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Temporal instability 
and differences in injury 
severity between restrained 
and unrestrained drivers 
in speeding‑related crashes
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Sajjakaj Jomnonkwao 3* & Vatanavongs Ratanavaraha 3

Upon detecting a crash impact, the vehicle restraint system locks the driver in place. However, 
external factors such as speeding, crash mechanisms, roadway attributes, vehicle type, and the 
surrounding environment typically contribute to the driver being jostled within the vehicle. As a 
result, it is crucial to model unrestrained and restrained drivers separately to reveal the true impact 
of the restraint system and other factors on driver injury severities. This paper aims to explore the 
differences in factors affecting injury severity for seatbelt‑restrained and unrestrained drivers involved 
in speeding‑related crashes while accounting for temporal instability in the investigation. Utilizing 
crash data from Thailand between 2012 and 2017, mixed logit models with heterogeneity in means 
and variances were employed to account for multi‑layered unobserved heterogeneity. For restrained 
drivers, the risk of fatal or severe crashes was positively associated with factors such as male drivers, 
alcohol influence, flush/barrier median roadways, sloped roadways, vans, running off the roadway 
without roadside guardrails, and nighttime on unlit or lit roads. For unrestrained drivers, the likelihood 
of fatal or severe injuries increased in crashes involving older drivers, alcohol influence, raised or 
depressed median roadways, four‑lane roadways, passenger cars, running off the roadway without 
roadside guardrails, and crashes occurring in rainy conditions. The out‑of‑sample prediction simulation 
results are particularly significant, as they show the maximum safety benefits achievable solely by 
using a vehicle’s seatbelt system. Likelihood ratio test and predictive comparison findings highlight 
the considerable combined impact of temporal instability and the non‑transferability of restrained 
and unrestrained driver injury severities across the periods studied. This finding also demonstrates a 
potential reduction in severe and fatal injury rates by simply replicating restrained driver conditions. 
The findings should be of value to policymakers, decision‑makers, and highway engineers when 
developing potential countermeasures to improve driver safety and reduce the frequency of severe 
and fatal speeding‑related single‑vehicle crashes.

Death and serious injuries due to roadway crashes remain a weighty concern for low and middle-income devel-
oping countries, where nine out of the ten dead victims are found. Compared to developing countries from the 
rest of the globe, Thailand was among the top ten countries with the highest fatalities rate due to road accidents, 
with an annual average death rate of 32 per 100,000 population between 2011 and 2016 and approximately 56 
deaths per day or over 20,000 people being killed in road accidents each  years1. According to the World Bank 
report, in 2016, the estimated cost of death and serious injuries due to road accidents in Thailand was $44.71 
billion which is equivalent to 10.9% of the country’s Gross Domestic Product (GDP)2. While speeding violation 
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is the main cause of the majority of crashes in Thailand, a high rate of unrestrained drivers (seatbelt) among 
drivers (42%) and front passengers (60%) remain the national public health  problems1.

According to the statistics from Thailand’s Department of Highway, single-vehicle run-off roadway crashes 
not only account for the highest frequency rate but also the highest number of fatalities, compared to other crash 
types such as rear-end, sideswipe, and head-on  crash3. Between 2012 to 2017, approximately 77% of these single-
vehicle crashes were caused by drivers exceeding the speed limit and were responsible for about 76% of the death 
and serious  injuries4. While unsafe speed is the cause of the majority of roadway crashes on road due to greater 
loss of vehicle control risk, the majority of these drivers may be intrinsically unsafe drivers. That is, evidently, 
61.8% of drivers involved in single-vehicle speeding-related crashes (between 2012 and 2017 in Thailand) were 
not restrained using a seatbelt when the crashes occurred. These drivers are the ones who are prone to death or 
serious injury in crashes due to their unsafe driving  habits5. Due to such significant impacts, investigations of 
crashes involving speeding and seatbelt violation are of considerable importance.

Speeding can cause numerous safety issues namely, a reduction in the effectiveness of occupant protection 
equipment (seatbelts, airbags, and crumple zones) and road safety structures (road friction, guardrail, and median 
divider), and an increase in stopping distance after the driver perceives danger and crash  severity6. The seatbelt 
is one part of the vehicle restraint systems (aside from airbag and crumple zones) that takes part in absorbing 
kinetic energy in collisions, thereby reducing the force involved and subsequently reducing the risk of death or 
serious injury in a crash. Upon sensing the impact generated by the collision, the vehicle’s seatbelt system is trig-
gered by locking the driver in place, preventing the driver from tumbling and hitting the objects in or outside of 
the vehicle, whereas other external factors such as speeding, crash mechanism, roadway attributes (e.g., curve or 
slope alignments), vehicle type, and surrounding environment all contribute to moving driver out of the driver’s 
seat and tumbling driver around inside or even outside the vehicle. Additionally, a combination of unrestrained 
driver and speeding behavior is found to be strongly associated with an increase in the probability of higher 
injury severities level in single-vehicle  crashes7. These facts suggest that single-vehicle crashes involving seatbelt 
restrained-driver and unrestrained-driver should be separately examined to uncover the true effect of the seatbelt 
restraint system and other associated risk factors on driver-injury severities, particularly speeding-related crashes.

Literature review
Review of previous single‑vehicle crash‑injury severity studies. Table 1 provides a review of previ-
ous research publications on single-vehicle crash-injury severity since 2010. A total of 52 studies were found 
and reviewed. As seen in Table 1, some earlier studies investigated the contributing factors to injury severity in 
single-vehicle crashes using aggregate crash  data7–15. In contrast, other research studies analyzed single-vehi-
cle crash-injury severities using disaggregated data; for example, crashes on divided/undivided urban  road16, 
crashes on rural/urban  roadways17, crashes involving unimpaired/alcohol-impaired/drug-impaired  drivers18, 
crashes with one-/two-/three-occupants19, riders/drivers of the  crashes20, crashes on 2-lane/4-lane  roadway21, 
crashes with difference light/weather  condition22, familiar/unfamiliar drivers of the  crashes23, passenger car/
SUV  crashes24, crashes under different weather  scenarios25, 26, fixed-object/overturn  crashes27, crashes on arte-
rial/ secondary/branch roadway 28, and crashes from different period (temporal instability)4, 29–34. However, 
none of the aforementioned literature investigated single-vehicle crashes using disaggregated data concerning 
restrained and unrestrained drivers, while also accounting for their speeding violation behavior in the crashes.

In terms of the methods employed in the previous studies listed in Table 1, it is evident that a broad array of 
methodological approaches has been adopted in research over the past decade. Nevertheless, the use of random 
parameters models (such as mixed logit or ordered models) has been the most popular, likely because of their 
flexibility in capturing the heterogeneous effects of risk factors across crash populations. This flexibility leads to 
improved prediction accuracy, better model fit, and more reliable  conclusions35. Additionally, Table 1 also showed 
that there are multiple variants of the random parameters model used for the single-vehicle crash-injury severity 
in the recent years, including random parameters model that allows for possible heterogeneity in  means9, 14, 19, 
random thresholds random parameters hierarchical ordered probit  model36, 37, correlated random parameters 
with heterogeneity in  means32, 38, and random parameters model that allows both heterogeneity in means and 
 variances4, 32–34, 39, 40.

Review of the effect of speeding and seatbelt on the injury severity. While numerous empirical 
studies have explored the impact of speeding (as an explanatory variable) on crash injury  severities9, 20, 42, 59–62, 
only a few have examined the effect of speeding violations at a disaggregated level. Renski et al.63 investigated 
the influence of speed limit increases on crash injury severity in single-vehicle crashes, using indicators for road 
segments with speed limit changes from 88.5 to 96.6 kph, 88.5 to 104.6 kph, and 104.6 to 112.7 kph as part of 
the explanatory variables in their statistical model. On the other hand, Alnawmasi and Mannering 40 examined 
the consequences of higher speed limits on the frequency and severity of freeway crashes, using data from 
before and after speed limit increases separately. They discovered that the factors affecting driver-injury severi-
ties had changed before and after the speed limit increase in one- and two-vehicle crashes. In another study, 
the temporal instability of contributing factors between speeding-related and non-speeding-related crashes was 
investigated, revealing significant differences between the influencing factors of both  models4. Although using 
excessive speeding as explanatory variable, Abegaz et al.61 identified varying coefficients for speeding’s impact on 
different injury levels, with the most significant effects on severe and fatal crashes. Focusing on speeding-related 
rural crashes, Yan et al.38 studied rural overturned and hit-fixed-object crashes and found temporal shifts and 
non-transferability between these two types of crashes.

On the other hand, the effect vehicle’s seatbelt restraint system on the crash injury severity was also exten-
sively explored in the previous studies and found positive safety effect of seatbelt on the outcome severity of the 
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Paper Type of data aggregation/disaggregation Methodologies

Heterogeneity/transferability/
temporal instability/predictive 
comparison

Jung et al.41 Single-vehicle crashes in rainy weather Polychotomous response model (None)

Rifaat et al.42 Urban neighborhood single-vehicle crashes Logistic regression model (None)

Chen and Chen 43 Truck drivers of single-/multi-vehicle crash Mixed logit model Heterogeneity

Xie et al.44 Rural single-vehicle crashes Latent class logit and Mixed logit model Heterogeneity

Bham et al.16
Single-vehicle crashes on divided/undivided 
urban
highways

Generalized logistic regression model Transferability

Jiang et al.8 Overall single-vehicle crashes Zero-inflated ordered probit models (None)

Kim et al.9 Overall single-vehicle crashes Mixed logit model with heterogeneity in means Heterogeneity

Dissanayake and Roy 10 Overall single-vehicle crashes Binary logit model (None)

Xiong et al.11 Overall single-vehicle crashes A Markov switching approach with road-
segment heterogeneity Heterogeneity

Weiss et al.45 Young drivers of single-/two-vehicle crashes Mixed logit model Heterogeneity

Wang and Qin 46 Overall single-vehicle crashes Structural Equation Modeling (None)

Wu et al.47 Drivers of single-/multi-vehicle crashes on 
rural two-lane highways Mixed logit model Heterogeneity,

Transferability

Behnood and  Mannering29 Yearly data from 2004–2012 of single-vehicle 
crashes Mixed logit model

Heterogeneity,
Transferability,
Temporal instability

Lee and  Li48 Drivers of single-/two-vehicle crashes Boosted regression trees (None)

Naik et al.49 Truck-involved single-vehicle crashes Mixed ordered model and Mixed logit model Heterogeneity

Wu et al.17 Rural/Urban roadways single-vehicle crashes Nested logit model and Mixed logit model Heterogeneity,
Transferability

Anarkooli et al.12 Overall single-vehicle crashes Random-effects generalized ordered probit 
model Heterogeneity

Behnood and  Mannering18 Unimpaired/Alcohol-impaired/Drug-
impaired drivers of single-vehicle crashes Mixed logit model Heterogeneity,

Transferability

Behnood and  Mannering19 One-occupant/two-occupants/three-occu-
pants of single-vehicle crashes Mixed logit model with heterogeneity in means Heterogeneity,

Transferability

Li et al.50 Low-visibility single-vehicle crashes Finite mixture random parameters model Heterogeneity

Osman et al.51 Commercially-licensed drivers of single-
vehicle crashes

Mixed generalized ordered response probit 
model Heterogeneity

Li et al.13 Overall single-vehicle crashes Finite mixture random parameters model Heterogeneity

Hou et al.14 Overall single-vehicle crashes Mixed logit model with heterogeneity in means Heterogeneity

Yu et al.15 Overall single-vehicle crashes Latent class random parameters model Heterogeneity,
Temporal instability

Dabbour et al.30 Yearly data from 2007–2013 of single-vehicle 
crashes Mixed ordered model Heterogeneity,

Temporal instability

Zhou and  Chin20 Riders/drivers of single-vehicle crashes Ordered probit model Transferability

Se et al.21 2-lanes/4-lanes roadway single-vehicle crashes Multinomial logit model Transferability

Fountas et al.22
Daylight/darkness,
Lighted/unlighted roadways,
Fine/poor weather, of single-vehicle crashes

Zero-inflated hierarchical
ordered probit approach with correlated 
disturbances

Heterogeneity,
Transferability

Wen and  Xue23 Familiar/unfamiliar drivers in single-vehicle 
crashes on mountainous highways

Random-effects generalized ordered probit 
models

Heterogeneity,
Transferability

Rahimi et al.36 Truck-involved single-vehicle crashes Random thresholds random parameters hierar-
chical ordered probit model Heterogeneity

Khan and  Vachal7 Overall single-vehicle crashes Generalized ordered logit model (None)

Chen et al.52 Rural highway single-vehicle crashes Latent class binary logistic regression model Heterogeneity

Se et al.53 Overall single-vehicle crashes Multinomial logit model (None)

Wen et al.24 Passenger car/SUV rollover single-vehicle 
crashes Mixed ordered logit model Heterogeneity,

Transferability

Yu et al.25
Yearly data from 2010–2016 of Single-vehicle 
crashes under Clean/overcast/raining/fog/
crosswind/blowing sand weather types

Mixed logit model Heterogeneity,
Temporal instability

Yu et al.31 2014/2015/2016–2017 single-vehicle crashes Random thresholds random parameters hierar-
chical ordered probit

Heterogeneity,
Transferability,
Temporal instability

Yu et al.54 Yearly data from 2010–2016 of single-vehicle 
crashes

Fusion convolutional neural network with 
random term

Heterogeneity,
Temporal instability

Se et al.32 Yearly data from 2011–2017 of single-vehicle 
crashes

Correlated random parameters model with 
heterogeneity in means and variances

Heterogeneity,
Transferability,
Temporal instability

Continued



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9756  | https://doi.org/10.1038/s41598-023-36906-7

www.nature.com/scientificreports/

crashes while using it as an explanatory  variable4, 17, 44, 64. Only a few studies have hypothesized and proved that 
the effect of seatbelt use status may not be exogeneous, but may be endogenous to crash-related injury  severity5, 

65. Interestingly, Eluru and Bhat 5 found that safety-conscious drivers are more likely to wear seat belts, and their 
defensive habits also lead to less severe injuries when they are involved in crashes, whereas, Abay et al.65’s finding 
revealed that belted drivers offset the safety benefits that accrue from using a seat belt by driving more aggres-
sively. In another study, Shimamura et al.66 focuses on the tendency of front seat occupants to sustain severer 
injuries due to forward movement of passengers in rear seats at the moment of car-to-car frontal collisions, and 
evaluates the effectiveness of rear passengers’ wearing seat belts in reducing injuries of front seat occupants. 
They found that the number of killed or seriously injured passengers in front seats was estimated to decrease by 
28% if unbelted rear seat occupants come to wear seat belts. Additionally, only one study by Abu-Zidan et al.67 
examined the effects of seatbelt usage on injury patterns and outcomes for restrained vehicle occupants compared 
to unrestrained occupants using Chi-square tests. Their results indicated that injury scores for the thorax, back, 
and lower extremity were significantly higher in unrestrained patients than in restrained patients.

Research gap and contributions of the current study. Table 1 also shows that some recent single-
vehicle crash-injury severity studies have investigated heterogeneity, transferability, and temporal instability, 
as well as undertaken predictive  comparisons34, 38, 40. However, none of them have focused on speeding-related 
crashes among seatbelt-restrained and unrestrained drivers, respectively. Therefore, based on the thorough 
reviews mentioned above, the current study is among the first of its kind to identify the unobserved heteroge-
neity, transferability, and temporal instability of contributing factors (including driver characteristics, roadway 
attributes, vehicle types, crash characteristics, and environmental characteristics) related to speeding-related 
single-vehicle crashes among seatbelt-restrained and unrestrained drivers, respectively. In addition, this study is 
the first to conduct a predictive comparison between within-sample and out-of-sample predictions to observe 
the aggregate effects of temporal shifts in speeding-related crashes for both types of drivers, as well as the aggre-
gate differences in injury severity probability among restrained and unrestrained drivers.

In this regard, the current study’s concept is novel as it offers four distinct contributions: (1) disaggregat-
ing the overall single-vehicle speeding-related crashes by seatbelt restraint system use status and providing an 
explicit understanding of whether the determinants of speeding-related crashes are transferable across restrained 
and unrestrained drivers; (2) examining the temporal instability of speeding-related crashes for restrained and 

Paper Type of data aggregation/disaggregation Methodologies

Heterogeneity/transferability/
temporal instability/predictive 
comparison

Roque et al.27 Fixed object/overturn single-vehicle crashes Mixed logit model Heterogeneity,
Transferability

Yan et al.55 Overall single-vehicle crashes Tree-based models and non-Tree-based models (None)

Hosseinpour and Haleem 56 Large truck-involved single-vehicle crashes Mixed ordered probit model Heterogeneity

Wei et al.26 Foggy weather/clear weather single-vehicle 
crashes Mixed logit model Heterogeneity,

Transferability

Se et al.4
2012–2013/2014–2015/2016–2017 single-
vehicle crashes involving non-speeding/
speeding-related crashes

Random parameters model with heterogeneity 
in means and variances

Heterogeneity,
Transferability,
Temporal instability

Yan et al.33
Rural single-vehicle crashes involving alcohol-
impaired driving, and yearly data from 
2014–2018

Random parameters model with heterogeneity 
in means and variances

Heterogeneity,
Transferability,
Temporal instability

Islam et al.39 Truck-involved single-vehicle crashes on 
curved segments/ straight segments

Random parameters model with heterogeneity 
in means and variances

Heterogeneity,
Transferability

Yu and  Long37 Rollover single-vehicle crashes Random thresholds random parameters hierar-
chical ordered logit model Heterogeneity

Yan et al.38
Overturned and hit-fixed-object crash on rural 
road by speeding driving, and yearly data 
from 2015 to 2018

Correlated random parameters model with 
heterogeneity in means

Heterogeneity,
Transferability,
Temporal instability
Predictive comparison

Alnawmasi and Mannering 40 Single-/two-vehicle crash, and yearly data from 
2009–2013 separately

Random parameters model with heterogeneity 
in means and variances

Heterogeneity,
Transferability,
Temporal instability
Predictive comparison

Ma et al.57 Overall single-/multi-vehicle crashes Partial proportional odds model Heterogeneity,
Transferability

Yan et al.34
Nighttime single-vehicle crashes considering 
young drivers/ Middle-age drivers/ Old driv-
ers, and yearly data from 2014–2017 separately

Random parameters model with heterogeneity 
in means and variances

Heterogeneity,
Transferability,
Temporal instability
Predictive comparison

Cai and Wei 58 Overall single-vehicle crashes Bayesian random parameters multinomial 
model Heterogeneity

Cai and Wu 28 Arterial/Secondary/Branch roadway single-
vehicle crashes

Spatiotemporal interaction logit (STI-logit) 
model

Heterogeneity,
Transferability

Table 1.  A review of methodologies, research target/sub target and problems addressed for previous studies 
on single-vehicle crash-injury severity analysis since 2010.
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unrestrained drivers, respectively; (3) investigating the differences and potential heterogeneity in multiple deter-
minants affecting speeding-related crashes across restrained and unrestrained drivers; (4) disentangling the 
predictive differences resulting from temporal instability and seatbelt use status differences. By incorporating 
these aspects, this paper enhances the understanding of the role of seatbelt usage in the progression of speeding-
related crash injury severities over time and provides valuable insights for practitioners and policymakers in 
developing targeted interventions and strategies to reduce speeding-related crash severities for drivers with 
diverse seatbelt usage behaviors.

Empirical setting. This research study was conducted using the highway run-off-road single-vehicle crash 
dataset extracted from the Highway Accident Information Management System, Department of Highway 
(DOH), Thailand. The present study focused on and analyzed single-vehicle crashes related to speeding. As per 
the DOH, a crash is classified as speeding-related if the police officer determines that the driver’s violation of the 
speed limit was the primary cause of the crashes. Similarly, according to Liu and  Chen68 and  NHTSA69, crashes 
are considered speeding-related when the involved driver is cited for an offense related to speeding, engaging 
in a race, driving at an inappropriate speed for the prevailing conditions, or surpassing the posted speed limit. 
The timeline of the crash dataset was from January 1st, 2012 to December 31st, 2017. There was a total of 6837 
speeding-related single-vehicle crash cases. 4223 or 61.8% of the drivers were unrestrained with a seatbelt when 
the crash happened, whereas only 2614 or 38.2% of the drivers were restrained. In terms of injury severity distri-
bution, unrestrained drivers resulted in 14% fatalities and 14.4% severe injuries. As expected, restrained drivers 
resulted in only 10.8% fatalities and 14 severe injuries.

In the original crash data from DOH 70, the police office employed a three-level injury severity scale for all 
crash records, which included minor injury (covering both minor injuries and property damage only (PDO) 
crashes), severe injury (involving drivers hospitalized for over three weeks), and fatal injury (drivers killed at 
the crash scene or at the hospital). Consequently, this study also considered three levels of driver injury severi-
ties: minor injury, severe injury, and fatal injury. The explanatory variables extracted from the original dataset 
can be classified into five categories: driver characteristics (gender, driver age, and DUI (drivers under influence 
of alcohol)), road characteristics (median type, number of lanes, work zone, pavement types, road alignment, 
intersection, and U-turn), vehicle types (van, passenger car, pick-up truck, and large truck), crash characteristics 
(run-of-road with/without hitting the guardrail, mounting traffic island), and environmental and temporal char-
acteristic (nighttime, unlit road, lit road, weekend, morning peak-hour, and evening peak-hour). The presence 
of multicollinearity within the dataset was assessed by examining the Pearson correlation coefficients for the 
independent variables. Most pairs had a correlation value below 0.7, suggesting that multicollinearity was not 
an  issue71, 72. However, the pairs [two-lane, four-lane], [curve; RORCG], [passenger car; pick-up car], and [wet 
road; raining] displayed correlations greater than 0.7. Consequently, the indicators for two-lane, curved roads, 
pick-up cars, and wet roads were removed to address the multicollinearity concerns.

In this research, three distinct timeframes are identified, specifically 2012–2013, 2014–2015, and 2016–2017. 
This categorization was derived from the outcomes of the temporal instability test (refer to the subsequent 
section), which indicates that the biennial groupings exhibit strong temporal fluctuations. This classification 
approach not only guarantees that volatility is not overlooked due to the aggregation of time but also helps 
prevent the problem of inadequate data that may arise from shorter  durations73. Based on the examination 
of the temporal features, the entire dataset is divided into six subsets: restrained drivers from 2012 to 2013, 
unrestrained drivers from 2012 to 2013, restrained drivers from 2014 to 2015, unrestrained drivers from 2014 
to 2015, restrained drivers from 2016 to 2017, and unrestrained drivers from 2016 to 2017. Table 2 presents the 
descriptive statistics and frequencies for all explanatory variables utilized in the analysis

Methodology
Unobserved heterogeneity and crash severity study. Mannering et  al.35 have provided plausible 
evidence for why the effect of the considered risk factors may vary across the observation. That is, data col-
lected for the analysis can never be complete. For example, in terms of human characteristic attributes, the crash 
data may differentiate the gender differences of the victims from each crash, while there are several pieces of 
unknown information to the analyst that may have great variation across victims with the same gender such as 
height, weight and reaction times or risk-taking behaviors of the same gender with different ages. Therefore, the 
assumption that all the male victims, compared to females, are more likely to sustain a particular injury severity 
(an assumption that all male observations have a fixed effect on injury outcomes probability) could create biased 
results or incomplete conclusions. An evident example can be seen in the finding of the previous studies. Xin 
et al.74 found that 53.4% of the male occupant were less likely to sustain serious injury, whereas only 46.6% of 
the male victims were having a higher risk of severe injuries. Similarly, Se et al.75 also discovered that 57.1% of 
male drivers had a higher risk of being killed in the crashes, whereas 42.9% of them were more likely to sustain a 
minor or severe injury in the crash. While male victims may have higher injury  tolerance76, a significant cohort 
of them may also have risk-seeking driving or riding behaviors than  female77, illustrating a great variance of 
physiological characteristics and safety and risk awareness among male victims of the  crashes74, 75.

Not only human elements, but attributes related to vehicle, roadway, traffic, environment, and temporal char-
acteristics also have great variability across the  crashes35. As can be seen in the Table 1, to account for unobserved 
heterogeneity, the application of the random parameter (mixed) model and it’s multiple variants, particularly 
the model extension that allow for means and variances heterogeneity has been adopted in numerous recent 
insightful articles such as Alogaili and  Mannering78, Wang et al.79, Yan et al.38, Alnawmasi and  Mannering40, 
Se et al.80, Yan et al.34, Wang et al.81, Islam et al.82, Behnood and  Mannering83, and Hou et al.84. The random 
parameters model with heterogeneity in means and variance was found to be superior than standard random 
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parameters model in crash-injury severity analysis due to its’ the great flexibility in capturing a greater extent of 
underlying unobserved characteristics, more precise predictions, and better model  fit80, 84–87. Considering three 
levels of driver-injury severity outcomes—minor injury, severe injury and fatal injury—this study extensively 
considered the mixed logit model with heterogeneity in means and variances.

Table 2.  Descriptive statistics of the significant explanatory variables.

Variables

2012–2013 2014–2015 2016–2017

Restrained Unrestrained Restrained Unrestrained Restrained Unrestrained

Dependent Variable: Injury severities Count(%) Count(%) Count(%) Count(%) Count(%) Count(%)

Minor injury 583(75.42) 887(72.23) 759(75.98) 1141(70.96) 622(73.87) 996(71.81)

Severe injury 108(13.97) 181(14.74) 143(14.31) 231(14.37) 115(13.66) 197(14.20)

Fatal injury 82(10.61) 160(13.03) 97(9.71) 236(14.68) 105(12.47) 194(13.99)

Independent variables Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Young 1 = Age less than 26 years old; 0 = Oth-
erwise 0.095(0.294) 0.096(0.294) 0.239(0.426) 0.271(0.445) 0.193(0.395) 0.203(0.402)

Old 1 = Age more than 49 years old; 
0 = Otherwise 0.165(0.371) 0.153(0.360) 0.185(0.388) 0.178(0.383) 0.175(0.380) 0.193(0.395)

Male 1 = Male driver; 0 = Otherwise 0.857(0.349) 0.879(0.325) 0.882(0.321) 0.860(0.347) 0.880(0.325) 0.888(0.314)

Alcohol 1 = Driver under the influence of alco-
hol; 0 = Otherwise 0.015(0.123) 0.005(0.075) 0.013(0.113) 0.006(0.082) 0.011(0.108) 0.005(0.070)

Flush median 1 = Crash on a flush-median road; 
0 = Otherwise 0.023(0.150) 0.046(0.210) 0.047(0.211) 0.060(0.238) 0.043(0.205) 0.056(0.230)

Raised median 1 = Crash on a raised-median road; 
0 = Otherwise 0.269(0.443) 0.285(0.451) 0.259(0.438) 0.253(0.435) 0.245(0.430) 0.245(0.430)

Depressed median 1 = Crash on a depressed-median road; 
0 = Otherwise 0.406(0.491) 0.328(0.470) 0.346(0.476) 0.335(0.472) 0.350(0.477) 0.369(0.482)

Barrier median 1 = Crash on a barrier-median road; 
0 = Otherwise 0.029(0.170) 0.027(0.164) 0.047(0.211) 0.044(0.205) 0.080(0.272) 0.040(0.196)

Four-lane 1 = Crash on a four-lane road; 0 = Oth-
erwise 0.645(0.478) 0.570(0.495) 0.648(0.477) 0.588(0.492) 0.654(0.475) 0.587(0.492)

Work zone 1 = Crash on work zone area; 0 = Oth-
erwise 0.025(0.158) 0.019(0.138) 0.019(0.136) 0.019(0.139) 0.027(0.163) 0.021(0.145)

Asphalt 1 = Crash on asphalt pavement; 0 = Oth-
erwise 0.941(0.234) 0.904(0.293) 0.946(0.224) 0.912(0.282) 0.939(0.238) 0.918(0.273)

Curve 1 = Crash on curve road; 0 = Otherwise 0.302(0.459) 0.289(0.453) 0.359(0.480) 0.285(0.451) 0.334(0.472) 0.298(0.457)

Slope 1 = Crash on sloping road; 0 = Other-
wise 0.107(0.309) 0.107(0.309) 0.126(0.332) 0.086(0.281) 0.118(0.323) 0.090(0.287)

Intersection 1 = Crash at intersection area; 0 = Oth-
erwise 0.065(0.248) 0.066(0.249) 0.073(0.260) 0.067(0.251) 0.055(0.229) 0.062(0.241)

U-turn 1 = Crash at U-turn area; 0 = Otherwise 0.107(0.309) 0.101(0.302) 0.089(0.285) 0.071(0.257) 0.083(0.276) 0.079(0.270)

Van 1 = Van; 0 = Otherwise 0.019(0.138) 0.017(0.129) 0.017(0.129) 0.020(0.141) 0.024(0.156) 0.020(0.140)

Passenger car 1 = Passenger car; 0 = Otherwise 0.376(0.484) 0.352(0.477) 0.376(0.484) 0.356(0.479) 0.378(0.485) 0.354(0.478)

Truck 1 = Vehicle is large truck; 0 = Otherwise 0.112(0.316) 0.131(0.338) 0.129(0.335) 0.120(0.325) 0.111(0.315) 0.136(0.343)

RORS 1 = Vehicle runs off-road on straight; 
0 = Otherwise 0.111(0.314) 0.110(0.313) 0.106(0.308) 0.130(0.337) 0.142(0.349) 0.115(0.319)

RORSG 1 = Vehicle runs off-road on straight and 
hit guardrail; 0 = Otherwise 0.341(0.474) 0.315(0.464) 0.323(0.467) 0.318(0.466) 0.334(0.472) 0.333(0.471)

RORC 1 = Vehicle runs off-road on a curve; 
0 = Otherwise 0.056(0.231) 0.063(0.243) 0.070(0.255) 0.065(0.248) 0.059(0.236) 0.054(0.227)

RORCG 1 = Vehicle runs off the road on a curve 
and hit guardrail; 0 = Otherwise 0.206(0.405) 0.168(0.374) 0.253(0.435) 0.190(0.393) 0.247(0.431) 0.206(0.404)

MTI 1 = Vehicle mounts traffic island; 
0 = Otherwise 0.249(0.433) 0.298(0.457) 0.209(0.406) 0.242(0.428) 0.186(0.389) 0.257(0.437)

Raining 1 = Raining; O = Otherwise 0.249(0.433) 0.223(0.417) 0.239(0.426) 0.228(0.419) 0.289(0.453) 0.231(0.421)

Unlit road 1 = Crash at night on an unlit road; 
0 = Otherwise 0.130(0.337) 0.139(0.346) 0.105(0.306) 0.115(0.319) 0.100(0.301) 0.082(0.275)

Lit road 1 = Crash at night on a lit road; 0 = Oth-
erwise 0.368(0.482) 0.330(0.470) 0.368(0.482) 0.365(0.481) 0.342(0.474) 0.390(0.487)

Weekend 1 = Weekend; 0 = Otherwise 0.284(0.451) 0.302(0.459) 0.333(0.471) 0.297(0.457) 0.307(0.461) 0.307(0.461)

Morning peak hour 1 = Morning peak hour (7:00–9:30); 
0 = Otherwise 0.085(0.279) 0.060(0.238) 0.066(0.248) 0.080(0.272) 0.072(0.259) 0.089(0.285)

Evening peak hour 1 = Evening peak hour (16:00–19:30); 
0 = Otherwise 0.107(0.309) 0.103(0.304) 0.152(0.359) 0.121(0.326) 0.141(0.348) 0.117(0.322)
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Model development framework. As indicated earlier, the mixed logit model with heterogeneity in 
means and variances is used in this study. Theoretically, we need to first define a severity function Yin which 
determines the probability that crash i will result in injury-severity level n as  follow88:

where  αn  is a constant specific to injury-severity n (with one of them set to zero for identification), β i is a vector 
of regression coefficients, Xin is a vector of exogenous attributes (such as driver-, roadway-, vehicle-, crash-, and 
environmental characteristics) specific to crash i and injury-severity level n, and εin is an error term.

To overcome the strict limitation of the multinomial logit model, the mixed logit relaxes the assumption 
of the logit model by allowing the parameter coefficients to vary across observations by introducing a mixing 
distribution. In this study, all the parameters (one at a time) were tested by allowing them to vary across crash 
observations. If the standard deviation of the tested parameter is not statistically significant (i.e., variance or 
scale parameter is zero)75, 89, then the parameter was not random and the factor would set back to have the same 
effect across all observation. If the standard deviation is statistically significant, then parameter was a random 
parameter and its’ parameter coefficient also significantly varied across observation. If none of parameters pro-
duce significant standard deviation, the model is fall back to be a standard multinomial logit model. Additionally, 
the injury-severity probability function of the mixed logit model is defined as  follows88:

where all other parameters are previously defined, Pi(n) denotes a probability of driver sustaining injury severity 
n in crash i, and f (β|ρ) is a density function of β with ρ being the vector of parameters of the density func-
tion (mean and variance). Various analyst-specified distribution types were used including standard normal, 
triangular, standard uniform, and lognormal. The final model was selected by comparing the model fit of each 
utilized distribution.

In the mixed logit model, a variable is referred to as a fixed parameter if the parameter does not vary across 
observation. If it does vary across observations, it will be regarded as a random parameter (i.e., having a sig-
nificant standard deviation). Additionally, Seraneeprakarn et al.86 suggested that specific crash-level and/or 
segment-level attributes might affect the mean of a parameter that differs across observations, commonly known 
as random parameters. Moreover, examining how heterogeneity impacts the variance of a random-parameter 
distribution, which ultimately establishes parameter values for individual observations, could be a significant 
consideration. By allowing the variance in the parameter distribution to further delineate the dispersion of 
parameter values across observations, this method offers more flexibility in capturing the hidden unobserved 
heterogeneity, potentially enabling greater sensitivity to crash  conditions35, 86. Consequently, this approach may 
yield deeper understanding of controllable factors for crash injury-reduction strategies. On the other hand, 
employing a mere simple distribution to describe the random parameter mean and variance, as is usually done 
in random parameters models, might not adequately represent the inherent unobserved heterogeneity. In this 
regard, the model can be more flexible in uncovering the unobserved heterogeneity by allowing the interaction 
effect between non-random parameters with the mean and variance of the random parameters on the injury-
severity probability. Following the previous  studies32, 80, 83, 84, 86, let β in be a vector of estimable parameters that 
vary across crash observations, which is derived as:

where βn is a mean parameter estimateed across all  crashes90, 91, Min denotes a vector of the variables that cap-
ture heterogeneity in the mean that influences injury severity n, with parameter vector �in

86, SDin is a vector of 
variables that captures heterogeneity in the standard deviation σin with the corresponding vector ωin

86, and νin 
is a disturbance term.

The structure presented in Eq. (3) enables two distinct attribute vectors ( Min and SDin ) to influence the 
parameter values that vary across observations (i.e., random parameter)86. The vectors Min and SDin may encom-
pass attributes related to driver, roadway, vehicle, crash, environmental characteristics, or other potential het-
erogeneity sources. If no variables prove significant SDin , the model is a heterogeneity in means only model. 
Meanwhile, any unobserved heterogeneity not depicted in the form of Min and SDin results in a mixed logit model 
without heterogeneity in either means or variances. In this paper, the model estimations were analyzed using a 
simulated maximum likelihood approach and 1000 Halton draws were found to produce sufficient integration 
of parameter accuracy and stability.

Model interpretation. As in recent crash-injury severity  studies38, 78, 80, 92, the marginal effect is commonly 
used to interpret the effect of the explanatory variable on the outcome injury severity of the crashes. Theoreti-
cally, the marginal effect is the changes in outcome (injury severity) probabilities due to one specific explana-
tory variable changing the value from 0 to 1 (for binary explanatory variable), while holding other variables 
unchanged. The average marginal effect over sample observation can be computed  as84, 93:

(1)Yin = αn + β iXin + εin

(2)Pi(n) =

∫

eαn+(β iX in)

∑

m eαm+(β iX im)
f (β|ρ)dβ ,

(3)β in = βn +�inMin + σinEXP(ωinSDin)νin

(4)ME
Pi(n)
Xi

=
1

m

m
∑

j=1

[Pi(n)|
(

Xij = 1
)

− Pi(n)|
(

Xij = 0
)

]
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where  ME
Pi(n)
Xi

 is the average marginal effect of the explanatory variable Xi and Xij denotes any specific explana-

tory variable of the observation j.
In this study, the Econometric Software NLOGIT Version 6.0 was utilized to run the model estimation.

Likelihood ratio test and temporal instability test. Prior to presenting the model results for both 
unrestrained and restrained driver-injury severity for each period, the paper conducted a series of tests to deter-
mine whether the parameter estimates of the restrained driver model are statistically and significantly different 
from the unrestrained model in each period considered in this study, and to test whether the parameter esti-
mates in restrained and unrestrained driver models are temporally stable or not. To accomplish this, the likeli-
hood ratio test is commonly used 84, 88. This test is conducted to either accept or reject the following hypothesis:

H01: In each period, the impacts of parameter estimates are the same between restrained driver-injury and 
unrestrained driver-injury in speeding-related single-vehicle crashes.
H02: The impacts of parameter estimates for restrained driver-injury or unrestrained driver-injury in 
speeding-related single-vehicle crashes are temporally stable from one period to the next.

This study used pairwise comparison instead of a global test across all data because it provides direct insight 
into  variability84. Suppose A and B are two distinct models using two distinct sub-datasets A and B , respectively. 
According to the previous crash-injury  studies34, 38, 80, 84, 94, the Chi-square test to compare between two model 
can be computed as follow:

where χ2 is a Chi-square, LL(βBA) is a log-likelihood at convergence of the model that used the converged and 
statistically significant parameters estimated from the B model to analyze dataset of  A84, 88, and LL(βA) is a log-
likelihood at convergence of the model using the same A subgroup of data, with the same variables as is the 
case for LL(βBA) but their parameters (regardless of their statistical significance) are no longer restricted to the 
converged parameters of subgroup  B84, 88.

To establish the significance level or confidence level, the resulting χ2 distributed with a degree of freedom 
(equal to the number of significant variables that were used to find LL(βBA) ) is  used29, 34. Table 3 displays the 
transferability test results between the models for restrained and unrestrained drivers across each time period. 
As evident from Table 3, all six paired tests demonstrate a relatively high confidence level (over 99%) to refute the 
initial null hypothesis, stating that the impact of parameter estimates is consistent between restrained and unre-
strained driver models for each period. Additionally, Table 4 presents the outcomes of temporal instability tests 
for every period pair of restrained and unrestrained driver models. Among the 12 tests, only one (A = 2012–2013 
restrained driver model, B = 2016–2017 restrained driver model) displays a comparatively low confidence level. 
Nevertheless, the reversed χ2 value of this test (B = 2012–2013 restrained driver model, A = 2016–2017 restrained 
driver model) successfully rejects the null hypothesis with a high confidence level (over 99%), confirming tempo-
ral instability. All other paired tests exhibit confidence levels above 99% to dismiss the null hypothesis, suggesting 
that the impacts of parameter estimates for restrained or unrestrained driver injuries in speeding-related single-
vehicle accidents are not temporally stable throughout the examined period. Consequently, it is essential to divide 
the entire dataset based on the drivers’ seatbelt usage status and distinct timeframes (i.e., 2012–2013, 2014–2015, 
and 2016–2017) to investigate the factors influencing injury severity in speeding-related single-vehicle crashes.

(5)χ2 = −2[LL(βBA)− LL(βA)],

Table 3.  Transferability test results between restrained and unrestrained-driver injury severity models.

A = Restrained driver model Unrestrained driver model

B = Unrestrained driver model Restrained driver model

2012–2013 29.52 (10) [99.89%] 48.61 (9) [99.99%]

2014–2015 55.76 (12) [99.99%] 61.94 (9) [99.99%]

2016–2017 102 (12) [99.99%] 34.45 (14) [99.82%]

Table 4.  Temporal stability test results of restrained and unrestrained-driver injury severity models.

A/B

Restraint driver model Unrestraint driver model

2012–2013 2014–2015 2016–2017 2012–2013 2014–2015 2016–2017

2012–2013 – 30.48 (9) [99.99%] 17.16 (14) [75.25%] – 39.53 (12) [99.99%] 67.83 (12) [99.99%]

2014–2015 53.08 (9) [99.99%] – 41.57 (14) [99.98%] 48.19 (10) [99.99%] – 101.41 (12) 
[99.99%]

2016–2017 73.91 (9) [99.99%] 69.69 (9) [99.99%] – 51.59 (10) [99.99%] 43.89 (12) [99.99%] –
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Results and discussions
In this study, four distinct parameter density functions are pre-specified, as indicated in Eq. (2), which encom-
pass normal, triangular, uniform, and lognormal distributions. Table 5 illustrates the comparison results of the 
estimated models with varying distribution assumptions. This table reveals that five individual models generated 
one random parameter with four random distributions. Furthermore, it demonstrates that the log-likelihood 
function and AIC at convergence for the mixed logit model with a normal distribution are marginally superior 
to those employing triangular, uniform, and lognormal distributions. In comparison to other distributions, the 
normal distribution excels at capturing the central tendency and variations of random variables concerning 
driver injury severity probability 25, 47.

The model results for restrained and unrestrained driver-injury models by periods are presented in Tables 6 
and 7, respectively. Moreover, the summary of marginal effects of significant factors for restrained and unre-
strained driver-injury models is shown in Tables 8 and 9, respectively. Out of the six models, only the 2012–2013 
unrestrained driver model did not produce statistically significant random parameters, leading the model to 
revert to the standard multinomial logit model. The other five models produced random parameters with hetero-
geneity in means, while only the 2014–2015 unrestrained driver model displayed heterogeneity in variance. All 
models exhibited relatively high McFadden Pseudo  R2 values (>0.3), which are considered acceptable compared 
to existing research 84, 95. The following subsections provide a discussion of the results based on the average 
marginal effect and the coefficient (in the case of random parameters). All parameters presented in the tables 
have a significance level of 0.1 or lower (indicated by the t-Stat), as this level is considered relatively important 
to the outcome of injury-severity  probabilities32.

Driver‑related variables. It is well established in the literature that age serves as a proxy for the physiologi-
cal and behavioral characteristics of drivers that are likely to statistically influence crash severity 35, 83. In this 
study, two driver age groups were utilized: young drivers (aged under 26 years old) and old drivers (aged over 
49 years old). As seen in Table 7, the variable reflecting young drivers was found to be statistically significant 
in the 2016–2017 unrestrained driver model, with the marginal effect showing a higher likelihood of minor 
injury (0.0188) and lower likelihood of severe and fatal injuries (−0.0100 and −0.0087, respectively). Conversely, 
the variable representing old drivers was found to be a significant factor in the 2012–2013 unrestrained driver 
model, with the marginal effect indicating a higher likelihood of fatal injury (0.0095) and lower likelihood of 
other severity levels. This finding is intuitive since older drivers may have weaker physiques (lower injury toler-
ances) and weaker visual acuity, as well as possibly slower reaction times to avoid crashes compared to younger 
drivers 74, 96.

In terms of indirect effects, the indicator for old drivers was found to decrease the mean of the variable reflect-
ing crashes on four-lane roadways (random parameter) in the 2016–2017 restrained driver model. In simpler 
terms, even while wearing seatbelts, old drivers involved in speeding-related crashes on four-lane roads are less 
likely to experience minor injuries and more likely to suffer severe and fatal injuries. Similarly, in the 2016–2017 
unrestrained driver model, the indicator for young drivers was found to decrease the mean of the variable reflect-
ing crashes on roads with asphalt pavement (random parameter), making minor injuries less likely and severe 
or fatal injuries more likely. Furthermore, in the 2014–2015 unrestrained driver model, the indicator for old 
drivers was found to generate significant heterogeneity in variance. This means it increased the variance of the 
random parameter (i.e., indicator for crashes on four-lane roadways), widening the random parameter’s effect 
distribution or increasing variability. Regarding temporal instability, the old driver variable was significant only 
in the 2012–2013 period (having a higher risk of fatal injury) and insignificant in later periods. This may indicate 
a slight improvement for unrestrained old drivers resulting from advancements in other vehicle safety features 
over time, such as improvements in braking systems, airbags, or stability  control29.

Regarding the gender of drivers, in the 2012–2013 restrained driver model, the variable reflecting male driv-
ers resulted in a significant random parameter (defined for minor injury) with a mean = 0.233 and standard 
deviation = 2.082. This distribution indicates that 54.46% of the seatbelt-restrained male drivers were more likely 
to experience minor injuries, whereas 45.54% of them were more likely to experience severe or fatal injuries in 
speeding-related crashes. However, the average marginal effect (Table 8) shows that restrained male drivers are 
more likely to sustain severe or fatal injuries in speeding-related crashes compared to their female counterparts. 

Table 5.  Comparison results of models with different distributions.

Model Random parameters

Distribution types

Normal Triangular Uniform Lognormal

2012–2013 Restraint driver model Male [MI] LL(β) = −522.50
AIC = 1117

LL(β) = −522.53
AIC = 1117.06

LL(β) = −522.60
AIC = 1117.2 (Fail to converge)

2014–2015 Restraint driver model Four-lane [MI] LL(β) = −661.48
AIC = 1394.96

LL(β) = −661.50
AIC = 1395

LL(β) = −661.49
AIC = 1394.98

LL(β) = −662.28
AIC = 1396.56

2016–2017 Restraint driver model Four-lane [MI] LL(β) = −563.49
AIC = 1200.98

LL(β) = −563.50
AIC = 1201

LL(β) = −563.59
AIC = 1201.18 (Fail to converge)

2014–2015 Unrestraint driver model Four-lane [MI] LL(β) = −1223.61
AIC = 2521.2

LL(β) = −1223.65
AIC = 2521.3

LL(β) = −1223.67
AIC = 2521.4

LL(β) = −1225.93
AIC = 2525.9

2016–2017 Unrestraint driver model Asphalt [MI] LL(β) = −1011.36
AIC = 2094.72

LL(β) = −1011.40
AIC = 2094.8

LL(β) = −1011.41
AIC = 2094.82

LL(β) = −1011.51
AIC = 2095.02
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This suggests that although the proportion of severe or fatal injuries is slightly less than minor injuries, the prob-
ability magnitude of severe and fatal injuries in each crash for the 45.54% of male drivers is comparatively higher 
than that for the 54.46% of male drivers. The random parameter reflecting male drivers may be due to variations 
in physiological characteristics and safety and risk awareness 74, 75. Such heterogeneous effects of gender-related 
variables on crash severity outcomes have also been reported in previous  studies91, 97. In terms of temporal insta-
bility, the male indicator was found significant only in the 2012–2013 restrained model and became insignificant 
in later periods. This is likely due to the improvement of other safety features in vehicles over  time29.

Lastly, the variable reflecting drivers under the influence of alcohol was found to be statistically significant 
in the 2012–2013 unrestrained driver model and the 2014–2015 restrained driver model, consistently indicat-
ing a higher likelihood of fatal injury in speeding-related crashes. Previous studies have also reported similar 
 findings4, 37, 98. As for temporal instability, the reason this variable was not found statistically significant in later 
periods may be due to the strengthening of law enforcement on drunk driving in Thailand through the Road 
Traffic Act (2014), which may have influenced driving behavior and drivers’ awareness of police checkpoints 
due to stricter  penalties4, 32.

Roadway‑related attributes. In this study, crashes on different road median types were also considered 
and found to affect the resulting driver-injury severity. In only the restrained driver models (Table 6), variable 

Table 6.  Mixed logit with heterogeneity in mean modeling for restrained driver-injury severity model 
in speeding-related single vehicle crash (parameters defined for [MI] = Minor injury; [SI] = Severe injury; 
[FI] = Fatal injury).

Variable

2012–2013 2014–2015 2016–2017

Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat

Constant [SI] −1.320 −1.94 −0.853 −1.80 −3.834 −4.03

Constant [FI] −1.348 −1.96 −1.683 −1.60 −3.351 −3.70

Male [MI] 0.233 0.38

SD "Male" 2.082 1.71

Alcohol [FI] 1.869 2.83

Flush median [FI] 1.567 1.82 1.391 2.99

Flush median [MI] −1.674 −1.78

Barrier median [SI] 0.902 1.99

Barrier median [MI] −1.487 −2.90

Four-lane [MI] 1.304 1.77 1.977 2.25

SD "Four-lane" 1.968 1.68 2.993 2.73

Asphalt [MI] −1.927 −2.66

Slope [MI] −1.798 −2.2

Slope [SI] −1.036 −2.03

Intersection [FI] −2.314 −2.21

Van [MI] −1.630 −1.85

RORS [MI] −2.289 −3.74 −1.480 −2.82 −1.634 −3.91

RORSG [SI] 0.779 2.18

RORSG [FI] −1.204 −3.52

RORC [MI] −1.464 −2.22 −1.546 −2.80

RORC [FI] 1.141 3.10

RORCG [FI] −0.983 −2.17 −0.974 −2.58

MTI [FI] −1.385 −3.03

Unlit road [SI] 0.683 1.77

Lit road [MI] −0.431 −1.73

Weekend [FI] 0.586 2.03

Heterogeneity in means

Male : Slope 1.482 1.64

Four-lane : Depressed median −1.201 −2.53

Four-lane : Old −1.645 −2.10

Four-lane : Flush median 2.729 2.04

Model statistic

Number of observations 773 999 842

LL(0) −849.227 −1097.514 −925.032

LL(β) −522.502 −661.488 −563.492

McFadden Pseudo  R2 0.385 0.397 0.391
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reflecting speeding-related crashes on roadway with flush median was found to be statistically significant in all 
three periods model (2012–2013, 2014–2015, and 2016–2017), with a relatively stable average marginal effect 
having a higher likelihood of fatal injury (as seen in Table 8). A potential reason for the flush median’s prevalence 
in Thailand could be its frequent use in rural areas, where speed limits are typically higher and traffic volume is 
considerably lower compared to urban regions. The significance of this variable in the restrained driver model 
might be attributed to the likelihood of drivers traversing rural areas compensating for the safety advantages 
gained from wearing seat belts by adopting a more negligent and aggressive driving behaviors (offsetting behav-
ior)65, 99. On the other hand, the variable representing crashes on roadways with raised medians was found to 
be a significant factor in all period models for unrestrained drivers only. According to the average marginal 
effect in Table 9, crashes on roadways with raised medians increased the likelihood of fatal injury in the 2012–

Table 7.  Mixed logit with heterogeneity in mean modeling for unrestrained driver-injury severity model 
in speeding-related single vehicle crash (parameters defined for [MI] = Minor injury; [SI] = Severe injury; 
[FI] = Fatal injury).

Variable

2012–2013 2014–2015 2016–2017

Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat

Constant [SI] −1.177 −2.12 0.038 2.07 −1.273 −2.26

Constant [FI] −1.049 −1.8 −0.552 −2.22 −0.762 −2.45

Young [MI] 1.049 1.74

Old [FI] 0.498 2.01

Alcohol [MI] −2.278 −2.04

Raised Median [FI] 0.597 2.86

Raised median [MI] −0.314 −1.81

Raised mediant [SI] 0.623 2.40

Depressed median [FI] 0.521 2.94

Barrier Median [SI] 0.843 2.1

Four-lane [MI] 1.219 2.13

SD "Four-lane" 1.461 2.00

Asphalt [MI] 0.432 1.68 1.940 2.41

SD "Asphalt" 3.727 2.68

Slope [MI] −0.439 −1.86

Slope [SI] 0.554 2.05

Intersection [FI] −1.213 −2.10

U-turn [FI] −1.820 −2.59

U-turn [MI] 1.600 2.50

Passenger car [SI] 0.553 2.19

RORS [MI] −0.416 −1.84

RORS [FI] 0.917 4.18

RORS [SI] −0.978 −3.05

RORSG [FI] −0.774 −3.18

RORSG [MI] 0.821 3.64 1.494 3.72

RORC [SI] −1.007 −2.37

RORCG [MI] 0.971 1.83

MTI [FI] −0.995 −3.76

MTI [MI] 0.965 3.48

Raining [MI] −0.962 −1.75 −1.629 −1.85

Morning peak hour [SI] −0.981 −2.05

Evening peak hour [MI] 0.455 1.92

Heterogeneity in means

Four-lane : Male −0.762 −1.78

Asphalt : Young −1.283 −1.77

Heterogeneity in variances

Four-lane : Old 0.781 1.71

Model statistic

Number of observations 1228 1608 1387

LL(0) −1349.096 −1766.569 −1523.775

LL(β) −914.609 −1223.616 −1011.362

McFadden Pseudo  R2 0.322 0.307 0.336
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2013 model, increased the likelihood of both severe and fatal injuries in the 2014–2015 model, and increased 
the likelihood of severe injury only in the 2016–2017 model. The variable representing crashes on roadways 
with depressed medians was significant only in the 2014–2015 unrestrained model, with the average marginal 
effect increasing the likelihood of fatal injury (0.0212). The variable representing crashes on roadways with bar-
rier medians was found to be a significant factor in the 2012–2013 unrestrained driver, 2014–2015 restrained 
driver, and 2016–2017 restrained driver models, with stable average marginal effects across all models increas-
ing the likelihood of severe injury (0.0047, 0.0059, and 0.0093, respectively). These findings are particularly 
important because they show that the effect of road medians significantly influences driver-injury severity in 
speeding-related single-vehicle crashes. Raised medians and barrier medians are built in urban areas or on roads 
approaching urban areas (or municipal areas). Some of the benefits of both median types include reducing crash 

Table 8.  Summary of marginal effect for significant factors in the restrained driver-injury severity models.

Variable

2012–2013 2014–2015 2016–2017

Minor Severe Fatal Minor Severe Fatal Minor Severe Fatal

Male −0.0620 0.0396 0.0224

Alcohol −0.0039 −0.0009 0.0048

Flush median −0.0034 −0.0012 0.0047 −0.0066 −0.0021 0.0087 −0.0070 0.0037 0.0033

Barrier median −0.0050 0.0059 −0.0009 −0.0168 0.0093 0.0075

Four-lane −0.0151 0.0110 0.0042 0.0070 0.0000 −0.0070

Asphalt −0.1998 0.1079 0.0918

Slope −0.0236 0.0151 0.0085 0.0039 −0.0062 0.0023

Intersection 0.0016 0.0007 −0.0023

Van −0.0049 0.0030 0.0020

RORS −0.0408 0.0183 0.0224 −0.0267 0.0166 0.0101 −0.0334 0.0129 0.0205

RORSG −0.0182 0.0243 −0.0061 0.0134 0.0102 −0.0236

RORC −0.0125 0.0059 0.0065 −0.0087 −0.0026 0.0113 −0.0134 0.0038 0.0096

RORCG 0.0062 0.0036 −0.0098 0.0123 0.0046 −0.0169

MTI 0.0069 0.0057 −0.0126

Unlit road −0.0053 0.0077 −0.0024

Lit road −0.0224 0.0134 0.0090

Weekend −0.0100 −0.0054 0.0154

Table 9.  Summary of marginal effect for significant factors in the unrestrained driver-injury severity models.

Variable

2012–2013 2014–2015 2016–2017

Minor Severe Fatal Minor Severe Fatal Minor Severe Fatal

Young 0.0188 −0.0100 −0.0087

Old −0.0077 −0.0017 0.0095

Alcohol −0.0015 0.0007 0.0008

Raised median −0.0189 −0.0044 0.0232 −0.0138 0.0075 0.0064 −0.0086 0.0153 −0.0067

Depressed median −0.0157 −0.0055 0.0212

Barrier median −0.0041 0.0047 −0.0006

Four-lane −0.0080 0.0062 0.0018

Asphalt 0.0619 −0.0313 −0.0306 −0.0199 0.0107 0.0091

Slope −0.0101 0.0047 0.0055 −0.0057 0.0072 −0.0015

Intersection 0.0012 0.0019 −0.0031

U-turn 0.0020 0.0012 −0.0032 0.0083 −0.0051 −0.0032

Passenger car −0.0100 0.0198 −0.0098

RORS −0.0107 0.0045 0.0062 −0.0169 −0.0069 0.0238 0.0031 −0.0080 0.0049

RORSG 0.0178 0.0040 −0.0218 0.0381 −0.0198 −0.0183 0.0379 −0.0207 −0.0172

RORC 0.0015 −0.0044 0.0029

RORCG 0.0184 −0.0098 −0.0086

MTI 0.0180 0.0035 −0.0214 0.0307 −0.0172 −0.0135

Raining −0.0350 0.0177 0.0173 −0.0147 −0.0156 0.0303

Morning peak hour 0.0031 −0.0037 0.0006

Evening peak hour 0.0075 −0.0041 −0.0034
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frequency (by separating opposing streams of traffic and restricting turning movements) and reducing vehicle 
speeds on the roadway 100, 101. However, if drivers encounter a crash on these roads due to speeding, they face 
an increased possibility of being involved in a severe or even fatal crash. The significance of the barrier median 
roadway effect only in the restrained driver model is mainly due to the widespread use of barrier medians in 
rural areas with many curved or mountainous roads in Thailand, in order to prevent head-on collisions. As a 
result, the significance of this variable in the model for restrained drivers may be due to drivers driving on rural 
roads who negate the safety advantages of wearing seat belts by exhibiting more reckless and aggressive driving 
behavior (similar to the effect of flush median roadways). In the past literature, Al-Bdairi and Hernandez 101 
found that over 20% of run-off-road crashes on roadways with raised medians are more likely to result in severe 
crashes. However, some studies have found that raised medians reduce the rate of severe crashes by over 30% 
102, 103. The randomness of this finding suggests that a cohort of crashes on roads with raised medians may lead 
to a higher risk of death and serious injuries due to a reduction in the effectiveness of vehicle safety features and 
the benefits of raised medians because of speeding 4.

Interestingly, the effect of the number of lanes showed significant variability across crash observations in 
both unrestrained and restrained driver-injury severity models. In the 2014–2015 restrained driver models, the 
variable representing crashes on four-lane roads was found to generate a significant random parameter for minor 
injuries. With a mean of 1.304 and a standard deviation of 1.968, the results indicated that 74.62% of crashes 
on four-lane roads had a higher likelihood of minor injuries, while 25.38% had a higher likelihood of severe or 
fatal injuries. Similarly, in the 2016–2017 restrained driver model, the crash indicator on four-lane roads also 
yielded a significant random parameter for minor injuries, with a mean of 1.977 and a standard deviation of 
2.993, suggesting that 74.55% of crashes on four-lane roads had a higher likelihood of minor injuries and 25.45% 
had a higher likelihood of severe or fatal injuries. In the 2014–2015 unrestrained driver model, the variable rep-
resenting crashes on four-lane roads resulted in a random parameter for minor injuries, with a mean of 1.219 
and a standard deviation of 1.461, indicating that 79.8% of crashes on four-lane roads had a higher likelihood of 
minor injuries and 20.2% had a higher likelihood of severe or fatal injuries. The emergence of this variable as a 
random parameter is logical, as most documented speeding-related accidents occurred on four-lane highways 
(as shown in Table 2), which can display considerable variation in factors such as crash types, crash mechanisms, 
and vehicle types/conditions. The subset of four-lane roadway crashes with an increased probability of serious 
or fatal injuries could be influenced by unobservable factors, such as a group of highly aggressive drivers, older 
vehicle models, or extreme crash scenarios (e.g., rollovers), which remain undetected by the analyst.

The variable representing crashes on asphalt pavement was found to be significant in the 2014–2015 unre-
strained driver model, the 2016–2017 restrained driver model, and the 2016–2017 unrestrained driver model, 
exhibiting temporal instability across the periods examined. Specifically, it was associated with a higher likelihood 
of minor injuries in 2014–2015, while increasing the likelihood of severe and fatal injuries for both restrained and 
unrestrained drivers in the 2016–2017 models. It is important to note that in the 2016–2017 unrestrained driver 
model, this variable emerged as a significant random parameter (defined for minor injury), with a mean of 1.940 
and a standard deviation of 3.727. This distribution suggests that 69.86% of crashes on roads with asphalt pave-
ment had a likelihood of minor injury, while 30.14% had a higher likelihood of severe or fatal injuries. Although 
the effect transitioned to a higher probability of severe or fatal injuries in the later period, the underlying cause 
remains uncertain. Further investigation is necessary to determine whether this pattern persists or changes in 
years following 2017.

In the restrained driver models, variables representing crashes on sloped roads emerged as significant factors 
in both 2012–2013 and 2016–2017, with the average marginal effect increasing the likelihood of severe injury in 
2012–2013 and fatal injury in 2016–2017 (as seen in Table 8). Similarly, this variable was also significant in the 
2012–2013 and 2014–2015 unrestrained driver models, with the average marginal effect increasing the likelihood 
of fatal injury in 2012–2013 and severe injury in 2014–2015.

The variable representing crashes at intersection areas was found to be statistically significant in the 2014–2015 
restrained driver and 2016–2017 unrestrained driver models, with a consistent average marginal effect increasing 
the likelihood of severe and minor injuries. Lastly, the variable reflecting crashes at U-turn areas was significant 
only in the 2014–2015 and 2016–2017 unrestrained driver models, with the average marginal effect increasing 
the likelihood of both severe and minor injuries.

Vehicle types‑related factors. Regarding vehicle types, the variable for van drivers was significant only 
in the 2016–2017 restrained driver model, leading to a higher likelihood of severe and fatal injuries (Table 8). 
Conversely, the variable for passenger cars was significant solely in the 2016–2017 unrestrained driver model, 
resulting in a higher likelihood of severe injuries in speeding-related crashes.

Crash‑related characteristics. Regarding variables from the crash characteristics, both restrained and 
unrestrained driver-injury severity models exhibited similar results with only differences in the value of the mar-
ginal effects. In every time period for both restrained and unrestrained driver models, the variable for crashes 
involving vehicles running off a straight roadway (without a roadside guardrail) was found to be statistically 
significant, consistently increasing the likelihood of severe or fatal injuries (Tables 8, 9). However, for all periods 
of both restrained and unrestrained driver models (except the 2014–2015 restrained driver model), crashes 
involving vehicles running off a straight roadway and subsequently hitting a roadside guardrail were found to 
significantly reduce the likelihood of fatal and severe injuries in speeding-related crashes (Tables 8, 9). Similarly, 
the variable for crashes involving vehicles running off a curved roadway (without a roadside guardrail) was 
found to be statistically significant in all periods of restrained driver models and the 2016–2017 unrestrained 
driver model, consistently increasing the likelihood of fatal injuries. In contrast, crashes involving vehicles run-
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ning off a curved roadway and hitting a roadside guardrail were found to increase the likelihood of minor inju-
ries while decreasing the risk of fatal injuries for 2012–2013 restrained drivers, 2016–2017 restrained drivers, 
and 2016–2017 unrestrained driver models. This result is in line with previous studies and makes intuitive sense 
53, 64, 104, highlighting the crucial safety advantages of roadside guardrail protection in mitigating hazardous crash 
mechanisms such as rollover or overturn crashes, preventing vehicles from going off the road, absorbing crash 
energy, and reducing the consequences of driving errors on forgiving roads 105. Lastly, crashes that involve a vehi-
cle running over a traffic island were found to be significant in the 2016–2017 restrained driver and 2012–2013 
and 2014–2015 unrestrained driver models. The average marginal effect of this variable indicates a higher likeli-
hood of minor or severe injuries.

Environmental and temporal‑related factors. In terms of weather conditions, the variable represent-
ing crashes occurring in rainy conditions was identified as a significant factor exclusively in the 2014–2015 and 
2016–2017 unrestrained driver models. The consistent average marginal effect of this variable increased the 
probability of fatal injuries in crashes. Past research has also demonstrated a strong association between rainy 
weather and heightened severity in single-vehicle  accidents4, 49. Similarly, crashes on unlit road and lit road were 
found as a significant factor in 2016–2017 and 2014–2015 restrained driver model, respectively. Both types of 
these crashes have a higher likelihood of severe injury (as seen in Table 8). Previous studies also reported that 
crashes at nighttime have a higher probability of severe injury compared to daytime crashes 85, 106, 107. A potential 
explanation for the insignificance of this variable in unrestrained driver models could be the tendency of these 
drivers to adopt more careless and aggressive driving habits as a result of the perceived safety boost they gain 
from wearing seat  belts65. Variable representing crashes at weekend was significant in only 2012–2013 restrained 
driver model, with the effect increasing the likelihood of fatal injury. Lastly, crashes during morning and evening 
peak hour were significant in only 2012–2013 unrestrained driver models, with the effect increasing the likeli-
hood of minor injury (Table 9).

Insights from out‑of‑sample prediction simulation. In the crash-injury severity research, the concept 
of the out-of-sample prediction is used to compare the outcomes’ predicted probabilities of two or more crash-
injury  models84. The test uses the full parameter estimates of an A crash model (with predefined probabilities 
based on an A data) to predict the injury outcome of a B data (in this case study, A and B could represent 
restrained and unrestrained crash model/data or period A/B, respectively). For example, Islam et al.95 applied 
the simulation and found that, with the same crash’s associated characteristics, the crashes in 2017 would pro-
duce 3.8% less number of minor injuries and 0.5% less rate of severe injuries, compared to crashes in 2012 (the 
study identified the improvement in vehicle safety feature over time as the possible cause of these changes). 
With the use of the simulation, Alogaili and Mannering 78 found that pedestrian-vehicle crashes in the daytime 
would cause as much as 16.45% less severe injuries compared to the crashes at nighttime, given both crash times 
having the same other associated factors. Additionally, the application of this simulation has also been adopted 
by numerous recent crash severity studies to gain a better overview understanding of how two or more crash 
conditions are different in influencing injury  severities38, 40, 80, 90. Likewise, this study also adopted this simulation 
for predictive comparison between restrained and unrestrained driver-injury severities and investigating how 
injury severity distribution changed over time. The result of this simulation will seek an answer to these funda-
mental questions: (1) “what would the unrestrained driver-injury severity distribution have been if the restrained 
driver models’ parameter estimates were utilized to predict them?” and (2) “What would have been the injury 
severity distribution for the later-period crashes if previous-period estimated model parameter were used to forecast 
them?”. Theoretically, since a mixed logit model with means and variances heterogeneity was used in this study, 
it is recommended to fully account for both means and variances of the random parameters in the simulation to 
eliminate inaccurate  prediction84. The out-of-sample prediction simulation can be computed  by84,

where all terms are previously defined and K is the total number of Halton draws for individual observation (as 
indicated in the earlier section, 1000 Halton draws were used to obtain stable parameters).

Table 10 displays the difference between out-of-sample predictions (i.e., using restrained driver-injury model 
parameters to predict injury severity outcomes with data from unrestrained drivers) and within-sample predic-
tions (i.e., using unrestrained driver-injury model parameters to predict injury severity outcomes with data from 

Pi(n) ≈
1

K

K
∑
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Table 10.  Means of probability differences in predicting the injury-severity between different restrained and 
unrestrained drivers.

Base model Injury

Forecast model: Unrestrained driver-
injury model

2012–2013 2012–2014 2012–2015

Restrained driver-injury model

Minor 0.0815 0.0933 0.0858

Severe −0.0041 0.0093 −0.0065

Fatal −0.0774 −0.1026 −0.0793
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unrestrained drivers) for unrestrained driver injury severity, using the restrained driver model as the baseline. 
Specifically, when using the restrained driver model to predict unrestrained driver injury severity, minor injuries 
will be overestimated by 0.0815, 0.0933, and 0.0858 during the periods of 2012–2013, 2014–2015, and 2016–2017, 
respectively. In contrast, severe injuries will be underestimated by −0.0041 in 2012–2013, overestimated by 
0.0093 in 2014–2015, and underestimated by −0.0065 in 2016–2017. Most notably, the distribution of fatal 
injuries will be significantly underestimated during all periods by −0.0774, −0.1026, and −0.0793, respectively. 
In more straightforward terms, if the contributing factors were identical for each crash involving drivers not 
wearing seatbelts, the parameters estimated for restrained drivers would predict a considerably lower number 
of severe and fatal crashes than what was actually observed. These simulation results clearly demonstrate that 
wearing seatbelts provides a substantial safety advantage, which could greatly reduce the fatality rate resulting 
from speeding-related single-vehicle run-off-road crashes.

Regarding the overall impact of temporal instability, Table 11 shows the differences between out-of-sample 
and within-sample prediction probabilities for later periods, using earlier-period models as the baseline. For 
restrained drivers, using the 2012–2013 model to predict 2014–2015 outcomes would result in overestimating 
fatal injuries by 0.002 while underestimating minor and severe injuries by −0.001 each. However, when applying 
the 2012–2013 model to forecast 2016–2017, minor injuries would be overestimated by 0.0297, while severe and 
fatal injuries would be underestimated by −0.0083 and −0.0214, respectively. When using the 2014–2015 model to 
predict 2016–2017, minor and severe injuries would be overestimated by 0.0297 and 0.0012, respectively, and fatal 
injuries would be underestimated by −0.0309. For unrestrained drivers, using the 2012–2013 model to predict 
2014–2015 and 2016–2017 would consistently overestimate minor and severe injuries, while underestimating 
fatal injuries (as shown in Table 11). In contrast, using the 2014–2015 model to predict 2016–2017 would under-
estimate minor injuries by −0.005 and overestimate severe and fatal injuries by 0.0007 and 0.0043, respectively. 
Overall, the out-of-sample prediction findings highlight the considerable combined impact of temporal instability 
and the non-transferability of restrained and unrestrained driver injury severities across the periods studied.

Summary and conclusions
Using a mixed logit model with heterogeneity in means and variances, this paper examines and compares the 
differences in injury severity between unrestrained and restrained drivers in speed-related single-vehicle crashes, 
accounting for temporal instability. The data used in the study was obtained from the Department of Highways 
and covers a period of six years, divided into three time periods: 2012–2013, 2014–2015, and 2016–2017. The 
study considers three levels of injury severity: minor injury, severe injury, and fatal injury. In addition, various 
risk factors such as driver characteristics, road conditions, vehicle factors, crash characteristics, and environ-
mental and temporal factors were taken into account in the analysis.

Two series of likelihood ratio tests showed that the estimated parameters between the unrestrained and 
restrained driver-injury models were non-transferable and exhibited temporal instability across the studies 
period. For restrained drivers, the risk of fatal or severe crashes was positively associated with factors, such as 
male drivers, under influence of alcohol, flush/barrier median roadway, slope roadway, van, running off roadway 
without roadside guardrail, and nighttime on unlit/lit road. For unrestrained drivers, the likelihood of fatal or 
severe injury increases for old drivers’ crashes, under influence of alcohol, raised/depressed median roadways, 
four-lane roadway, passenger car, running off roadway without roadside guardrail, and crash under rainy condi-
tion. Lastly, the out-of-sample prediction simulation findings are particularly important. It shows the upper limit 
of safety benefits that can be achieved by just using a vehicle’s seatbelt system. Alternatively, this finding illustrated 
a potential reduction in the rate of severe and fatal injuries by just replicating restrained driver conditions.

There are several key insights from the study. Firstly, old drivers linked to fatal crashes (in the model for 
unrestrained drivers) were determined to be significant only in earlier periods. This might imply that, for driv-
ers not using seat belts, advancements in other vehicle safety features like improved braking systems, airbags, 
or stability control systems could also contribute to temporal instability. Hence, ongoing efforts to encourage 
individuals to use newer vehicles equipped with high-quality safety features, besides seat belts, could potentially 
help prevent drivers from involving in severe and fatal speeding-related accidents over time. Promote the adop-
tion of newer vehicles equipped with safety features such as adaptive cruise control, lane-keeping assist, and 
automatic emergency braking, which can help prevent speeding-related crashes. Secondly, it was observed that 

Table 11.  Means of probability differences in predicting the injury-severity between different period for 
restrained and unrestrained drivers.

Base years Injury

Forecast years

Restraint model Unrestraint model

2014–2015 2016–2017 2014–2015 2016–2017

2012–2013 Minor −0.0010 0.0297 0.0168 0.0043

Severe −0.0010 −0.0083 0.0044 0.0036

Fatal 0.0020 −0.0214 −0.0212 −0.0079

2014–2015 Minor – 0.0297 – −0.0050

Severe – 0.0012 – 0.0007

Fatal – −0.0309 – 0.0043
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unrestrained drivers under the influence of alcohol were significantly associated with fatal crashes only in earlier 
periods (but not in 2014–2015 and 2016–2017). The temporal instability may be attributed to the increased rigor 
of law enforcement on drunk driving in Thailand, as a result of the Road Traffic Act (2014). Therefore, consistent 
reviewing and improving this legislation may have impacted driving behavior and drivers’ awareness of police 
checkpoints due to the imposition of stricter penalties. Thirdly, drivers who wear seat belts and are involved in 
speeding-related accidents on roads with flush and barrier consistently exhibit a higher likelihood of experi-
encing severe and fatal injuries over the observed periods (however, these factors were not deemed significant 
in models for unrestrained drivers). A possible reason for this could be that drivers may offset the benefits of 
using seat belts by adopting more aggressive driving behaviors. This suggests a necessity for creating informa-
tional initiatives on seat belt usage that emphasize not only the significant protective advantages of wearing seat 
belts, but also the risks posed to other motorists by aggressive driving. Gaining a deeper comprehension of the 
neuropsychological and cognitive processes that drive aggressive driving behavior, as well as how individuals 
perceive their obligations to others in relation to their own safety, can be valuable in developing strategies to curb 
aggressive  driving65. Fourthly, it appears that speeding-related accidents on sloped roads consistently raise the 
probability of fatal injuries for both restrained and unrestrained drivers. As a result, possible solutions include 
enforcing stricter speed limits on sloped roads, integrating features like skid-resistant surfaces, improved drain-
age, and enhanced visibility, as well as ensuring that clear and conspicuous road signs—such as warnings for 
steep inclines, declines, and sharp turns—are in place to assist drivers in safely navigating sloped roads. Fifthly, 
the presence of roadside guardrails consistently reduces the risk of severe and fatal injuries for both restrained 
and unrestrained drivers over the considered periods. Guardrails serve as a protective barrier that absorbs and 
redistributes the impact forces from a collision, which can prevent vehicles from veering off the road, rolling 
over, or colliding with roadside hazards such as trees or poles. Thus, a potential countermeasure would involve 
increasing the installation of roadside guardrails to compensate for drivers’ errors and aggressive driving behav-
iors, enhancing overall road safety and potentially saving lives. Lastly, a combination of speeding-related crashes 
during rainy conditions and unrestrained drivers has been associated with a higher probability of fatal injuries 
in the most recent two periods. Therefore, it is necessary to raise public awareness by conducting campaigns to 
emphasize the risks of speeding and not wearing seat belts during rainy conditions and educating drivers about 
safe driving practices in adverse weather.

Limitation of the study. This study possesses certain limitations. It is unable to provide the estimated 
vehicle speed prior to crash, as this information could not be collected by the police. The significance of this limi-
tation lies in the fact that a slight excess of 1 mph over the speed limit, compared to a more substantial 20 mph 
excess, can drastically influence the severity of injuries sustained. Consequently, it is recommended that future 
research endeavours differentiate cases based on distinct speeding categories, which could potentially reveal 
insightful information regarding the relationship between contributing factors and injury severity.

Data availability
The datasets generated during the current study will be made available from the corresponding author on rea-
sonable request.
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