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Genomic studies of the additive 
and dominant genetic control 
on production traits of Euterpe 
edulis fruits
Guilherme Bravim Canal 1, Gabriela França Oliveira 2, Francine Alves Nogueira de Almeida 1, 
Marcello Zatta Péres 1, Gabriel Lenen Javarini Moro 1, Wagner Bastos dos Santos Oliveira 1, 
Camila Ferreira Azevedo 2, Moysés Nascimento 2, Marcia Flores da Silva Ferreira 1* & 
Adésio Ferreira 1

In forest genetic improvement programs for non-domesticated species, limited knowledge of kinship 
can compromise or make the estimation of variance components and genetic parameters of traits 
of interest unfeasible. We used mixed models and genomics (in the latter, considering additive and 
non-additive effects) to evaluate the genetic architecture of 12 traits in juçaizeiro for fruit production. 
A population of 275 genotypes without genetic relationship knowledge was phenotyped over three 
years and genotyped by whole genome SNP markers. We have verified superiority in the quality of 
the fits, the prediction accuracy for unbalanced data, and the possibility of unfolding the genetic 
effects into their additive and non-additive terms in the genomic models. Estimates of the variance 
components and genetic parameters obtained by the additive models may be overestimated since, 
when considering the dominance effect in the model, there are substantial reductions in them. The 
number of bunches, fresh fruit mass of bunch, rachis length, fresh mass of 25 fruits, and amount 
of pulp were strongly influenced by the dominance effect, showing that genomic models with such 
effect should be considered for these traits, which may result in selective improvements by being able 
to return more accurate genomic breeding values. The present study reveals the additive and non-
additive genetic control of the evaluated traits and highlights the importance of genomic information-
based approaches for populations without knowledge of kinship and experimental design. Our 
findings underscore the critical role of genomic data in elucidating the genetic control architecture of 
quantitative traits, thereby providing crucial insights for driving species’ genetic improvement.

Euterpe edulis, commonly known in commercial settings as "juçaizeiro," is a medium to tall palm tree that easily 
exceeds ten meters in height1,2. The species has shown great potential for use in fruit growing due to its excellent 
quality fruit and pulp with beneficial health attributes. In addition, this species has high fruit production and 
represents sustainable crop diversification with the possibility of management in native areas, as well as signifi-
cant socioeconomic and ecological potential impacts. Another important factor highlighting the juçaizeiro in 
the fruit industry is the potential to sustain the market chain of açai pulp and sorbet3. Açaí is a product derived 
from the processing of fruits from species of the genus Euterpe4, and on a production scale, the raw material 
for this product comes almost exclusively from Euterpe oleracea (açaí palm). Although the processed products 
from both species are similar, the pulp of the juçaizeiro shows superiority in terms of nutritional, mineralogical, 
energetic, and flavor aspects5,6.

The açaí palm, in turn, requires higher temperatures and high water availability, limiting the geographic 
region for cultivation7. The juçaizeiro, naturally occurring throughout the Atlantic Forest8–10, shows a high level of 
phenotypic plasticity due to the great environmental variation resulting from the latitudinal range of this biome. 
Therefore, the juçaizeiro has the potential for cultivation in climatic zones not recommended for the açaí palm7.

Despite all these advantages, the species does not have registered varieties available in the seed market, 
which generates concerns regarding its acceptance in establishing commercial orchards. To that end, genetic 
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improvement programs play a fundamental role in acceptance of the culture. They aim to promote procedures 
that provide more productive and higher-quality industrial varieties. However, due to the long juvenile period of 
the species, improvement cycles are long and costly and may require more than 15 years between recombination 
and the development of a new variety.

The non-domesticated status of the juçaizeiro means that the current technique applied to the culture is 
phenotypic selection, with a focus on additive terms, given that the species is exclusively propagated by seeds. 
However, a deeper understanding of the genetic architecture of agronomic traits can help breeders maximize 
genetic gains in each selective cycle11, and obtaining precise estimates is of great importance since genetic 
parameters such as heritability are among the most essential for determining the potential for genetic progress 
of the program12.

To estimate variance components and genetic values of individuals, it is common to use the information on 
genetic kinship through genealogy, which is represented by the A matrix, using the restricted maximum likeli-
hood (REML) and the best linear unbiased predictor (BLUP) methods13. However, although effective, the results 
may be inflated since the genetic information matrix assumes unrealistic conditions, such that individuals from 
the same family share the same degree of genetic similarity14. As a result, variance components are overestimated, 
leading to inflated predicted genetic values15,16. This effect is amplified for analysis of non-domesticated species 
evaluated in natural populations without prior knowledge of parents, making genealogical information among 
individuals nonexistent, as is the case for juçaizeiro. This lack of information can result in overestimating additive 
genetic variance components and inflating genetic values15.

However, the increased accessibility of high-density genome sequencing techniques15,17 has enabled the acqui-
sition of genomic information from individuals of interest, allowing breeders to construct the realized relation-
ship matrix (G matrix), which represents the genetic sharing among individuals, and can replace the pedigree-
based relationship matrix (A matrix)18. Substitution of the A matrix for the G matrix results in the genomic best 
linear unbiased predictor (GBLUP) method19, which can provide more accurate predictions of individual genetic 
values14,17. The use of genomic markers represents an enormous opportunity for non-domesticated species, as 
it allows decomposition of the genetic variance into its additive and non-additive terms, which would not be 
possible under normal conditions with unknown parents, providing fundamental information to breeders on 
the genetic control of the traits studied. The Diversity Array Technology Sequencing (DArTseq) approach uses 
high-density molecular markers for genomic analysis with broad genomic coverage, efficiency in detecting 
genetic polymorphisms, ease of analysis, and low cost20–22.

Although non-additive effects, such as dominance, are not currently considered in selective practices for 
juçara palm due to its exclusively sexual propagation via seeds, studies on forest tree species have demonstrated 
that incorporating dominance effects into statistical models improves the accuracy of heritability, predictive 
abilities, and influences on genetic gains23–26. In addition, the use of molecular markers can represent significant 
savings for breeding programs, in terms of time and cost, since establishing and developing experimental plots, as 
well as conducting controlled crosses in species for which there is limited knowledge of their pollination system, 
can be complex and require greater financial resources to develop a complete pedigree for in-depth evaluation 
of the genetic control of traits of interest. Thus, genetic markers can be a viable alternative to accelerate the more 
comprehensive evaluation of genetic control of traits and provide more information to breeders.

Given that stated above, this study aimed to use a whole genomic genotyping of DArTseq-derived SNPs to 
provide insights into the genetic structure controlling traits of interest to improve fruit production of the juçara 
palm tree, using BLUP and GBLUP approaches, as well as comparing the efficiency of models with different 
genetic effect structures.

Material and methods
Plant material and conducting experiments.  The study population consisted of a commercially man-
aged juçaizeiro (Euterpe edulis) plantation, resulting from the process of natural recomposition and seed dis-
persal in a pasture area located in the municipality of Rio Novo do Sul, state of Espírito Santo, Brazil (Fig. 1). 
Consequently, field evaluations were conducted in the absence of an experimental design, with phenotyping 
carried out from 2018 to 2021. In 2020, only the number of bunches per plant (NBP) was counted.

Due to variations in fruit production and the restrictive measures associated with the COVID-19 pandemic, 
the years of evaluations and the number of genotypes evaluated for each trait differed. The initial determination of 
plants to be evaluated in the research followed two basic criteria: they had to have reached physiological maturity, 
presenting full fruit production, and they had to be in good phytosanitary condition, free of pests and diseases.

Phenotyping.  In this study, 12 productive and industrial traits of interest were evaluated, namely:
Number of bunches per plant (NBP) measured throughout the four years of the study, evaluated by counting 

the number of bunches with fruit.
The other variables were evaluated in 2018, 2019, and 2021. Fruits were harvested only when they reached 

the point of industrial maturation, which was determined every year by the same employee at the juçaizeiro fruit 
processing plant. After extraction of the fruit bunch, the following traits were evaluated:

Fruit weight per bunch (kg) (FWB) by weighing in kilograms (kg) the fruits extracted from the bunch of each 
genotype.

After extracting the fruit, the number of rachillas per bunch (NRB) was measured in these genetic materi-
als by counting the number of rachillas inserted into the center rachis, which was then measured using a tape 
measure, evaluating the rachis length (cm) (RL) in centimeters (cm).
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A fruit sample of each genotype was obtained, packed in properly identified plastic bags, and sent to the Plant 
Biometry Laboratory at the Federal University of Espírito Santo, where morphometric evaluations of fruit and 
seeds were carried out following a completely randomized design.

The weight of 25 fruits (g) (WF) and the weight of 25 seeds (g) (WS) were evaluated in grams (g) in four 
replications per genotype. With this information, the difference between the morphometric traits of fruits (WF) 
and the morphometric traits of seeds (WS) resulted in the amount of pulp in 25 fruits (g) (AP) in grams. The 
following formula was used to obtain the pulp yield (%) (PY):

where AP is the amount of pulp and WF is the fresh mass of 25 fruits.
To evaluate the equatorial and longitudinal diameters of fruits and seeds (EDF, LDF, EDS and LDS, respec-

tively) (mm), five fruits were measured in millimeters (mm) using a digital caliper. Marçal et al. (2016)31 con-
cluded that five measurements are necessary to achieve a 95% coefficient of determination — although they pro-
vide additional information on the studies, measurements beyond this number increase cost and evaluation time.

Genotyping and quality control of molecular markers.  Genomic DNA was obtained from leaf sam-
ples of the 275 genotypes following the CTAB method32 with modifications33. After verifying the quantity and 
quality using a NanodropTM 2000 spectrophotometer (Thermo Scientific), the genomic DNA was sent to Mex-
ico for genotyping high throughput using the DArTseqTM methodology at the Genetic Analysis Service for 
Agriculture (SAGA).

The sequences were analyzed using Dartsoft14, an automated analysis program of genomics data, and DArTdb, 
a laboratory management system, developed and patented by DArT Pvt. Ltd. (Australia), generating SNP marker 
data as described by Killian et al. (2012)34 and Sansaloni et al. (2020)22. Additional information can be found at 35.

The SNP markers were of the codominant type, and the molecular dataset underwent the quality control 
process carried out in R36, using a Call Rate of 90% and MAF (Minor Allele Frequency) of 5%, reducing the 
marker dataset by 81.75%, starting with 44,457 markers and keeping 8112 for use in the analysis.

Statistical models.  Three models were employed to predict breeding values in the context of genetic 
improvement: BLUP and two genomic models (GBLUP). The first model considered only the additive effects 
(GBLUP-A), while the second considered the additive-dominant effects (GBLUP-AD).

Traditional BLUP the prediction of breeding values using the BLUP model was performed in R36 using the 
SOMMER package version 3.4. The mixed linear model used was:

where y is the phenotype vector; X is the fixed effect incidence matrix (year); µ is the fixed effects vector (mean 
and year); Z is the random effects incidence matrix considered as genotype, and a is the vector of additive genetic 
effects considered random with a ∼ N(0,Aσ 2

a ) , where A is the kinship matrix via pedigree. In this case, the 
relationship is completely unknown; hence A is an identity matrix I ; σ 2

a  is the additive genetic variance, and ε is 
the residual vector assumed to be random ε ∼ N

(
0, Iσ 2

e

)
, where σ 2

e  is the residual variance.

PY =
AP

WF
∗ 100

y = Xµ+ Za+ ε

Figure 1.   (A) Geographic representation of Brazil, with the state of Espírito Santo identified in green and a 
red dot denoting the geographical position of the experimental field; Map generated with R free environment 
software. (B) Espírito Santo, focusing on the municipality of Rio Novo do Sul and the location of the 
experimental area; (C) Geographical distribution of the genotypes evaluated in the orchard of the experimental 
area, represented by black dots. Map generated with R version 4.2.027 free environment software, using the 
ggmap28, geobr29 and ggplot230packages. The vegetation cover layer was sourced from the open-source Stamen 
Map server.
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Genomic BLUP (GBLUP) the GBLUP model is similar to BLUP, except for the assumed kinship matrix. So 
GBLUP replaces the A matrix with the genomic kinship G matrix derived from the marker information. The 
genomic breeding values (GEBVs) are predicted using the model below:

where g is the vector of additive genetic effects considered random with g ∼ N(0,Gσ 2
g ) , where G is the addi-

tive genomic kinship matrix, and σ 2
g  is the additive genetic variance. The genomic kinship matrix (G) used was 

proposed by VanRaden18 as follows:

where W is the centered marker matrix as presented by Vitezica et al. (2013), Wij =

{
2− 2pj , 1− 2pj ,−2pj

}
 , 

where Wij is the element of the ith row and jth column of the marker matrix, and pj is the allele frequency of the 
marked jth.

BLUP genomic dominant additive (GBLUP-AD)

where Z1 and Z2 are the incidence matrices of the additive and dominant genetic effects, respectively, consid-
ered random; d is the random-effect vector of dominance, where d ∼ N(0,Dσ 2

d) , D is the genomic relationship 
matrix for dominance effects generated from marker information, and σ 2

d  is the genetic variance of dominance.
Dominance genomic kinship matrices (D) the D matrix was obtained as follows37–39: 

where Sij =
{
−2

(
1− pj

)2
, 2pj

(
1− pj

)
,−2p2j

}
 , with Sij as the elements of the ith row and jth column of the S 

matrix, and pj as the allele frequency of the jth marker.

Accuracy of genetic values and adjustment of models.  The methodologies were compared based 
on the theoretical accuracy of breeding values (r), variance of the prediction error (PEV), maximum likelihood 
(LL), Akaike information criterion (AIC), and Bayesian information criterion (BIC).

The r estimates were estimated using the following expression:

where PEV is the variance of the prediction error obtained through the diagonal elements of the mixed model 
matrix40, and σ 2

g  is the genetic variance.
AIC41 was calculated as follows:

where log(L) is the logarithm of the residual likelihood function (LL), and k is the number of estimated 
parameters.

BIC42 can be written as:

where v is the number of residual degrees of freedom.

Cross‑validation and predictive ability.  Predictive ability was estimated by the correlation between the 
predicted breeding values of each BLUP, GBLUP-A, and GBLUP-AD model ( ̂a , ĝ  e û = ĝ + d̂ , respectively) and 
the phenotypic mean of the evaluated years of each genotype (y). To this end, we used the cross-validation proce-
dure, subdividing the population into five folds. In total, 275 genotypes were used, 220 of which were destined to 
constitute the training population and 55 to constitute the validation population. The average predictive ability 
( ry,û ) and the standard error were calculated with the results obtained.

Components of variance and genetic parameters.  The variance components were obtained via the 
REML method. The genetic parameters were estimated by:

y = Xµ+ Zg + ε

G =
WW ′

∑n
j=1 2pj

(
1− pj

)

y = Xµ+ Z1g + Z2d + ε

D =
SS

′

4
n∑

j = 1

(
pj

(
1 - pj

))2

r =

√
1−

PEV

σ 2
g

AIC = 2k − 2log(L)

BIC = −2log(L)+ k ∗ log(v)

H2
=

σ 2
a + σ 2

d

σ 2
a + σ 2

d + σ 2
e
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where H2 is heritability in the broad sense; h2a is heritability in the narrow sense; σ 2
a  additive genetic variance; σ 2

d  
is the variance related to the dominance deviation, and σ 2

e  is residual variance.
To verify the influence of insertion of dominance in the model, the relationship was established between 

σ 2
a  of the GBLUP-AD model, which for the discussion of this relationship, we will call σ 2

a(d) , and the σ 2
a  of the 

model GBLUP-A.

Furthermore, to verify the magnitude of the dominance effect as a function of the total variance, a relation-
ship was established between σ 2

d  and σ 2
f  of the GBLUP-AD model:

Statement of research involving plants.  The experimental research and field studies on plants—Our 
studied population complies with pertinent legislation. The plant samples were collected in a commercially man-
aged juçaizeiro plantation in the municipality of Rio Novo do Sul in the state of Espírito Santo—Brazil, originat-
ing from the process of natural recomposition and seed launch in a pasture area. We had the owners’ authoriza-
tion for all data collected and received support from the companies Açai Juçara and Bonaloti for the research 
development. We are so grateful to Pedro and Vicente Bortoloti and their families, the owners of managed area. 
We also confirm that all methods were carried out in accordance with relevant guidelines.

Results
Summary of phenotypic data.  For all traits, we observed that the sample values evaluated in the geno-
types tend to be influenced by the year of evaluation (Table 1). We also found that NBP is the trait that presents 
the most variable behavior depending on the year. On the other hand, the morphometric traits of fruits and 
seeds present the most stable phenotypic response among the different evaluated crops (Table 1).

Estimates of variance components and genetic parameters.  Estimates of variance components 
and genetic parameters for each model are presented in Table 2. Except for the LDS trait, the σ 2

a  estimates are 
lower when estimated by the GBLUP-AD model, while the σ 2

e  estimates indicate small differences between the 
models. Consequently, the h2 estimated by the BLUP and GBLUP-A models are generally higher than those esti-
mated by the GBLUP-AD model, which includes both additive and dominance variance effects. The reductions 
in the h2 estimates ranged from 0 (LDS) to 0.32 (FWB) between the GBLUP-A and GBLUP-AD models and from 
0.03 (LDS) to 0.34 (FWB) between the BLUP and GBLUP-AD models (Table 2).

Comparing the h2 estimates between the BLUP and GBLUP-A models, the greatest difference was observed 
for the RL characteristic, which was 12.5% smaller when using the genomic model of additive effect (GBLUP-
A). When the dominance effect was added to the genomic model (GBLUP-AD), the differences between the 
h2 and the BLUP model intensified, reducing NBP up to 67.57%. In general, the group of traits related to fruit 
production in the field (NBP, FWB, and RL), except for NBP, showed the greatest changes when considering the 
dominance effect on the structure of the model.

Overall, H2 demonstrated low (RL), medium (NBP, NBP, AP, PY, LDF, and LDS), to high (NRB, WF, WS, 
EDF, and EDS) heritability. We observed the similarity between the broad-sense heritability (H2) estimates by 
the GBLUP-AD and the narrow-sense heritability (h2) obtained by the BLUP and GBLUP-A methods.

Table 3 presents the relationships due to the dominance effect for all traits studied. Except for LDS, which 
does not have this effect, all other traits have at least a part of their total variance explained by dominance. In 
this sense, the d2 values ranged from 0.04 (PY) to 0.27 (FWB) when excluding the LDS traits. The lower values 
of RLaa and higher values of d2 for NBP and FWB indicate the strong influence of dominance for these traits; 
we noticed that the dominance effect surpassed the additive effect since RLaa had values below 0.50 (Table 3).

Adjustment of models and predictive capacity.  Table 4 shows the estimates of PEV, r, LL, AIC, and 
BIC. Based on these results, genomic models GBLUP-A and GBLUP-AD provided a better fit with more accurate 
breeding value predictions than the conventional BLUP. This is because genomic models generally show lower 
estimates of PEV, close or higher estimates of theoretical accuracy, and lower values of AIC and BIC compared 
to conventional BLUP.

The Maximum Likelihood Ratio Test (LRT) between genomic models indicated a significant dominance 
effect for the traits FWB, NBP, WF, and AP, as seen in Table 3 by higher values of d2 (0.27, 0.20, 0.20, and 0.17, 
respectively) and lower values of RLaa (0.32, 0.30, 0.65, and 0.60, respectively). For the other variables, the 
GBLUP-AD and GBLUP-A models showed no statistical differences by the LRT. However, it is worth mentioning 
that r had higher values for the RL trait, and AIC and BIC presented lower values for the model that considers 
the dominance effect, demonstrating higher performance. For NR, even with better-fit quality indicated by AIC 
and BIC, r and PEV for GBLUP-AD were lower.

h2a =
σ 2
a

σ 2
a + σ 2

d + σ 2
e

RLaa =
σ 2
a(d)

σ 2
a

d2 =
σ 2
d

σ 2
a + σ 2

d + σ 2
e

.
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The lowest estimates of r were observed for LR: 0.72 (BLUP), 0.72 (GBLUP-A), and 0.74 (GBLU-AD). How-
ever, the results obtained for the other traits had a high magnitude, ranging from 0.82 (NBP) to 0.99 (WF and 
WS). For all traits, the predictive capabilities ( ry,û) of BLUP were equal to zero. For the genomic methods, ry,û 
(Fig. 2) ranged from 0.18 (NBP) to 0.51 (WS) for GBLUP-A and from 0.23 (NBP) to 0.50 (WS) for GBLUP-AD.

Under five-fold cross-validation, a slight difference was observed between the genomic models, with the dif-
ference more pronounced for NBP. The dominance effect was more pronounced for NBP, reflecting the better per-
formance of the GBLUP-AD model (Table 4). This is expressed by ry,û , which increased from 0.18 to 0.23 (Fig. 2).

Furthermore, except for NR, the traits related to fruit production in the field (CR, MFC, and NC) presented 
lower ry,û , with estimates below 0.30. The morphometric traits of fruits and seeds (MFS, MFF, REND, QP, DLF, 
DEF, DLS, and DES) had a higher performance for GEBVs, with ry,û above 0.35 (Fig. 2).

Discussion
Summary of phenotypic data.  Assessing the productive behavior of juçaizeiro (Table  1) is of great 
importance for growers and stakeholders involved in the crop as it enables an understanding of the productive 
behavior of this plant and facilitates future estimates of output and profit. It is also worth mentioning that the 
experimental area evaluated received no cultivation treatments, and therefore, the productive aspects have sig-
nificant potential for increasing yield by implementing management practices that lead to short-term changes. 
Added to this, for the crop as a whole, there is a high potential that genetic advances can be obtained in the 
juçaizeiro breeding programs in the coming years, which will contribute to establishing the species in the fruit 
sector and maximizing economic gains in fruit production.

Genomic selection and dominance effect in Juçaizeiro breeding.  In the present study, BLUP, 
GBLUP-A, and GBLUP-AD were evaluated to estimate the variance components, genetic parameters, prediction 
accuracies, and predictive abilities, with the objective of assessing the efficiency of genomic selection and genetic 
control of several productive traits of the juçaizeiro. This species is in the early stages of improvement, and our 
study aimed to provide information on its genetic control of several traits of interest to fruit production.

As this crop is only found in forest fragments with small commercial orchards, few improvement studies, 
which address only fruit, seed, and germination traits, have been carried out with it43–46. Additionally, only 
additive effects are incorporated into the genetic value prediction models, which are unaware of the kinship 
between individuals. In contrast, we utilized not only morphometric aspects but also data related to fruit yield 
and incorporated dominance effects into additive models through the knowledge of kinship among individuals. 
Therefore, this is the first study to include dominance in the genetic control study of juçaizeiro traits.

To better understand the importance of knowledge about the genetic control structure of productive traits 
in the juçaizeiro, some specific aspects related to species breeding must be presented. The species is currently 
propagated exclusively by seeds, and breeding programs primarily focus on understanding the additive genetic 
control for estimating and selecting the best genotypes based solely on these effects33,45,46, since the dominance 
effects will not be transmitted to the selected materials due to the propagation method used.

Although dominance is not considered in seed recommendations for commercial plantations, it plays a 
crucial role in the species’ breeding program. Thus, a deeper understanding of the genetic control structure and 
the magnitude of these effects under the traits of interest is essential for decision-making by genetics breeders. 
By quantifying the effects that explain the observed phenotypic variation, breeders can optimize selective gains 
and use more effective methods.

Table 1.   Summary statistics (mean and standard deviation) of the phenotypic data in the different years 
of evaluation, adjusted to the model as a fixed effect, for the twelve traits evaluated, as follows: Number of 
Bunches per Plant (NBP); Fruit Weight per Bunch (kg) (FWB); Rachis Length (cm) (RL); Number of Rachillas 
per Bunch (NRB); Weight of 25 Fruits (g) (WF); Weight of 25 Seeds (g) (WS); Amount of Pulp in 25 Fruits (g) 
(AP); Pulp Yield (%) (PY); Equatorial Diameter of Fruits (mm) (EDF); Longitudinal Diameter of Fruits (mm) 
(LDF); Equatorial Diameter of Seeds (mm) (EDS); Longitudinal Diameter of Seeds (mm) (LDS).

Traits 2018 2019 2020 2021

NBP 2.63 (± 1.54) 3.28 (± 1.36) 3.69 (± 1.03) 2.18 (± 1.36)

FWB 3.05 (± 1.57) 3.45 (± 1.49) – 3.68 (± 1.87)

RL 60.6 (± 14.35) 62.72 (± 14.15) – 59.31 (± 10.39)

NRB 107.16 (± 22.04) 114.22 (± 23.46) – 114.52 (± 21.03)

WF 41.04 (± 8.35) 38.94 (± 7.39) – 38.15 (± 7.1)

WS 28.6 (± 6.34) 25.04 (± 5.56) – 26.82 (± 5.75)

AP 12.57 (± 3.59) 13.93 (± 3.07) – 11.31 (± 2.88)

PY 30.55 (± 6.38) 35.95 (± 5.36) – 29.78 (± 6.07)

EDF 14.01 (± 1.12) 13.24 (± 1.08) – 13.31 (± 1.25)

EDS 12.84 (± 1.15) 11.48 (± 1.12) – 11.73 (± 0.95)

LDF 14.66 (± 1.44) 13.28 (± 1.03) – 13.58 (± 1.2)

LDS 12.9 (± 1.51) 11.19 (± 0.92) – 11.12 (± 0.89)
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Moreover, assessing genetic control and the magnitude of the effects of genetic dominance is necessary for 
making informed decisions about genetically complementary breeding. This understanding enables breeders to 
identify the most effective crosses to achieve desirable traits47, as crosses of the best genotypes based solely on 
additive effects may not provide the best progenies48,49. Thus, knowledge of dominance associated with genetic 
divergence among individuals becomes essential for promoting the capitalization of the heterotic effect through 
controlled crosses, seeking better results in the population of the second selection cycle.

In addition to being a crucial aspect for developing offing hybrids, understanding the dominance effect is fun-
damental to detecting disturbing effects in selecting superior genetic materials50. However, in classical breeding 
programs, estimating these variance components becomes unfeasible due to the requirement to conduct a large 
number of controlled crosses and experimental areas. Moreover, crop development time can delay the species 
improvement program, taking at least 10 to 15 years to estimate genetic effects such as dominance, considering 
that the tested materials originate from controlled crosses. Thus, genomic techniques have proven effective for 

Table 2.   Estimates of variance components and genetic parameters estimated by the BLUP, GBLUP-A, and 
GBLUP-AD models, using information from genotyped trees for the traits number of bunches per plant 
(NBP); fruit weight per bunch (kg) (FWB); rachis length (cm) (RL); number of rachillas per bunch (NRB); 
weight of 25 fruits (g) (WF); weight of 25 seeds (g) (WS); amount of pulp in 25 fruits (g) (AP); pulp yield 
(%) (PY); equatorial diameter of fruits (mm) (EDF); longitudinal diameter of fruits (mm) (LDF); equatorial 
diameter of seeds (mm) (EDS); longitudinal diameter of seeds (mm) (LDS). σ 2

a  : additive variance; σ 2

d  : 
dominance variance; σ 2

e  : residual variance; H2
: heritability in the broad sense; h2 : heritability in the narrow 

sense.

Traits Model σ
2
a σ

2

d
σ
2
e h

2
H

2

NBP

BLUPs 0.65 – 1.12 0.37 –

GBLUP-A 0.64 – 1.16 0.35 –

GBLUP-AD 0.19 0.33 1.13 0.12 0.31

FWB

BLUP 1.3 – 1.27 0.51 –

GBLUP-A 1.24 – 1.31 0.49 –

GBLUP-AD 0.39 0.62 1.27 0.17 0.44

RL

BLUP 59.61 – 126.49 0.32 –

GBLUP-A 50.39 – 129.3 0.28 –

GBLUP-AD 35.74 13.7 126.18 0.20 0.28

NRB

BLUP 357.05 – 151.17 0.70 –

GBLUP-A 357.7 – 153.88 0.70 –

GBLUP-AD 248.48 72.26 152.11 0.53 0.68

WF

BLUP 54.65 – 9.17 0.86 –

GBLUP-A 55.45 – 9.22 0.86 –

GBLUP-AD 36.32 11.42 9.20 0.64 0.84

WF

BLUP 30.06 – 6.59 0.82 –

GBLUP-A 29.00 – 6.61 0.81 –

GBLUP-AD 23.17 3.55 6.61 0.70 0.80

AP

BLUP 7.07 – 3.97 0.64 –

GBLUP-A 6.8 – 4.00 0.63 –

GBLUP-AD 4.08 1.67 3.99 0.42 0.59

PY

BLUP 17.36 – 17.85 0.49 –

GBLUP-A 15.26 – 17.87 0.46 –

GBLUP-AD 13.13 1.35 17.86 0.41 0.45

EDF

BLUP 0.91 – 0.47 0.66 –

GBLUP-A 0.92 – 0.48 0.66 –

GBLUP-AD 0.63 0.18 0.48 0.49 0.63

LDF

BLUP 0.82 – 0.59 0.58 –

GBLUP-A 0.81 – 0.6 0.58 –

GBLUP-AD 0.61 0.13 0.6 0.46 0.55

EDS

BLUP 0.88 – 0.41 0.68 –

GBLUP-A 0.88 – 0.41 0.68 –

GBLUP-AD 0.68 0.12 0.41 0.56 0.66

LDS

BLUP 0.7 – 0.45 0.61 –

GBLUP-A 0.63 – 0.45 0.58 –

GBLUP-AD 0.63 0 0.45 0.58 0.58
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Table 3.   Relationships of the dominance effect on the estimation of variance components and genetic 
parameters between the GBLUP-A and GBLUP-AD models, using information from genotyped trees for 
the traits number of bunches per plant (NBP); fruit weight per bunch (kg) (FWB); rachis length (cm) (RL); 
number of rachillas per bunch (NRB); weight of 25 fruits (g) (WF); weight of 25 seeds (g) (WS); amount 
of pulp in 25 fruits (g) (AP); pulp yield (%) (PY); equatorial diameter of fruits (mm) (EDF); longitudinal 
diameter of fruits (mm) (LDF); equatorial diameter of seeds (mm) (EDS); longitudinal diameter of seeds (mm) 
(LDS). Par.: Parameters; RLaa : ratio between σ 2

a  of the GBLUP-AD model and σ 2
a  of the GBLUP-A model; d2 : 

relationship between σ 2

d  and σ 2

f  of the GBLUP-AD model.

Par

Traits

NBP FWB RL NRB WF WS AP PY EDF LDF EDS LDS

RLaa 0.30 0.32 0.71 0.69 0.65 0.80 0.60 0.86 0.69 0.75 0.77 1.00

d2 0.20 0.27 0.08 0.15 0.20 0.11 0.17 0.04 0.14 0.10 0.10 0.00

Table 4.   Goodness-of-fit and prediction parameters for genetic values evaluated for the BLUP, GBLUP-A, 
and GBLUP-AD models using information from genotyped trees for the following traits: number of bunches 
per plant (NBP); fruit weight per bunch (kg) (FWB); rachis length (cm) (RL); number of rachillas per bunch 
(NRB); weight of 25 fruits (g) (WF); weight of 25 seeds (g) (WS); amount of pulp in 25 fruits (g) (AP); pulp 
yield (%) (PY); equatorial and longitudinal diameter of fruits and seeds (mm) (EDF, LDF, EDS, and LDS; 
respectively).

Traits Models PEV r LL AIC BIC

NBP

BLUP 0.21 0.82 − 345.05 698.1 717.82

GBLUP-A 0.19 0.83 − 348.71 705.42 725.14

GBLUP-AD 0.15 0.84 − 340.83 689.67 709.39

FWB

BLUP 0.39 0.83 − 257.97 521.93 535.38

GBLUP-A 0.36 0.84 − 254.04 514.08 527.52

GBLUP-AD 0.30 0.84 − 249.55 505.1 518.55

RL

BLUP 28.67 0.72 − 299.72 605.44 618.89

GBLUP-A 24.28 0.72 − 291.64 589.28 602.73

GBLUP-AD 22.64 0.74 − 290.89 587.78 601.23

NRB

BLUP 57.62 0.92 − 181.88 369.77 383.21

GBLUP-A 53.98 0.92 − 171.95 349.9 363.35

GBLUP-AD 91.02 0.85 − 170.75 347.5 360.94

WF

BLUP 1.25 0.99 599.6 − 1193.19 − 1175.66

GBLUP-A 1.05 0.99 613.54 − 1221.08 − 1203.55

GBLUP-AD 10.36 0.88 616.67 − 1227.34 − 1209.81

WS

BLUP 0.87 0.99 422.77 − 839.54 − 822.05

GBLUP-A 0.75 0.99 443.65 − 881.3 − 863.81

GBLUP-AD 4.16 0.92 444.53 − 883.06 − 865.57

AP

BLUP 0.47 0.97 − 302.46 610.93 628.41

GBLUP-A 0.43 0.97 − 287.92 581.84 599.32

GBLUP-AD 1.5 0.86 − 283.82 573.64 591.12

PY

BLUP 1.94 0.94 − 467.05 940.1 957.58

GBLUP-A 1.76 0.94 − 437.3 880.6 898.08

GBLUP-AD 2.81 0.90 − 436.97 879.94 897.42

EDF

BLUP 0.06 0.97 − 285.78 577.56 595.05

GBLUP-A 0.06 0.97 − 273.44 552.88 570.37

GBLUP-AD 0.19 0.88 − 271.87 549.75 567.24

LDF

BLUP 0.07 0.95 − 262.42 530.85 548.34

GBLUP-A 0.07 0.96 − 247.17 500.34 517.84

GBLUP-AD 0.16 0.88 − 245.88 497.77 515.26

EDS

BLUP 0.06 0.97 − 50.26 106.52 123.9

GBLUP-A 0.05 0.97 − 35.53 77.06 94.44

GBLUP-AD 0.16 0.90 − 34.56 75.11 92.49

LDS

BLUP 0.06 0.96 27.91 − 49.82 − 32.43

GBLUP-A 0.05 0.96 57.36 − 108.72 − 91.33

GBLUP-AD 0.05 0.96 57.36 − 108.72 − 91.33



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9795  | https://doi.org/10.1038/s41598-023-36970-z

www.nature.com/scientificreports/

the juçaizeiro by providing rapid, in-depth information about the genetic control of its traits and improving 
estimates of additive genetic effects.

In this sense, the genomic methods applied in the present work already surpass the traditional BLUP method 
since it does not allow estimation of dominance effects due to the lack of pedigree information. Nevertheless, 
these more sophisticated genomic techniques offer advantages as they generate increased selective accuracy and 
allow more extensive studies of the genetic control of traits in a more immediate way, while traditional methods 
would require the performance of controlled crosses (prone to errors and contamination by pollen)51, long 
periods for plant development, and large experimental areas.

To compare the methodologies, the quality measures of AIC and BIC adjustments were used. Through them, 
we were able to conclude that the inclusion of dominance effects improves model fit for all evaluated traits, as 
evidenced by the smaller AIC and BIC values (Table 4). Conversely, when using the BLUP model for all evalu-
ated traits, the goodness-of-fit measures were superior to the other models (Table 4). However, including the 
dominance effects may lead to negative responses in predicting some traits, as shown by the increase in PEV 
and, consequently, a slight reduction in r (Table 4). Including dominance effects in the model brought more 
noticeable improvement to the traits FWB, NBP, WF, and AP. Therefore, the ry,û values considering dominance 
were superior to the GBLUP-A models, indicating the importance of including this effect in the additive model 
for estimating individual GEBVs.

As previously mentioned, the lower r values observed for the traits generally have a high magnitude, and 
even though the LRT revealed the non-existence of differences among traits between the methods, the use of 
the dominance effect is justified for understanding genetic control of the traits.

In the present study, the differences observed between the BLUP and GBLU-A models as a function of h2 did 
not have high magnitudes. This same behavior was observed in the morphological traits of pine52. However, in 
contrast to these observations, studies conducted on Eucalyptus found more pronounced changes between the 
estimates14,15. Nevertheless, in the cited studies, the drastic changes that can be achieved using marker-based 
models compared to pedigree information are evident; this was also observed in the present study when the 
dominance effect was added to the model, which can correct for overestimations in additive genetic variance, as 
shown by the reduction in the h2 estimates (Table 2), agreeing as well with studies on maize53 and eucalyptus54.

The similarity observed between broad-sense heritability estimates (H2) obtained by GBLUP-AD and narrow-
sense heritability (h2) obtained by GBLUP-A may be associated with the fact that the type of regularization used 
in the marker matrix for estimating additive effects using the VanRaden (2008) method18 makes the additive 
effects of markers correspond to the allelic substitution effect, whose estimation terms contain both the additive 
effect of the homozygote and the dominant effect of the heterozygote α = a+ d

(
q− p

)
, leading us to believe the 

dominance effect is confounded in this estimate, resulting in overestimations by this latter model. In conclusion, 
the σ 2

a  estimated by GBLUP-A is close to the σ 2
g  estimates obtained by GBLUP-AD, resulting in similar h2 and 

H2 estimates between the methods.
In addition, the use of molecular markers shows great relevance for a more in-depth investigation of the 

genetic control of traits and allows more realistic gains estimates. The observed broad-sense heritability (H2), 
which shows how much of the phenotype variation is explained by the genotype, can be classified as low (RL) 
(< 0.30), medium (NBP, FWB, AP, PY, and LDS ) (0.30–0.60), and high (NRB, WF, WS, EDF, LDF, and EDS) 
(> 0.60)55. The results shown in Table 2 reveal that traits associated with fruit production (NBP, FWB, RL, and 
NRB) are more influenced by environmental effects than morphometric variables (WF, WS, AP, PY, EDF, LDF, 

Figure 2.   Standard error of the mean and mean predictive ability ( ry,û) of the GBLUP-A and GBLUP-AD 
models for the traits number of bunches per plant (NBP); fruit weight per bunch (kg) (FWB); rachis length (cm) 
(RL); number of rachillas per bunch (NRB); weight of 25 fruits (g) (WF); weight of 25 seeds (g) (WS); amount 
of pulp in 25 fruits (g) (AP); pulp yield (%) (PY); equatorial and longitudinal diameter of fruits and seeds (mm) 
(EDF, LDF, EDS, and LDS; respectively).
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EDS, and LDS). Among production-related traits, NRB stands out from the others in terms of genetic control, 
with a H2 of 0.68 classified as high.

Adding dominance effects to the predictive models can increase the predictive ability of the genomic model, 
with the improvement determined by the proportion in which this effect can explain the total variation. This 
behavior can be observed mainly for the traits FWB (Table 3) and NBP (Table 4), which showed the greatest 
influence of dominance. Improvement in models incorporating dominance for traits with higher d2 can also 
be observed in simulated data from pine populations49. Such improvements are fundamental for the juçaizeiro. 
Although not propagated clonally, removing the dominance effects from estimates of additive effects can increase 
selective accuracy and promote greater future gains, highlighting the relevance of genomic techniques in the 
studied population.

Therefore, the presented results contribute to improving the understanding of the genetic structure that 
governs part of the phenotypic variation of quantitative traits of productive and industrial interest. Moreover, 
the importance of including the dominance effect to obtain a more realistic partitioning of genetic variance in 
its additive and non-additive terms is evident by the reduction of h2 for most traits.

Predictive ability.  Predictive ability is a striking measure of comparison among the models tested in this 
study. Since conventional BLUP does not provide any pedigree information, the genetic values predicted by this 
method for untested materials correspond to the average; consequently, the predictive ability becomes zero. For 
the models based on genomic information, estimates of ry,û among the traits are distinct and associated with 
several factors, such as h2. This is further evidence of the superiority of genomic methods over the traditional 
method.

In general, two factors affect the predictive ability of marker-based models, including heritability, which 
is dependent on the genetic control of the trait, and phenotyping quality, associated with field evaluation 
processes56. We found estimates of ry,û with mean values below 0.55; Since this is an initial study applying 
genomic techniques in natural populations, hypotheses were raised for techniques that require complementary 
studies to improve the results observed for the experimental condition tested.

In this sense, it is possible that including covariates associated with plant age, like height and circumference, 
could improve the performance of predictions and covariates associated with the plot conditions where a group 
of plants is located. Additionally, the trait-assisted method of genomic prediction57, with or without covariates, 
may be an alternative to maximize predictive abilities. This method not only uses molecular marker information 
but also benefits from the correlated effects among the traits of individuals whose genetic value is being predicted 
to improve the predictions of a key trait.

In general, the values of ry,û obtained using the GBLUP-A and GBLUP-AD methods were similar, with a 
greater difference observed for NBP (Table 4). Such similarity associated with predictive relationships between 
models has been observed in the literature58–60. In this sense, Azevedo et al. (2015)60 concluded that other 
parameters should be considered for model comparison. The authors determined that estimates of heritability, 
bias, and the relationship between variation due to dominant and additive effects are more relevant factors for 
such a comparison. Therefore, in the present study, as the GBLUP-AD model presented the best fitting param-
eters (AIC and BIC) and demonstrated that GBLUP-A may have confounded its additive term with dominance 
effect, overestimating h2, we conclude that the model that included the dominance term improved the selection 
of superior genetic materials, with GBLUP-AD superior to GBLUP- A.

Conclusion
Our findings on model adjustment parameters and predictive capabilities show that genomic methods are supe-
rior to conventional BLUP for the juçaizeiro. The superiority of genomic prediction is further confirmed by the 
fact that it allows a more in-depth study of the genetic control of traits, which is not possible by BLUP due to the 
complete absence of knowledge of kinship between individuals. To generate such information, this method would 
require great effort and financial resources, in addition to the time that would easily exceed 15 years of research.

For all traits but LDS, which presented variance due to dominance equal to zero, the models that considered 
only the additive effects presented estimates of the variance components and genetic parameters greater than 
the GBLUP-AD model, indicating that including the dominance effect corrects overestimations, returning more 
real estimates. Thus, genetic gains can be estimated with greater accuracy from the results generated by the 
GBLUP-AD model.

Among the methods and models tested (BLUP, GBLUP-A, and GBLUP-AD), GBLUP-AD had the best results, 
demonstrating the importance of estimating the dominance effect for productive traits in juçaizeiro.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request and with permission of W agency.
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