new feature map.

The output of CAB is F ′ . The diagram of the CAB structure is shown in Fig. 2.

Weight‑based feature fusion block. For a feature pyramid, the information in the same spatial location 
of multi-scale feature maps may be inconsistent. Therefore, the feature fusion block, which directly uses the 
element-wise addition or concatenation, cannot effectively take advantage of the feature maps of multiple pyra-
mids. Based on the idea of  ASFF27, this paper designs a weight-based feature fusion block (WFB) to make full 
use of the information of several feature maps to improve detection accuracy. The structure of WFB is depicted 
in Fig. 3.

Suppose three feature maps F1 ∈ R
C1×H1×W1 , F2 ∈ R

C2×H2×W2 , and F3 ∈ R
C3×H3×W3 are the input of WFB. 

As the resolutions as well as the channels of F1 , F2 , and F3 are different, the 1× 1 convolution operator and the 

(1)L(F) = BN(σ (Conv2(BN(σ (Conv1(F))))))

(2)G(F) =
expXi,j,k

∑
i=1

∑
j=1

∑
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Figure 1.  The structure of WFFA-SSD network.
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up-sampling operator are employed to obtain three feature maps F ′

1 , F
′

2 , and F ′

3 with the same scales. Then, the 
1× 1 convolution operators are used to extract the weight of each position in each feature map. After that, the 
weight feature maps are concatenated along the channel dimension and the 1× 1 convolution operator is intro-
duced to reduce the channel dimension to 3. Then, three weight feature maps W1 , W2 , W3 can be obtained based 
on the softmax function. Finally, the fused feature map F can be obtained as follows.

In this paper, the WFB is only used to obtain the fused feature maps based on the 38× 38 , 19× 19 , and 10× 10 
feature maps. Then, the fused feature map is employed to generate a new feature pyramid.

Pyramids aggregation block. In the proposed WFFA-SSD, two feature pyramids are generated based on 
the CAB and WFB. Then, a pyramids aggregation block (PAB) is devised to transform the pyramids into final 
detection pyramid. This module is illustrated in the Fig. 4.

The PAB consists of two steps. First, the same scale features in different pyramids are concatenated along the 
channel dimension. Then, the 1× 1 convolution operator with ReLU activation function and batch normalization 
is employed to smooth the feature maps and reduce the dimension.

(4)F = W1 × F1 +W2 × F2 +W3 × F3

Figure 2.  The structure of context attention block.

Figure 3.  The structure of weight-based feature fusion block.

Figure 4.  The structure of pyramids aggregation block.
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Experimental results and analysis
Experimental setup. Dataset description. In this paper, the CARPK dataset is employed to experiment. 
The CAPRK dataset mainly focuses on car detection. From the perspective of unmanned aerial vehicles, the car 
is a small object. There are nearly 90,000 cars captured from four parking lots in CARPK. The resolution of the 
image is 1280 px × 720 px. The set of training and validation includes 989 images. Moreover, the test dataset 
contains 459 images. The CARPK dataset is available at https:// lafi. github. io/ LPN/.

PASCAL VOC dataset is a popular dataset for object detection. The PASCAL VOC consists of VOC2007 and 
VOC 2012. To be specific, there are 20 categories: airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, 
dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV monitor in PASCAL VOC. 
In this paper, 22,136 images of VOC2007 and VOC2012 are employed for training and validation. Then, 4952 
images of VOC2007 are used for testing. The PASCAL VOC dataset is available at http:// host. robots. ox. ac. uk/ 
pascal/ VOC/.

Evaluation metrics. In this paper, the mean average precision (mAP) is used to measure the detection accuracy, 
which is an indicator related to the IoU threshold. In this experiment, the most popular threshold IoU= 0.5 is 
applied. In the multi-class objection detection problem, the mAP is the average value of the APs of multiple 
categories. Furthermore, the AP computes the area under the precision-recall curve. Therefore, the calculation 
procedure of precision and recall are given as follows.

where TP, FP, and FN represent the true positives, false positives, and false negatives, respectively. Furthermore, 
the frames per second (FPS) is adopted as the criterion of detection speed, which means the number of images 
the detection model can process per second with the specified hardware. In this paper, the FPS of each detector 
is tested on a single GPU device.

Implementation details. The experimental platform is a PC with 3.80GHz, 32GB RAM, windows 10 operating 
system. Our method is implemented by Python 3.7 based on the Pytorch framework, accelerating by a NVIDIA 
Geforce RTX 3080Ti GPU device with 12GB GPU memory, CUDA 11.4, and cuDNN 7.4.

In this experiment, the data augmentation of SSD is also done, and the related parameters are equal to SSD. 
Furthermore, the input images are resized to 300×300× 3. In the training procedure, the detector is pre-trained 
on the combination of MS COCO, PASCAL VOC 2007, and PASCAL VOC 2012 datasets. Then the detector is 
fine-tuned on the CARPK dataset. The batch size is set to 32, the number of epochs is set to 300, and the initial 
learning rate is set to 1e-5 and decreased by 50% when the loss is not reduced for three consecutive epochs. The 
Adam algorithm is employed to optimize the loss function. The training objective is to minimize the weighted 
sum of Smooth L1 loss function Lloc for localization and Softmax loss Lconf  for classification confidence as follows.

where N represents the number of matched default boxes for random object x, x means the class confidence score, 
p indicates the predicted bounding box, and g represents the ground-truth bounding box. The hyper-parameter 
α is set to 1 by cross-validation.

Ablation analysis. To verify the effectiveness of the blocks of WFFA-SSD, we construct two variants of 
WFFA-SSD and test the performance of variants on the CARPK dataset. The variants are the SSD-CAB and 
SSD-WFB. The results are reported in Table 1. First, the effect of the context attention block is tested. It can be 
observed the mAP of SSD-CAB is 84.93%, which is 2.21% higher than the SSD model. To further test the effect 
of the weight-based feature fusion block, the SSD-WFB is constructed based on SSD and WFB. The SSD-WFB 
obtains 85.82% mAP, which is 3.1% higher than SSD. When comparing the WFFA-SSD with the variants, the 
86.96% mAP of WFFA-SSD is higher than the other variants. Therefore, it can be concluded that each block in 
WFFA-SSD is effective for the detection performance.

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)L(x, c, p, g) =
1

N
(Lconf (x, c)+ αLloc(x, p, g))

Table 1.  Comparison of the proposed WFFA-SSD with the variants on CARPK dataset. Significant values are 
in [bold].

Method Data Backbone network Speed (FPS) Proposals Input size mAP (%)

SSD9 07+12 VGGNet-16 35.25 8732 300 × 300 82.72

SSD-CAB 07+12 VGGNet-16 29.00 8732 300 × 300 84.93

SSD-WFB 07+12 VGGNet-16 29.65 8732 300 × 300 85.82

WFFA-SSD 07+12 VGGNet-16 28.41 8732 300 × 300 86.96

https://lafi.github.io/LPN/
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
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Comparison with the state‑of‑the‑art approaches on PASCAL VOC 2007 benchmark. In this 
experiment, the proposed WFFA-SSD model is compared with the baseline method and other state-of-the-
art detectors on the PASCAL VOC 2007 benchmark. Since the proposed method is mainly modified based 
on  SSD3009, SSD300 is chosen as the baseline method in the following experiments. The other object detec-
tors including the two-stage detectors Faster R-CNN8 and R-FCN38, one-stage detectors  SSD3009,  SSD5129, 
 DSSD51339,  FSSD51219,  YOLOv312, and  YOLOv440. The results of the baselines except for the YOLOv4 are 
reported in the  literature41. The results of YOLOv4 are obtained by running the code provided by the original 
literature on our machine.

From Table 2, it can be observed that the proposed WFFA-SSD model achieves the highest mAP with 88.89% 
among 9 models. Compared with the series of SSD, the mAP obtained by WFFA-SSD is 7.39% higher than 
DSSD513 and 11.69% higher than the SSD300 baseline. Compared with the series of YOLO, the mAP obtained 
by WFFA-SSD is 9.28% higher than YOLOv3 and 1.69% higher than YOLOv4. Meanwhile, the detection speed of 
the detectors is also reported in Table 2. Compared with the series of R-CNN, the detection speed of WFFA-SSD 
is faster than Faster R-CNN and R-FCN. Besides, the detection speed of WFFA-SSD is also faster than DSSD513. 
However, the detection speed of WFFA-SSD is much slower than YOLOv3 and YOLOv4.

Figure 5 shows the speed and accuracy comparison of all models. It can be observed that the detection 
accuracy is far from satisfactory although the detection speed is slower than most of the one-stage detectors. 
Although the detection speed is slower than most one-stage detectors. The results cited here are reported by the 
 literature41. From Fig. 6, it can be observed that the proposed WFFA-SSD achieves more than 90% mAP on 13 
kinds of objects, and obtains lower than 70% mAP on bottles.

Comparison with the state‑of‑the‑art approaches on CARPK dataset. In this experiment, the 
effectiveness of the proposed WFFA-SSD is verified on the CARPK dataset. The WFFA-SSD is trained based on 
the pre-trained SSD model on the PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO datasets. The com-
pared baselines are Faster R-CNN, R-FCN, SSD300, YOLOv3, and YOLOv4. From Table 3, it can be observed 
that the proposed WFFA-SSD achieves the highest 86.96% mAP. To be specific, the mAP of proposed WFFA-
SSD is 0.39% higher than YOLOv4, and is 0.95% higher than YOLOv3. When Compared with the two-stage 

Table 2.  Comparison of the proposed WFFA-SSD with state-of-the-art detectors on the PASCAL VOC 2007 
Test. Significant values are in [bold].

Method Data Backbone network Speed (FPS) Proposals Input size mAP (%)

Faster R-CNN 07+12 VGGNet-16 7 6000 600 × 1000 73.20

R-FCN 07+12 ResNet-101 5.8 300 600 × 1000 79.50

SSD300 07+12 VGGNet-16 46 8732 300 × 300 77.20

SSD512 07+12 VGGNet-16 19 24,564 512 × 512 78.50

DSSD513 07+12 ResNet-101 5.5 43,688 321 × 321 81.50

FSSD512 07+12 VGGNet-16 23.74 24,564 512 × 512 80.90

YOLOv3 07+12 DarkNet-53 46.94 10,647 416 × 416 79.61

YOLOv4 07+12 CSPDarkNet-53 51.28 10,647 416 × 416 87.2

WFFA-SSD 07+12 VGGNet-16 17.12 8732 300 × 300 88.89

Figure 5.  Speed and accuracy comparison of the proposed method with the state-of-the-art methods on the 
VOC dataset.
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detectors, the mAP of WFFA-SSD is 2.16% higher than Faster R-CNN, and is 0.83% higher than R-FCN. Mean-
while, the mAP of WFFA-SSD is 4.24% higher than the baseline SSD300. Furthermore, the detection speed 
of WFFA-SSD is 28.41 FPS, which is a tightly shower than 35.25% of SSD300. However, the detection speed 
of WFFA-SSD is also acceptable for real-time detection. The results of the baselines except for YOLOv4 are 
reported in the  literature41.

The speed and accuracy comparison of WFFA-SSD with the compared models on the CARPK dataset is shown 
in Fig. 7. The WFFA-SSD can achieve a trade-off performance on the CARPK dataset.

Figure 6.  mAP of each object in PASCAL VOC dataset.

Table 3.  Comparison of the proposed WFFA-SSD with state-of-the-art detectors on the CARPK Test. 
Significant values are in [bold].

Method Data Backbone network Speed (FPS) Proposals Input size mAP (%)

Faster R-CNN 07+12+COCO VGGNet-16 7.6 300 600 × 1000 84.80

R-FCN 07+12+COCO ResNet-101 10.4 300 600 × 1000 86.13

SSD300 07+12+COCO VGGNet-16 35.25 8732 300 × 300 82.72

YOLOv3 07+12+COCO DarkNet-53 46.94 10,647 416 × 416 86.01

YOLOv4 07+12+COCO CSPDarkNet-53 50.42 10,647 416 × 416 86.57

WFFA-SSD 07+12+COCO VGGNet-16 28.41 8732 300 × 300 86.96

Figure 7.  Speed and accuracy comparison of the proposed method with the state-of-the-art methods on the 
CARPK dataset.
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In this paper, three experiments are conducted to validate the effectiveness of the proposed WFFA-SSD. In 
the ablation analysis, the effectiveness of three blocks in WFFA-SSD has been analyzed. From Table 1, the com-
plete WFFA-SSD outperforms the other variants. Each component of WFFA-SSD can enhance the accuracy of 
WFFA-SSD. In the comparison of WFFA-SSD with state-of-the-art baselines on the PASCAL VOC dataset, the 
WFFA-SSD achieves the highest mAP among the compared models. The reason can be summarized as follows. 
The weighted-based feature fusion can survive the useful information in different feature maps. Besides, the 
context attention block can enhance the accuracy of localization based on the large receptive field. In the com-
parison of WFFA-SSD with the other baselines on the CARPK dataset, the proposed WFFA-SSD outperforms 
the other compared models. The object detection results are shown in Fig. 8, which further indicates that the 
proposed WFFA-SSD is effective on the CARPK dataset.

Conclusions and future work
This work is dedicated to developing a small objects detector. At present, the most effective strategy for the small 
object detection are feature fusion and attention mechanism. Therefore, the structures of the proposed detec-
tor and the previous detectors are similar. However, compared with most previous works, this work applies the 
weight-based feature fusion to adaptively adjust the weight of each feature map, and then multiple pyramids are 
aggregated into the final detection pyramid. According to the ablation analysis, it can be observed each block 
are an effort at the performance of WFFA-SSD. Moreover, the experimental results on the PASCAL VOC dataset 
demonstrate that the WFFA-SSD outperforms the compared models based on the novel blocks. Meanwhile, the 
results on the CARPK dataset indicate that the WFFA-SSD can effectively detect small objects on the CARPK 
dataset.

In future works, we will further improve the proposed blocks, and embed these blocks into more advanced 
baseline algorithms to achieve superior detection performance for small objects. In addition, it is necessary to 
explore real-time detection with a lightweight backbone network. Therefore, the detectors can be used in more 
scenes with limited computational resources. Besides, better training methods are also worth investigating.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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