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SnapEnsemFS: a snapshot 
ensembling‑based deep feature 
selection model for colorectal 
cancer histological analysis
Soumitri Chattopadhyay  1, Pawan Kumar Singh  1, Muhammad Fazal Ijaz  2*, 
SeongKi Kim  3* & Ram Sarkar  4

Colorectal cancer is the third most common type of cancer diagnosed annually, and the second leading 
cause of death due to cancer. Early diagnosis of this ailment is vital for preventing the tumours to 
spread and plan treatment to possibly eradicate the disease. However, population-wide screening is 
stunted by the requirement of medical professionals to analyse histological slides manually. Thus, an 
automated computer-aided detection (CAD) framework based on deep learning is proposed in this 
research that uses histological slide images for predictions. Ensemble learning is a popular strategy 
for fusing the salient properties of several models to make the final predictions. However, such 
frameworks are computationally costly since it requires the training of multiple base learners. Instead, 
in this study, we adopt a snapshot ensemble method, wherein, instead of the traditional method of 
fusing decision scores from the snapshots of a Convolutional Neural Network (CNN) model, we extract 
deep features from the penultimate layer of the CNN model. Since the deep features are extracted 
from the same CNN model but for different learning environments, there may be redundancy in the 
feature set. To alleviate this, the features are fed into Particle Swarm Optimization, a popular meta-
heuristic, for dimensionality reduction of the feature space and better classification. Upon evaluation 
on a publicly available colorectal cancer histology dataset using a five-fold cross-validation scheme, 
the proposed method obtains a highest accuracy of 97.60% and F1-Score of 97.61%, outperforming 
existing state-of-the-art methods on the same dataset. Further, qualitative investigation of class 
activation maps provide visual explainability to medical practitioners, as well as justifies the use of 
the CAD framework in screening of colorectal histology. Our source codes are publicly accessible at: 
https://​github.​com/​soumi​tri20​01/​SnapE​nsemFS.

Colorectal cancer (CRC)1 is caused by the growth of polyps on the inner lining of the colon (or rectum) which 
is primarily due to mutation in certain genes that trigger an uncontrollable cell division, causing malignant cells 
to rapidly grow throughout the layers of the rectum as well as into the blood or lymph vessels. Being one of the 
leading causes of death in both developing and developed nations with a mortality rate of nearly 33.33% , the 
lifetime risk of developing CRC is about 4.3% among men and 4.0% among women2. However, early detection 
and diagnosis of this disease can increase the survival rate by almost 90%3, which stresses the requirement of a 
robust framework for the same. The conventional medical practices to detect CRC include stool-based tests and 
structural analysis of spectral imaging of colon and rectum linings4. However, stool-based tests only provide 
results for a limited time and therefore, needs to be done more often, while visual screening is prone to subjective 
variability as it is highly dependent on the observational capabilities of the pathologists5. Thus, an automation-
assisted Computer-Aided Diagnosis (CAD) framework for histological analysis becomes a pressing need for 
robust detection of CRC while it is still in its early stages to prevent the spread of the disease to other vital organs.
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Machine learning-based methods have largely been used in the past for the detection of CRC like the methods 
proposed by6–8. However, traditional machine learning methods require handcrafted features to be extracted 
from the image data. Such methods fail for complex pattern recognition tasks and it is also difficult to design a 
set of features that can accurately represent varied kinds of data.

On the contrary, deep learning methods9–11 alleviate the problem of traditional machine learning methods by 
performing end-to-end classification. Deep learning-based methods, especially Convolutional Neural Networks 
(CNNs) have become popular for medical image diagnosis tasks because of their ability to learn relevant features 
automatically from the input data. However, CNNs require a large amount of training data for achieving desirable 
performance which is often expensive to obtain, especially in the biomedical domain. Transfer learning is one 
of the solutions to this problem, where a model trained on a large dataset such as ImageNet12 is reused on the 
current problem containing a small dataset. In this study, we use the MobileNet-V213 CNN model pre-trained 
on the ImageNet12 dataset that contains 14M images belonging to 1000 classes.

Ensemble learning10,11,14 is a fusion strategy that amalgamates the salient properties of multiple models and 
is popularly used in literature. However, ensembling two or more deep learning models can be a very compu-
tationally costly operation since each model needs to be trained separately for the fusion. This limits its use in 
many practical applications where there is a resource constraint. To this end, in this paper, we explore a differ-
ent approach, where we perform an ensemble of snapshots of the same CNN model. That is, the CNN model is 
trained only once, and during its training, model snapshots are saved at different checkpoints. We extract features 
from the model snapshots (from the CNN model’s penultimate fully connected layer) and fuse them. However, 
since the features are extracted from the same CNN model (MobileNet-V2 in this case) at different training 
epochs, there must be some degree of redundancy in the overall feature vector. This is because though we take 
different snapshots, however, all the CNN models (here snapshots) will try to learn some common features from 
the data fed to the model. Hence, to eliminate the redundancy and to retain the important features only, we use a 
swarm-intelligence based meta-heuristic, called Particle Swarm Optimization (PSO) algorithm15, which in turn, 
selects the optimal subset of features from the feature space. This also reduces the storage requirements of the 
framework and makes the overall model computationally more efficient. We evaluate the performance of the 
proposed framework on the CRC detection problem using the publicly available dataset prepared by16, where 
our model is seen to outperform many state-of-the-art methods. Furthermore, we employ gradient-weighted 
class-activation mapping (Grad-CAMs), a weakly supervised segmentation algorithm17 that produces a heat 
map corresponding to the activations of the last convolutional layer, followed by its superimposition on the 
original histological image (please refer to section “Analysis of the proposed model” for a lucid explanation). This 
highlights the class-discriminative regions of interest found by our proposed model, which can of great help to 
medical practitioners in their decision-making process, making our framework a very useful CAD tool that can 
be easily leveraged in real-world prognosis.

The overall workflow of the proposed method is shown in Fig. 1. Specifically, our key contributions may be 
summarized as follows: 

1.	 An ensemble learning-based deep FS framework is proposed for efficient and improved classification of CRC 
histological images.

2.	 Snapshot ensemble technique18 is adopted which allows using an ensemble of neural networks at the cost of 
training a single CNN model only.

Figure 1.   Overall framework for the detection of colorectal cancer from histology images. The Learning Rate 
(LR) cycle refers to the cycle intervals according to the cosine annealing learning rate scheduler used in this 
study. The model training continues until the maximum number of epochs is reached, while the features are 
extracted from the penultimate fully connected layer of the CNN model (refer to section “Transfer learning-
based snapshot model training” for further explanation).
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3.	 PSO15 algorithm is used to perform FS on the fused feature set to choose the most relevant features from the 
feature space, thereby enhancing the performance of the framework as well as reducing storage requirements.

4.	 The proposed model is evaluated on a publicly available CRC histology dataset16 using a 5-fold cross-vali-
dation scheme and compared with several state-of-the-art methods, justifying its reliability and robustness 
for the CRC detection.

5.	 Last but not the least, the present work also investigates into Grad-CAMs obtained by the proposed model, 
which provide visual explainability and justification of the CAD pipeline that can aid medical practitioners 
in localising the region(s) of interest for medical prognosis.

The rest of the paper is organized as follows: Section “Related work” provides a comprehensive literature survey 
pertaining to the development of state-of-the-art in the domain of CRC detection; section “Proposed method” 
presents a detailed description of the proposed framework for the classification of histological images for CRC 
detection; section “Results and discussion” evaluate the proposed method on a publicly available dataset and 
provides a comparative study to establish the superiority of the method with respect to existing methods in the 
literature; and finally, section “Conclusion” concludes the findings from this research.

Related Work
The development of a robust framework for the diagnosis of CRC is essential owing to its high mortality rate and 
widespread prevalence. One of its facets includes texture analysis of histological images16,19–22, which typically 
consist of an image pre-processing step followed by feature extraction, after which classification is performed 
using traditional machine learning algorithms. The handcrafted features may be extracted using texture filters 
such as Haralick23, Gabor24 and Local Binary Pattern (LBP)25, to name a few. Extracted LBP features from digi-
tized colorectal tissue microarrays and trained a support vector machine (SVM) to classify between epithelium 
and stroma based on texture19. Studied multispectral imagery analysis of CRC histology biopsy samples and 
achieved an accuracy of 91.3% by training an SVM classifier with LBP features20. Proposed a texture analysis 
framework for CRC detection by extracting features from multispectral optical microscopy images based on 
Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and grey level co-occurrence matrix (GLCM) based 
features21. Feature selection (FS)26–29 methods have also been leveraged in literature to select the most relevant 
features from the original feature set, extracted by some means, for improving upon the textural classifica-
tion task. Performed spatial analysis of colon biopsy samples using Circular LBP features followed by a novel 
clustering-based FS method; the selected features were then used for training an SVM for classification, obtain-
ing an accuracy of 90%30. The authors of 31 performed FS using the Genetic algorithm on the fractal, curvelet 
coefficients and Haralick textural features from H &E stained histological images and reported an accuracy 
of 90.82%31. The authors of 32 proposed a clustering-based modified Harmony Search Algorithm33 for FS on a 
CRC gene expression dataset, achieving an accuracy of 94.36% . However, these approaches may not be suitable 
enough for practical use as they were focused on the binary classification of tissue types, whereas histological 
images generally comprise multiple categories. The first study on multi-class texture separation of colorectal 
tissues was proposed by16, which presented a new dataset of 5000 histological images of human CRC including 
8 tissue categories (described in Table 1)—the dataset we have used in this research. The authors performed 
classification by training several classifiers using multiple textural features, obtaining the highest accuracy of 
87.4% on the multi-class classification task.

Deep learning methods, on the other hand, do not require handcrafted features to be extracted from the input 
images; rather, they exhibit self-learning behaviour in which the model learns the relevant informative features 
from the inputs by itself. This is particularly useful if the input data have very complex underlying patterns which 
are often difficult to capture using handcrafted feature engineering, as in the case of CRC tissue texture investiga-
tion. As such, CNN based models are preferred for image analysis as they can efficiently extract translationally 
invariant features from image data using blocks of convolution filters. The authors of34 proposed a bi-linear CNN-
based model to extract and fuse features from stain decomposed histological images and obtained a multi-class 
classification accuracy of 92.6% and sensitivity of 92.8%34. The authors of35 investigated the importance of stain 
normalization pertaining to tissue classification using a CNN model but achieved a classification accuracy of 
only 79.66% . Raczkowski et al.36 introduced a Bayesian deep learning framework for end-to-end classification 

Table 1.   Classes of images in the CRC histology dataset16 used in this research. Each class contains 625 
images.

Class Category

0 Tumour epithelium

1 Simple stroma

2 Complex stroma

3 Immune cells

4 Debris

5 Normal mucosal glands

6 Adipose tissue

7 Background (no tissue)
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of multi-class CRC histological images and achieved the highest accuracy of 92.44% following a 10-fold cross-
validation scheme36, while37 proposed an explainable classifier mechanism for ease of human interpretability 
whose performance was enhanced using a fine-tuned CNN model which obtained an accuracy of 92.74% on the 
multi-class classification problem. Researchers have also leveraged the concept of transfer learning38—the process 
of fine-tuning a deep learning model pre-trained on a large dataset to suit the given task at hand—to cope with 
the limited amount of data available in biomedical image analysis tasks. The authors in39 explored several deep 
CNN models pre-trained on the ImageNet dataset12 for feature extraction from the histological images. That was 
followed by multi-class classification using a pool of traditional classifiers like the random forest, Multi-layer 
Perceptron, K-nearest neighbours (KNN) and Bayesian classifier. Out of the 108 possible combinations of feature 
extractors and classifiers, they achieved the highest classification accuracy of 92.08% and an F1-score of 92.12% , 
using a pre-trained DenseNet-169 model as the feature extractor and an SVM as the classifier. In40, the authors 
proposed a semi-supervised algorithm wherein they constructed a hypergraph constructed with the features 
extracted from the CRC tissue images using a pre-trained VGG-19 network. The features were passed through 
a feed-forward neural network for multi-class tissue classification. They achieved an accuracy of 95.46% along 
with an average true positive rate of 94.42% . Note that all of the aforementioned studies have used the multi-class 
CRC tissue dataset by16 for training and evaluation.

Ensemble learning14 is a strategy that takes into account information obtained from multiple models and 
combines them at inference time to compute the final predictions. This strategy poses the advantage of captur-
ing potentially diverse information from the base learners as well as improving the generalization capability by 
reducing the overfitting of the model, especially when the data are scarce. As such, an ensemble of models has 
been found to perform better than a single neural network model10,11 and hence, has been of significant inter-
est among the research community41,42. The most common ensemble strategies in the literature apply some 
fusion schemes on the decision scores obtained by the individual models to produce the final predictions. Dif 
et al.43 proposed a dynamic ensemble learning approach in which the most optimal models were selected from a 
pool of transfer learning-based CNN models using PSO algorithm15, which were then combined using voting and 
averaging ensemble techniques. The authors in44 proposed a two-phase ensemble deep neural network (DNN) 
framework for end-to-end CRC histology classification and achieved an accuracy of 92.83% , while the work done 
in45 proposed two ensemble approaches on the decision scores obtained by four pre-trained deep CNN models 
of varying architectures, and obtained a mean classification accuracy of 96.16% on the CRC histology dataset16.

Although the mentioned ensemble learning approaches have been effective, a major drawback it faces is that 
training multiple DNN models incurs a large computational cost, which may be infeasible on several occasions 
such as in a resource-constrained environment. A seminal work that sought to tackle this limitation was proposed 
by18, which introduced the concept of snapshot ensemble–training multiple snapshots of the same DNN during a 
single run. The authors followed the cyclic learning rate scheduling proposed by46 that allowed the DNN model 
to converge to and escape from multiple local minima in fewer training epochs, ensuring diversity among the 
snapshot models being trained. Hence, ensemble learning can be leveraged without incurring any additional 
computational costs of training multiple models; all of the base learners can be generated at the expense of 
training a single neural network only. Snapshot ensemble techniques have been used by researchers in various 
sub-domains of biomedical image classification47–50.

PSO15 is a popular swarm-intelligence based meta-heuristic algorithm that has been leveraged on a wide range 
of problems pertaining to the optimization paradigm, including continuous optimization51, task scheduling52, 
data clustering53, image thresholding54 and segmentation55. Binary variants of PSO56,57 have also been intro-
duced and used for FS tasks58. The main difference between the binary and continuous variants lies in the use 
of a transfer function57, which maps the continuous search space of PSO to a binary one based on a threshold 
condition. The primary merits of this meta-heuristic lie in its simple concept, less number of parameters and 
computational efficiency over other meta-heuristics. These facts have been the key reasons for its successful 
application over various domains as mentioned.

All of the aforementioned snapshot ensemble methods generate decision scores from the snapshot models 
and fuse them for the final prediction. In this research, we adopt a different approach, where deep features are 
extracted from the model snapshots and fused, after which the obtained feature vector is passed through a meta-
heuristic, called PSO, for dimensionality reduction. Based on these optimally selected feature subsets, the final 
classification is performed using the KNN classifier. Since the deep features are extracted from the same CNN 
model at different learning environments through the training process and fused, there may be redundant fea-
tures in the feature space that can be eliminated for efficient storage of data. For this, the selection of the optimal 
feature subset is an important step in the proposed framework. The obtained results on a publicly available CRC 
dataset by16 support the viability of the proposed method.

Proposed method
In this section, we aptly describe the steps of the proposed framework for CRC histological image analysis. 
Specifically, the sequential stages of the proposed method are: 

1.	 Transfer learning-based snapshot model training: a pre-trained MobileNet-V2 model is fit on the CRC 
histological data for fine-tuning the model.

2.	 Feature extraction and fusion from model snapshots: while training the MobileNet-V2 model at certain 
epochs, the features are extracted from the penultimate fully connected layer of the model. These features 
are then concatenated to yield the ensembled feature vectors.

3.	 FS using PSO algorithm: upon the concatenated features, PSO algorithm is used for dimensionality reduction 
of the feature set and removal of the redundant features for the classification.
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Transfer learning‑based snapshot model training.  The motivation behind the transfer learning 
approach is to fine-tune a DNN pre-trained on a large dataset, like ImageNet12, for classification on the dataset 
of the current problem which consists of a limited amount of data. We use the MobileNet-V213 CNN model pre-
trained on the ImageNet12 dataset as the backbone of our framework. Proposed by13, MobileNet-V2 is a light-
weight state-of-the-art CNN model developed as an improvement upon its predecessor59. With the introduction 
of inverted residual blocks instead of the conventional residual blocks60,61, and depth-wise separable convo-
lutions, which are the combination of the depth-wise and point-wise convolution, the number of parameters 
and thereby, the computational cost of MobileNet-V2 is greatly reduced when compared to the other DCNN 
architectures59,60,62.

To capture the information in an effective way from the histological images using the pre-trained MobileNet-
V2 model, two fully connected (FC) layers have been added after flattening the final Rectified Liner Unit—ReLU6 
layer of the base CNN. The flattened layer consists of 62720 units and directly mapping them to the final clas-
sification layer may lose important information. For this, we introduce two intermediate FC layers to capture the 
important information before mapping the same to the classification layer. The first customized FC layer (FC–1) 
comprises 4096 neurons and the second layer (FC–2) comprises 256 neurons, following which is the final clas-
sification layer. Both the layers are associated with LeakyReLU63 activation function. Both of these FC layers are 
trained from scratch and the features are extracted from the FC–2 layer. The final classification layer is an FC 
layer having 8 units (i.e. number of classes of the given dataset) associated with the softmax activation function 
which maps the input to the respective class probabilities. The architecture of the customized MobileNet-V2 
CNN model used in this study is shown in Fig. 2.

The primary need for ensemble learning is the availability of multiple trained deep learning models. How-
ever, training a deep CNN model is a time exhaustive process and also requires high computational resources, 
often making it infeasible to train several models for ensemble learning. To alleviate it, we leverage the snapshot 
ensemble technique18 by training multiple snapshots of the same deep learning network during a single training 
run of the model.

A fundamental requisition for effective model ensembling is that the individual models should be diverse 
enough to capture information that is complementary to each other. If this is ensured, it implies that the ensemble 
framework has taken into account the various facets of the training data and hence, can be able to classify the 
tissue images with greater accuracy. Further, the diverse nature of the individual models reduces the overfitting 
of the framework on the training samples. However, as the ensemble proposed in this study comprises snapshots 
of the same deep learning model over a single training run, the individual models may tend to be similar and lack 
in the said diversity. To address this potential limitation, an aggressive learning rate schedule is taken46 during 
the training run that causes large changes to the model weights, which in turn enhances diversity among the 
model snapshots, making the individual models suitable for a robust ensemble framework.

We have used the cosine annealing learning rate scheduler proposed in46. The intuition followed here is to 
accelerate the lowering of the learning rate which forces the model to converge to a local minimum during a cycle 
of decay. The periodic nature of the cosine function ensures that the learning rate is re-initialized to its initial 
value at the beginning of each cycle, implying a drastic increase in the learning rate from its previous epoch, 
which considerably perturbs the weights of the model and thereby allows the model to escape from the minimum 
it had converged to earlier. The weights of the converged models obtained at the end of each cycle are essentially 
the “snapshot” base learners constituting the ensemble framework, which are saved and used in subsequent stages.

The learning rate α at current epoch (t) is given by Eq. (1), where α0 is the initial learning rate at the start of 
training, E is the total number of training epochs and C is the number of cycles into which the training loop is 
divided uniformly. In this study, we have trained our model for E = 100 epochs with C = 5 cycles, the initial 

(1)α(t) =
α0

2

(

cos

(

πmod(t − 1, [E/C])

[E/C]

)

+ 1

)

Figure 2.   Architecture of the customized MobileNet-V2 CNN model used in this research.
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learning rate being set as α0 = 2× 10−4 . Figure 3 shows the variation of learning rate under the aforementioned 
cyclic learning rate scheduler over training epochs.

Feature extraction and fusion from model snapshots.  After having the generated snapshots from 
the MobileNet-V2 model, we use them to extract features from both the training and test sets. The features 
are extracted from the FC–2 layer (described in section “Transfer learning-based snapshot model training”), 
thereby getting a 256 dimension feature vector for each image from every snapshot model. We stack up the 
corresponding feature vectors obtained from each snapshot model, thus obtaining a 256× 5 = 1280 dimension 
fused feature vector for every individual image. We have also taken particular care to ensure that the train-test 
split is maintained throughout and there is no data leakage.

Feature selection using PSO.  FS is the process of selecting a subset from a set of features such that the 
most discriminatory features are chosen, thereby enhancing performance and reducing redundancy among the 
features. Out of a set of N features, an exhaustive search for the most optimal subset would incur 2N number of 
computations, which being exponential is a combinatorially hard problem. This has led to researchers resorting 
to population-based meta-heuristic search algorithms27, which are probabilistic in nature and search over the 
search space for a near-optimal solution in polynomial time. Due to their stochastic behaviour, require a feasible 
number of iterations and population size so as to perform an effective search over the domain with a higher 
probability of finding the global/near optimal solution. In this work, we have adopted the PSO15, a popular 
swarm-based meta-heuristic algorithm to perform FS on the fused feature set (as described in section “Feature 
extraction and fusion from model snapshots”) so as to eliminate the implicit redundancy that may have crept in 
due to the use of same CNN backbone over the respective snapshot models.

In a typical PSO setup, the population comprises particles having velocities vi and positions xi as their attrib-
utes. For current iteration (t), if the velocity and position of the particle in the ith dimension are v(t)i  and x(t)i  
respectively, then Eq. (2) is used to update the velocities in the (t + 1)th iteration.

Here, pbest(t)i  is the best solution that the ith particle has obtained so far, gbest(t) indicates the best solution the 
swarm has achieved so far. The parameter w(t+1) governs the exploration ability of the population and is updated 
using Eq. (3), while r1 and r2 are random numbers in the range [0, 1]. The expressions C1r1

(

pbest
(t)
i − x

(t)
i

)

 and 
C2r2

(

gbest(t) − x
(t)
i

)

 quantify local intelligence and collaboration of particles, respectively. For this study, the 
values of the constant parameters have been set experimentally as: C1 = 1,C2 = 1.

Here, T is the maximum number of iterations.
Being originally suited for continuous function optimization, PSO is not directly suitable for a discrete 

(binary) valued problem such as FS57. Thus, we first map the real-valued search space of PSO to [0, 1] using 
the S-shaped sigmoid transfer function as shown in Eq. (4). After this, a threshold-like operation is employed 
to yield the desired discrete output, using Eq. (5). By convention, a feature index is set to be “1” if it is selected, 
“0” otherwise.

(2)v
(t+1)
i = w(t+1)v

(t)
i + C1r1(pbest

(t)
i − x

(t)
i )+ C2r2(gbest

(t) − x
(t)
i )

(3)w(t) = 1−
t

T

(4)S (x) =
1

1+ e−x

Figure 3.   Cyclic variation of learning rate under cosine annealing learning rate schedule over training epochs.
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where, rand is a random number uniformly distributed between 0 and 1.
Population-based search procedures rely on the use of a fitness function that quantifies the suitability of a 

particular agent configuration (feature subset in this case). Here, we have formulated our fitness function by 
aptly combined the classification accuracy (which needs to be maximized) and feature subset cardinality (which 
needs to be minimized), so as to combine the contrasting objectives in a single fitness function, shown in Eq. (6). 
Higher the value of the fitness, better is the quality of the feature subset chosen.

where, η is the classification accuracy of the feature subset obtained using the embedded KNN classifier64, � 
quantifies the feature reduction given by Eq. 7, and ω ∈ [0, 1] represents the relative weightage between the clas-
sification accuracy and the feature reduction. Following9, we have taken ω = 0.99 , while the value of ‘k’ for the 
KNN classifier has been experimentally set to 6.

where, |d| is the number of features selected, and |D| is the original feature dimension. In our work, |D| = 1280 
(as specified in section “Feature extraction and fusion from model snapshots”).

Finally, the local best (pbest) and global best (gbest) solutions are updated as given by Eqs. (8) and (9) 
respectively.

(5)x
(t+1)
i =

{

1, rand < S (v
(t+1)
i )

0, otherwise

(6)↑ F = ω × η + (1− ω)×�

(7)� =
(|D| − |d|)

|D|

Figure 4.   Flowchart of the PSO algorithm.
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where, F (·) is the fitness function defined in Eq. (6). Figure 4 shows the flowchart of the PSO algorithm used 
in this research.

Statement.  All experiments and methods were carried out in accordance with relevant guidelines and regu-
lations.

Results and discussion
In this section, we provide details of the dataset used for evaluating our proposed method, as well as show and 
compare the results obtained with existing state-of-the-art approaches in literature to justify the superiority and 
reliability of the proposed method.

Dataset description.  In this study, we have used the CRC histology dataset by16, a collection of textures 
in histological images of human CRC containing 5000 images of 150× 150 px each ( 74× 74 µm ). Each image 
belongs to exactly one of eight tissue categories as given in Table 1. The dataset is class-balanced with each class 
comprising 625 images. Following a 5-fold cross-validation scheme for our experiments, we split each tissue 
category into 500/125 images for train/test respectively.

Evaluation metrics.  Four commonly used metrics, namely Accuracy, Precision, Recall and F1-Score, have 
been employed for evaluation of the proposed method on the publicly available CRC histology dataset16.

For a multi-class system (N-class), if we have a confusion matrix M, with the rows depicting the predicted 
class and columns depicting the true class, these evaluations metrics can be formulated as in Eqs. (10)–(13).

Implementation.  The proposed framework has been implemented in PyTorch73 on a 8GB Nvidia GeForce 
2080 GPU. The base snapshot CNN was trained for 100 epochs with 5 cycles comprising 20 epochs each (as 
discussed in section “Transfer learning-based snapshot model training”) with an initial learning rate of 2× 10−4 
using the Stochastic Gradient Descent74 optimizer. All histological images were resized to 224× 224 using bilin-
ear interpolation before being fed into the CNN.

In this study, we have employed a 5-fold cross-validation scheme for evaluating the proposed pipeline on 
the CRC histology dataset16. The results obtained by the proposed method on each fold of the cross-validation 
along with the average and standard deviation values over the five folds are tabulated in Table 2. Further, the 
performance of the proposed method on each class of the dataset (described in Table 1) is shown in

(a)	 Figure 5 which comprises the confusion matrices obtained on each fold of cross-validation, and
(b)	 Figure 6 which gives a graphical representation of the class-wise metric scores averaged over the five folds 

of cross-validation.

For the transfer learning phase, different state-of-the-art pre-trained CNN models are customized and fine-tuned 
on the given dataset, the results of which are tabulated in Table 3. We can see that MobileNet-V213 shows the 
best performance among all the CNN models, while AlexNet65 achieves comparable performance to the former. 
Owing to its superior performance, we justify the usage of MobileNet-V2 as the base CNN model to be used for 
deep snapshot ensembling.

Table 4 tabulates the validation accuracies obtained by individual snapshot models during deep snapshot 
training on each fold of the 5-fold cross-validation scheme. The learning curves obtained during the CNN model 
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training process over 100 epochs for each fold are shown in Fig. 7. Most of the learning curves show a gradual 
decrease in the losses (and a similar rate of increase in accuracy), ensuring that the models have converged 
effectively and are not overfitted, except that in Fold-3, the somewhat divergent behaviour of the training and 
validation loss curves do depict a comparatively weaker learning behaviour.

PSO algorithm57 has been adopted in this study to select the most optimal features from the fused feature set 
obtained from the respective snapshot models. To justify its use quantitatively, it has been compared with the 
following state-of-the-art metaheuristic optimization algorithms in literature: 

Table 2.   Results obtained by the proposed method on the 5-folds of cross validation on the CRC histology 
dataset.

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 97.60 97.64 97.60 97.61

2 97.60 97.64 97.60 97.61

3 97.50 97.54 97.50 97.51

4 97.60 97.64 97.60 97.61

5 97.70 97.74 97.70 97.71

Avg.± Std. Dev. 97.60 ± 0.07 97.64 ± 0.07 97.60 ± 0.07 97.61 ± 0.07

Figure 5.   Confusion matrices obtained by the proposed method on the 5-folds of cross validation on the CRC 
histology dataset.

Figure 6.   Class-wise results obtained by the proposed method on the CRC histology dataset. The average 
performance over the 5 folds of cross-validation are reported.

Table 3.   Results obtained from the transfer learning phase by training various CNN models on the said 
dataset for 100 epochs; the average values over 5-folds of cross validation are reported.

CNN Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

AlexNet65 96.30 96.40 96.30 96.32

Wide-ResNet-50-261 95.40 95.40 95.35 95.37

VGG-1966 95.25 95.25 95.30 95.27

DenseNet-20167 95.75 95.80 95.70 95.72

MobileNet-V213 96.60 96.65 96.60 96.61
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1.	 Grey Wolf Optimizer (GWO)68

2.	 Sine Cosine Algorithm (SCA)69

3.	 Gravitational Search Algorithm (GSA)70

4.	 Cuckoo Search Algorithm (CSA)71

5.	 Whale Optimization Algorithm (WOA)72

For every fold, each of the algorithms is run separately for 10 times on the fused feature set with and the average 
values of the evaluation metrics are considered. For each run, the maximum number of iterations for the FS 
algorithm is set to 50. This is done to ensure robustness in the performance of the algorithms, as they are stochas-
tic in nature. The results of the aforementioned comparative study are tabulated in Table 5. It can be observed 
that PSO shows the best performance in terms of all the evaluation parameters and is also found to show very 
competitive performance in terms of the number of selected features. GSA ranks second in terms of the metric 

Table 4.   Accuracy (%) obtained by each snapshot model during training the base CNN on each fold of 5-fold 
cross validation.

Snapshot Model Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%)

Snapshot 1 94.80 94.60 94.50 95.00 95.00

Snapshot 2 96.40 96.00 95.30 94.90 95.30

Snapshot 3 95.60 95.80 95.60 96.00 96.00

Snapshot 4 96.60 95.90 95.90 96.60 96.50

Snapshot 5 95.80 96.00 96.00 96.00 96.60

Figure 7.   Learning curves obtained by the base CNN model of the proposed method on the 5-folds of cross 
validation on the CRC histology dataset.
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values, whereas CSA is found to select the minimal number of features. The results justify the effectiveness of 
using PSO for FS in the proposed study.

Comparison with state‑of‑the‑art methods.  Table 6 compares the results obtained by the proposed 
framework against existing state-of-the-art methods for CRC tissue classification. It can be observed that the 
proposed method outperforms all of the existing works in literature by a significant margin in terms of all the 
four evaluation metrics used in this study. Further, several of the methods in the literature have mentioned accu-
racy as their sole evaluation metric, which does not provide information about false positives (or true negatives) 
and thereby is not a sufficient parameter to evaluate a multi-class classification framework. On the other hand, 
our results justify that the proposed study is a highly effective and superior approach in CRC detection from the 
histological analysis.

Most of the existing methods on the CRC dataset16 use a single deep learning model for the classification of the 
histological slide images. Among the compared methods shown in Table 6, only45 explored the ensemble learning 
approach by leveraging a simple probability averaging ensemble of decision scores, and their performance ranks 
closest to that obtained by the proposed method (96.16% accuracy). However, this work used multiple CNN 
classifiers to form the ensemble making them computationally expensive. In contrast, our proposed method 
requires the training of one CNN model for the ensemble, and still outperforms45 by a fair margin.

Ablation study.  To investigate the use of snapshot feature fusion over cyclic learning rate scheduling epi-
sodes, we compare its performance against baseline setups obtained on conducting an ablation study on the 
framework. For each of the baselines, a 5-fold cross-validation scheme is adopted during experimentation.

•	 B1: Features are extracted using the base CNN model without any fusion, the rest of the experimental setup 
remains unaltered. For this setup, the dimension of extracted feature vector has been set to 512.

•	 B2: Features are extracted using the top-2 performing snapshot models and fused, keeping the rest of the 
experimental setup unchanged (i.e. output feature dimension is 512).

•	 B3: Features are extracted using the top-3 performing snapshot models and fused, without any changes in 
the rest of the experimental setup.

•	 B4: Features are extracted using the top-4 performing snapshot models and fused without altering the rest 
of the experimental setup.

Table 5.   Comparison of results obtained on performing FS on the ensembled feature set; the average values 
over 5-folds of cross validation are reported.

FS Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) FS (out of 1280)

GWO68 97.40 97.44 97.40 97.41 727

SCA69 97.40 97.44 97.40 97.41 502

GSA70 97.50 97.54 97.50 97.51 665

CSA71 97.30 97.33 97.30 97.31 457

WOA72 97.40 97.44 97.40 97.41 508

PSO57 97.60 97.64 97.60 97.61 592

Table 6.   Comparison of the proposed framework with state-of-the-art methods on CRC histology dataset16 
used in this study.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Kather et al.16 87.40 – – –

Ciompi et al.35 79.66 – – –

Wang et al.34 92.60 – 92.80 –

Rkaczkowski et al.36 92.44 – – –

Dif et al.43 94.52 – – –

Sabol et al.37 92.74 92.50 92.76 92.64

Ohata et al.39 92.08 – – 92.12

Paladini et al.45 96.16 – – –

Bakht et al.40 95.46 – – 94.00

Ghosh et al.44 92.83 92.83 93.11 92.97

Marik et al.75 95.22 95.34 95.22 95.26

Proposed method 97.60 97.64 97.60 97.61
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Table 7 tabulates the results of the aforementioned comparative study. It can be observed that the proposed 
approach outperforms all of the chosen baseline setups in terms of all the evaluation metrics. Baselines B2 and 
B4 show very similar performance in terms of accuracy and F1-Score, with a marginal difference in precision 
values. The setup B3 performs best among the chosen baselines, although it falls short as compared to the pro-
posed method. Further, the fact that B1 shows the weakest performance, highlights the superiority of ensemble 
learning over a single network. The confusion matrices depicting class-wise performances for each baseline 
setup are shown in Fig. 8.

Analysis of the proposed model.  In this section, we thoroughly analyse the performance of the proposed 
model both quantitatively and qualitatively so as to prove its robustness and justify the significance of the results 
obtained.

Statistical test.  To statistically analyze the significance of the proposed method, the McNemar’s statistical test76 
is performed between the PSO algorithm used in the proposed method and other popular metaheuristics used 
in the comparisons. McNemar’s test is a non-parametric test77,78, which assumes the null hypothesis that two 
models are statistically similar. To reject this null hypothesis, the p-value obtained must be lower than 5% . The 
results of McNemar’s test are shown in Table 8. It can be noted that for every scenario, p− value < 0.05 , and 
thus the null hypothesis is rejected, justifying that the proposed model is statistically dissimilar to other methods.

t‑SNE visualization.  The t−Distributed Stochastic Neighbourhood Embedding (or simply t−SNE) is a dimen-
sionality reduction algorithm79 that converts high-dimensional dataset into a matrix of pairwise similarities, 
which can be subsequently visualized in 2D (or 3D) using suitable tools. In this paper, we have employed t−SNE 
to the snapshot fused feature set and that obtained after FS, and visualized the low-dimensional resultant in a 2D 

Table 7.   Results of the Ablation study obtained from each setup as described in section “Ablation study”; the 
average values over 5-folds of cross-validation are reported.

Baseline Feature Dimension Accuracy (%) Precision (%) Recall (%) F1-Score (%)

B1 512 96.30 96.35 96.30 96.32

B2 512 97.30 97.36 97.30 97.31

B3 768 97.50 97.54 97.50 97.51

B4 1024 97.30 97.33 97.30 97.31

Proposed method 1280 97.60 97.64 97.60 97.61

Figure 8.   Confusion matrices obtained from each baseline setup as described in section “Ablation study”.

Table 8.   Results (in terms of p-values) attained by applying McNemar’s statistical test between PSO algorithm 
used in the proposed model versus other popular metaheuristic algorithms (GWO, Grey Wolf Optimizer; SCA, 
Sine-Cosine Algorithm; GSA, Gravitational Search Algorithm; CSA, Cuckoo Search Algorithm; WOA, Whale 
Optimization Algorithm).

McNemar’s test p-value

PSO vs. GWO 3.53E−02

PSO vs. SCA 2.81E−02

PSO vs. GSA 2.95E−02

PSO vs. CSA 1.17E−02

PSO vs. WOA 3.48E−02
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scatter-plot, as shown in Fig. 9. We can observe in both figures that the features are mostly well-clustered in their 
own classes, as well as separated apart from other classes. Furthermore, the class-wise separation in the final 
feature subset is more prominent compared to the initial feature set, thus highlighting the usefulness of FS and 
justifying its role in boosting performance. Thus, we can conclude that the snapshot fusion technique enables 
the formation of a highly discriminative embedding space, which justifies the high performance of our model.

Grad‑CAM analysis.  Gradient-weighted Class Activation Mapping (Grad-CAM) is a class-discriminative 
localization process introduced by17 that produces a visual representation of the regions of a given image iden-
tified by the CNN model to be most distinguishing and thereby, highly pertinent to its class prediction. The 
process followed is that the input image is first passed through the CNN model for label prediction, after which 
the weighted average of the activation maps is taken from the last convolutional layer of the network to form 
the activation heat map, which is then superimposed on the original image to highlight the distinct regions of 
particular interest shown by the model for the classification task. An explanatory diagram for this process is 
illustrated in Fig. 10.

We have used Grad-CAM analysis on each of the snapshot models obtained during the training to investigate 
the regions focused on by each snapshot model on a given CRC histological image, which would give insights 
into the information captured by the individual snapshots. Figure 11 shows the Grad-CAM visualisations using 
each of the snapshot models on correctly classified sample tissue images from the testing samples of the CRC 
histology dataset16 used in this study. It is observed that different snapshots have generally been shown to have 
activated diverse regions of the original image of most classes, implying that complementary information has 
been extracted by the different snapshots leading to the success of the fusion framework. Further, for some of the 
classes (i.e. Tumour Epithelium and Simple Stroma), all of the snapshot models seem to have captured almost 
the same regions of the original image, showing little diversity. This implies that a considerable percentage of 
the information is redundant after fusing the features, which in turn justifies the inclusion of FS in the proposed 
framework.

Additional testing.  To further validate the applicability and robustness of the proposed method, we addi-
tionally test it on the publicly available LC25000 dataset80, which consists of histopathology images of the human 
lung and colon for detection of cell carcinoma and adenocarcinoma. The lung dataset has 3 class while the colon 
dataset has 2 classes, with each class comprising 5000 images. Since our work focuses on colorectal histological 
analysis, we evaluate our method on the 2-class colon dataset only, the classes, the classes being “normal” and 
“adenocarcinoma”.

Keeping all elements of the experimental protocol identical (i.e., the same hyperparameters, five-fold cross-
validation with 8000 and 2000 train and test images, respectively etc.), we test our proposed framework on the 
colon dataset80. The result (accuracy in %) obtained along with a comparison to state-of-the-art methods found 
in literature has been shown in Table 9. As evident from the empirical values, our model achieves a high accuracy 
of 99.99% , surpassing all prior state-of-the-arts81–84 on the said dataset by a significant margin, thus proving its 
applicability across CRC datasets.

Figure 9.   t−SNE visualization of (a) the snapshot fused features obtained from base model training and (b) the 
final feature subset obtained by the full framework.
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Furthermore, we have applied t−SNE79 on the features obtained by the proposed model on the colon dataset 
to visualize the embedding space in a 2D plot, depicted in Fig. 12. As expected, based on the near-perfect results 
obtained, the two classes are highly segregated apart without any overlap of samples. This qualitatively conforms 
to the empirical results reported in Table 9 and further justifies the robustness of our approach on generalizing 
to other dataset.

Figure 10.   Explanation of the Grad-CAM activation process.

Figure 11.   Grad-CAM activations obtained on some samples taken from the CRC dataset16 at different 
snapshots are shown. As can be seen, there is both redundancy as well as diversity among regions activated by 
the network, which qualitatively explains the benefit of snapshot ensembling and as well as need for FS.
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Conclusion
CRC accounts for more than 800 K deaths annually and is the third most common type of cancer diagnosed. 
The detection of CRC requires expert pathologists to classify each cell from histological slides of the colon. Such 
a tedious and expensive process hinders the population-wide screening and thus often the disease is diagnosed 
at a much later stage. Hence, Computer-Aided Detection frameworks are being developed for the automated 
and early diagnosis of the disease. In this research, we use a deep learning-based approach to detect CRC from 
histological slide images. Specifically, we apply an ensemble model for the disease prediction, where instead of 
fusing different base learners, we use one single CNN model and take model snapshots at different epochs and 
form an ensemble. This is computationally much cheaper than fusing two or more base learners since the training 
process is undergone only once. However, in literature, snapshot ensemble has been performed in other domains 
by fusing the decision scores obtained at the different checkpoints. In this research, we adopt a different approach, 
wherein we extract deep features from the penultimate FC layers of the MobileNet-V2 CNN model to form the 
ensemble. The extracted features from the different model snapshots are fused and binary PSO is employed to 
reduce the dimensionality of the feature space, eliminating the redundant features and for the final classification. 
We have obtained a feature reduction of 53.75% (592 features selected out of 1280), which implies that redundant 
information has been eliminated sufficiently from the fused feature space. The proposed framework applied on 
a publicly available CRC dataset16 outperforms state-of-the-art methods on the same, justifying the reliability of 
the model. Grad-CAM analysis on the different model snapshots provides for visual explainability of the pipeline 
and also shows that complementary information is supplied by the CNN model at those snapshots which are 
efficiently fused by the proposed learning process.

In this work, we have used the cosine annealing learning rate scheduler. In future, we may try other methods 
for the same. Also, for the FS stage, we may try improving the PSO algorithm by, for example, by adding local 
search methods or initializing with a guided population, etc. The developed framework is domain-independent, 
and thus may be applied to other image classification problems as well. In future, we may also try to perform 
segmentation on the histology images before classification, since an RoI localization may help the medical experts 

Table 9.   Comparison of accuracy scores attained by the proposed model against prior state-of-the-art 
methods on the colon dataset taken from the LC25000 dataset80. For the sake of convenience, we have included 
a one-liner description of each of the comparative methods.

Method Description Accuracy (%)

Liang et al.81 Multi-scale feature fusion with shearlet transform 96.00

Mangal et al.82 Shallow CNN 96.00

Qasim et al.83 Lightweight and fast CNN 99.60

Yildirim et al.84 A CNN variant 99.75

Proposed FS-aided snapshot ensemble 99.99 ± 0.002

Figure 12.   t−SNE visualization of features obtained by the proposed framework on the LC25000 Colon 
dataset80.
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to identify abnormalities in the cells more easily. As seen from the class-wise results obtained by the proposed 
framework in Fig. 6, relatively poor performance is obtained in some classes like the “Complex Stroma”. From 
the confusion matrices, it can be seen that some instances from this class are classified into “Simple Stroma” or 
“Immune Cells”. We may try to analyse and alleviate this problem in the future.

Data availability
No datasets are generated during the current study. The datasets analyzed during this work are made publicly 
available in this published article.

Code availability
Our source codes are publicly accessible at: https://​github.​com/​soumi​tri20​01/​SnapE​nsemFS.
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