
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9802  | https://doi.org/10.1038/s41598-023-36874-y

www.nature.com/scientificreports

Untargeted urinary metabolomics 
for bladder cancer biomarker 
screening with ultrahigh‑resolution 
mass spectrometry
Joanna Nizioł 1*, Krzysztof Ossoliński 2, Aneta Płaza‑Altamer 1,3, Artur Kołodziej 1,3, 
Anna Ossolińska 2, Tadeusz Ossoliński 2, Anna Nieczaj 1 & Tomasz Ruman 1

Bladder cancer (BC) is a common urological malignancy with a high probability of death and 
recurrence. Cystoscopy is used as a routine examination for diagnosis and following patient 
monitoring for recurrence. Repeated costly and intrusive treatments may discourage patients from 
having frequent follow‑up screenings. Hence, exploring novel non‑invasive ways to help identify 
recurrent and/or primary BC is critical. In this work, 200 human urine samples were profiled using 
ultra‑high‑performance liquid chromatography and ultra‑high‑resolution mass spectrometry (UHPLC‑
UHRMS) to uncover molecular markers differentiating BC from non‑cancer controls (NCs). Univariate 
and multivariate statistical analyses with external validation identified metabolites that distinguish 
BC patients from NCs disease. More detailed divisions for the stage, grade, age, and gender are also 
discussed. Findings indicate that monitoring urine metabolites may provide a non‑invasive and more 
straightforward diagnostic method for identifying BC and treating recurrent diseases.

Cancer is one of the humanity’s most significant problems in the twenty-first century that also occupy thousands 
of scientists. Cancer is the leading cause of death among people under 70. Recent trends show that cancer may be 
the leading cause of premature death in most countries this  century1. Urological cancers constitute a large part of 
all types of cancers worldwide. Their incidence and mortality are still increasing, which places a significant burden 
on healthcare  worldwide1. The early detection of cancer contributes to early diagnosis and subsequent  treatment2.

Bladder cancer (BC) is one of the most common urinary tract cancers affecting men and  women3. The inci-
dence of this cancer depends mainly on age, sex, carcinogenic factors, diet, and alcohol consumption or  smoking4. 
Based on the histological classification, several types of bladder cancer were classified, including non-muscle 
invasive bladder cancer (NMIBC), which accounts for about 70–85% of all bladder tumors, and muscle-invasive 
BC (MIBC). NMIBC comprises noninvasive papillary carcinomas (pathologic stage Ta), submucosal invasive 
tumors (T1), and carcinoma in situ (CIS). MIBC contains tumors that have spread into muscle (stage T2), 
perivisceral fat (stage T3), or adjacent organs (stage T4). Histology classifies BC as low-grade (LG) tumors that 
seldom expand from their source location and high-grade (HG) tumors that are more aggressive and invasive. 
Moreover, about 50% of NMIBC cases aft, after all, recur despite radical treatment, and about 30% experience 
disease progression to  MIBC5. This is why cancer patients are screened mainly for recurrence of the disease and 
metastasis of the disease to other  sites3.

Transurethral resection of bladder tumor (TURBT), occasionally followed by intravesical instillation of 
mitomycin or Bacillus Calmette-Guerin (BCG) therapy, is the standard first-line treatment for early BC. The 
conventional therapy for MIBC, on the other hand, is a radical cystectomy with pelvic lymph node dissection. 
This is used with neoadjuvant or adjuvant cisplatin-based  chemotherapy6. Despite such rigorous therapy, BC 
patients have a dismal survival rate. It is widely known that the sooner the cancer is detected, the greater the 
chance of treating the  patient7. Some of the varieties of cancer are undetectable at an early stage using cystoscopy. 
Incredibly, flat, non-invasive with high-grade cancer is practically invisible in cystoscopy. Moreover, it is often 
mistakenly interpreted as a common inflammatory area because of its appearance. Therefore, metabolomics can 
be the most suitable way to achieve this. Due to the direct contact of the tumor with the urine, specific disease 
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biomarkers may be present in this fluid. In recent years, metabolomics research in diagnosing and understanding 
numerous illnesses has increased  dramatically8.

Several analytical approaches have been developed to understand better the metabolic alterations in biologi-
cal systems, including cancer phenotypic changes. Nevertheless, two analytical platforms—nuclear magnetic 
resonance (NMR)9 spectroscopy and mass spectrometry (MS), which are frequently combined with liquid chro-
matography (LC)10, provide the complete screening of cancer metabolomes. MS, compared to NMR, detects far 
wider variety of molecules with much greater sensitivity, resolution, and accuracy using much less  material11. 
During the last fifteen years, metabolomic analytical approaches have been extensively employed to explore BC 
and find possible biomarkers in urine, serum, and  tissues4,5,12,13. Compared to serum and tissue, urine metabo-
lomics may be affected by dilution factor, but urine is more available than tissue or serum, and the procedure 
non-invasive. Recently, many detailed articles have been published on potential urinary markers of BC, dem-
onstrating significant interest in this  field14,15. Unfortunately, none of the biomarkers invented and tested so far 
guarantee 100% detection of cancer at an early stage. Even though their detection characteristics are still high, 
they are associated with enormous costs that the global health service cannot  afford16. This is still desirable for 
scientists to research subsequent biomarkers, thanks to which we will increase the percentage of cases with early 
detection of bladder cancer.

Most investigations of urine from patients with bladder cancer were based on  NMR17 or mass spectrometry 
coupled to liquid chromatography (LC)18–21 and gas chromatography (GC)22,23. One of the first report of metabo-
lomic profiling of urine from BC patients using high-performance liquid chromatography coupled with mass 
spectrometry appeared in  200824. The study was conducted on samples from 41 bladder cancer patients and 48 
healthy individuals. The results indicated that metabolomics using HPLC–MS had the potential to become a 
noninvasive early detection test for BC. Similar conclusions were drawn in 2011 by Huang and coworkers, who 
indicated fourteen compounds differentiating these two groups based on the urine analysis of 27 patients with BC 
and 32 healthy  volunteers25. In the same year, urine profiling with external validation was performed by Putluri 
and  coworkers26 on a much larger group of 85 BC patients and 51 controls, indicating 35 potential BC biomark-
ers. In 2013, two more urine profiling works were published that were based on a relatively small groups of BC 
 patients27,28. The first profiling of urine metabolites of a larger group of 138 BC patients and 121 controls using 
HPLC-QToF-MS was performed in 2014 by Jin and  coworkers29. The research identified 12 differential metabo-
lites that may be useful for the distinction between the BC and control groups. However, mentioned research 
was based on mass spectrometer of 20,000 resolution that is three-times lower value that for instrument used in 
our report. Also, authors used 2.6 micron HPLC column that have inferior resolving power compared to our 1.7 
micron one. In later years, several publications indicated potential small-molecule biomarkers for early detection 
of bladder cancer;  however30–33, to our knowledge, only two papers using a group of more than one-hundred 
patients and with external validation have been published so  far16,20. Similarly, there are very few reports on the 
analysis of urine of patients with BC, considering the division into different stages and grades of cancer, as well as 
gender and  age21,34. There are no reports published that combine large cohorts of patients and also controls with 
ultrahigh performance liquid chromatography combined with ultrahigh resolution mass spectrometry system.

In this work, we report the results of an untargeted analysis of human urine with ultra-high-resolution mass 
spectrometry coupled with ultra-high-performance liquid chromatography (UHPLC-UHRMS) with external 
validation. This study employed a large number of patients—100 cancer patients and 100 controls. The untar-
geted analysis focused on urine metabolic changes generated by bladder cancer and stratified the disease by 
stage, grade, age, and gender. Our study reveals potential urinary BC biomarkers for early detection, screening, 
and differential diagnosis.

Materials and methods
All chemicals were of LCMS- or analytical reagent-grade. Deionized water (18 MΩ cm) was produced locally. 
LC–MS-grade methanol was bought from Sigma Aldrich (St. Louis, MO, USA).

Instrumentation. The untargeted analysis was performed using a Bruker Elute UHPLC system with Hys-
tar 3.3 software and an ultra-high-resolution mass spectrometer Bruker Impact II (60,000 + resolution version; 
Bruker Daltonik GmbH) ESI QTOF-MS with Data Analysis 4.2 (Bruker Daltonik GmbH) and Metaboscape 
(ver. 2022b). Metabolite separation was achieved with a gradient of mobile phases using a Waters UPLC column 
ACQUITY BEH (C18 silica, 1.7 μm particles, 50 × 2.1 mm) with a compatible column guard was used for all 
analyses. Further details are described in our previous  publication35 and supplementary information 1 (sec-
tion S1).

Collection of human urine samples. Urine samples were taken from 100 BC patients at John Paul 
II Hospital in Kolbuszowa, Poland (average age 73, white ethnicity). Control group consisted of age and sex 
matched patients admitted to the Urology Department for surgery of benign urological conditions including 
benign prostatic hyperplasia (BPH), urine stones, phimosis, UPJO (Ureteropelvic Junction Obstruction), and 
stress urinary incontinence. Prior to the procedure (day before) each patient, underwent a comprehensive set 
of laboratory tests, including a blood count, electrolyte analysis, coagulation panel, creatinine measurement, 
glomerular filtration rate (GFR) assessment, urinalysis, lung X-ray, and ultrasound of the cavity as a part of 
standard protocol before each surgery. After extensive clinical questioning and laboratory testing, all patients 
with cancer had transurethral resection of bladder tumor (TURBT). The study was authorized by the University 
of Rzeszow’s local Bioethics Committee (Poland, permit number. 2018/04/10) and complied with relevant rules 
and legislation. All methods were performed in accordance with the relevant guidelines and regulations. Written 
informed consent was obtained from all subjects. All patients who participated in the trial were told about the 
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study’s goal and methods, and they completed an informed permission form. Patients hospitalized in the urol-
ogy department for surgical treatment of benign urological diseases include the whole NCs group (urolithiasis, 
benign prostate hyperplasia, testicular hydrocele, varicocele, phimosis, ureteropelvic junction stenosis, urinary 
incontinence, urethral stricture). Each individual has received at least one abdominal ultrasound to rule out 
neoplasms (patients with urolithiasis frequently get a CT scan) and a basic set of lab tests necessary for urologi-
cal surgery to rule out inflammation. Patients in the control group received written authorization to give leftover 
urine for investigation after being informed about the research program. Each participant had 10 ml of urine 
collected from them. At room temperature, samples were centrifuged at 3000  rpm for 10  min. The samples 
were then stored at − 80 °C until use. The clinical characteristics of the patients are presented in supplementary 
information 1, table S1.

Sample preparation. As detailed in our recent work, medium-to-high polarity metabolites were isolated 
from urine  samples36. In summary, urine samples were thawed at 4 °C and then centrifuged at 12,000 × g for 
5 min at 4 °C. A total of 900 µL of acetone was added to 300 µL of supernatants. After vortexing for 1 min, the 
solutions were incubated at room temperature for 20 min, followed by 20 min at − 20 °C, and then centrifuged 
at 6000 × g for 5 min at 4 °C. Then, 800 µL of supernatants were transferred to a fresh polypropylene tube. The 
pellets were resuspended in 500 µL of an acetone-H2O (3:1 v/v) combination and vortexed extensively. Samples 
were centrifuged at 12,000 × g for 10 min at 4 °C. The supernatants from the pellet washes were mixed with those 
from the first spin. 260 µL of mixed supernatants were vacuum dried in a speedvac-type concentrator, dissolved 
in 900 µL of methanol, vortexed, and centrifuged (12,000 × g for 5 min at 4 °C). A 800 µL supernatant volume 
was placed into an HPLC vial and put into the Elute autosampler.

Data analysis. In this study, we characterized the metabolic profile of urine from 100 patients with diag-
nosed BC and also from 100 normal control subjects (NCs) to develop potentially discriminant biomarkers for 
early, specific, and sensitive detection of this disease using ultra-high-resolution LC–MS. Two datasets from BC 
patients and NCs have been created: a training set, which contained 70% of all samples, and a validation set, 
which had 30% of all samples. In the training set, samples from a patients with certain stages and grades of BC 
made up 80% of all samples for a particular stage and grade of this disease. On the two datasets, urine metabolic 
profiling was carried out separately. The training data set was used to identify urine diagnostic markers differ-
entiating the control group from cancer, high- and low-grade, pTa and pT1 stage. In turn, the validation set was 
used to validate the diagnostic performance of urine metabolite biomarkers independently. In the case of the 
analysis of samples from patients with pT2 stage of BC, in different age groups, and from women, the number 
of samples was insufficient to conduct a reliable statistical analysis divided into two independent sets. Therefore, 
the study was performed for the entire data set. In comparing patients of different sex and age, the control group 
consisted of people of a given sex and from a specific age group.

Multivariate statistical analysis. For raw data, we have used Metaboscape v.2022b program recom-
mended filtration of recorded features that removes the ones that for given m/z and retention time are not 
detected in samples from minimum 10 patients. This amount of patients is correlated with smallest group of given 
medical condition. Then data were exported and saved in CSV format. Subsequently, the data was imported into 
the Metaboanalyst 5.0 online  software37 for further analysis. Within the Metaboanalyst platform, the data was 
normalized using log-transformed, auto-scaled, and sum-normalized before analysis. The resulting metabolite 
profiles were then submitted to unsupervised Principal Component Analysis (PCA). The separation identified in 
the 2D and 3D PCA score plots between the BC and control groups was further investigated utilizing supervised 
multivariate statistical analysis such as Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). The 
goodness of fit  (R2Y) and predictive ability of the OPLS-DA models were used to evaluate their quality  (Q2). VIP 
plots were created to identify the metabolites most substantially responsible for group separation. VIP values 
of more than 1.0 were considered promising biomarker candidates. Permutation tests with 2000-fold repetition 
were used to assess the correctness of the multivariate statistical models and rule out the possibility that the 
observed separation in the OPLS-DA is attributable to chance (P-value < 0.05). The t-test with Mann–Whitney 
and Bonferroni correction was used to determine the statistical significance of metabolite level differences. Less 
than 0.05 P-values and false discovery rates (FDR; q-value) were considered statistically significant. The diagnos-
tic value of the identified metabolites was evaluated using receiver operating characteristic curve (ROC) stud-
ies and random forest modeling. The metabolites’ performance was calculated using the area under the curve 
(AUC), 95% confidence interval, specificity, and selectivity. AUC values greater than 0.9 indicate that the model 
is highly dependable, AUC values between 0.7 and 0.9 suggest moderate reliability, AUC values between 0.5 and 
0.7 indicate low reliability, and AUC 0.5 shows that the model prediction is no better than chance. Only variables 
with an AUC greater than 0.70 were deemed meaningful. The training and validation datasets were subjected to 
separate multivariate statistical analyses. Chemicals that distinguish between tumor and control urine samples 
were chosen via external validation, which involves using two different datasets (here referred to as the training 
and validation datasets) to validate the performance of a model. The final collection of possible BC biomark-
ers met all testing and validation data set requirements. Chemometric methods such as 2D PCA, OPLS-DA, 
and ROC analysis were also employed to compare and contrast metabolic profiles between various grades and 
stages of bladder cancer. A metabolic pathway impact study was performed in MetaboAnalyst 5.0 utilizing the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway library for Homo  sapiens38 to discover metabolic 
pathways influenced by bladder cancer. The Small Molecule Pathway Database performed quantitative pathway 
enrichment analysis (SMPD). Each affected pathway was identified using statistical P-values, Holm p (P-value 
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corrected using the Holm-Bonferroni technique), and FDR (P-value adjusted using the False Discovery Rate), 
computed using pathway topology analysis.

Ethical approval. The local Bioethics Committee approved the study protocol at the University of Rzeszow 
(Poland) (permission no. 2018/04/10). Written informed consent was obtained from all subjects and/or their 
legal guardian(s).

Results
Distinguishing between bladder cancer and control urine samples. In total, 2969  m/z features 
were detected in each urine sample, with the condition that feature is found in at least nine samples correspond-
ing to the smallest group of cancer subtype. Both subsets’ unsupervised 2D PCA score plots clearly distinguished 
between cancer patients and controls. The principal components 1 and 2 (i.e., PC1 and PC2), which accounted 
for 22.2% and 10.7%, respectively, provided the best group separation in the training set. In the middle 95% of 
the field of view, just a few outliers were found (Fig. 1a). Additionally, in the validation set, PC1 (26.2%) and PC2 
(9.4%) showed the best separation between cancer and control urine samples (Fig. S1A, information 1).

To investigate the metabolic differences between the BC and NC groups, a supervised multivariate OPLS-DA 
analysis was performed. The score plot in the training set showed a clear divergence between the two groups 
(Fig. 1b). The OPLS-DA model was validated using 2000 permutation tests (Table S2, supplementary informa-
tion). There was good discrimination between the two groups  (Q2 = 0.960,  R2Y = 0.991, p-value 5E-04 (0/2000)), 
revealing significant differences in the metabolic profiles of cancer urine samples versus control urine samples. 
This OPLS-DA model has a high  R2Y and  Q2, indicating good interpretability and predictability. A similar 
tendency to discriminate BC patients and NCs was observed in the validation set’s OPLS-DA model (Table S2), 
which was confirmed by the excellent permutation test results  (Q2 = 0.918,  R2Y = 0.984, p-value 5E-04 (0/2000)). 
Volcano plot and PCA biplot of the most significant metabolite changes comparing cancer and control group 
was shown in supplementary information in the Figure S2. The VIP plot generated by the OPLS-DA model was 
used to select potential urine bladder cancer biomarkers. Then, univariate ROC analysis was performed on both 
the training and validation sets to assess the models’ diagnostic ability. The area under the ROC curve (AUC), 
an adequate measure of model performance, was utilized as a metric to analyze the biomarkers’ sensitivity and 
specificity. Only m/z with an AUC value higher than 0.70 were considered to be relevant by combining the VIP 
(> 1.0) and AUC (> 0.7) with the independent t-test results (p-value and FDR from t-test under 0.05), 464 vari-
ables in the training set were chosen as differential in urine for BC patients and NCs. In turn, 548 variables were 
considered significant in the validation set. Finally, 51 m/z features common to both sets were left for which a 

Figure 1.  Metabolomic analysis of BC and NC urine samples in the training set. (a) PCA and (b) OPLS-DA 
score plots of tumor (violet) and control (orange) urine samples. (c) The receiver operator characteristic (ROC) 
curves. (D–G) The box-and-whisker plots of selected metabolites were observed in the control and BC urine 
samples.
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specific chemical compound was assigned (Table 1, supplementary information 2). The results showed that in 
urine samples, 5 of the previously selected 51 metabolites have a very high AUC value of more than 0.9 and high 
parameters of specificity and sensitivity of more than 80 and 81%, respectively (Table 1 and S1, supplementary 
information 2). The combination of mass features in the validation and training set was a robust discriminator 
of control versus bladder cancer urine samples (AUC > 979%), as illustrated in Fig. 1c and S1C.

Determination of low‑ and high‑grade bladder cancer and control urine samples. Another 
series of PCA and OPLS DA analyses were performed on the training (70 NCs, 30 patients with HG, and 38 
patients with LG) and validation (30 NCs, 12 patients with HG, and 17 patients with LG) data sets (Tabe S1) to 
see if metabolomics analysis of urine samples could help discriminate between different grades of BC. Patients 
with PLUMP were excluded from this analysis due to their small number.

In both the training and validation sets, PCA and OPLS-DA scores plots showed good separation between 
control groups and cancer groups with different grades of tumors (LG vs. NCs and HG vs. NCs) (Fig. 2a–d, 
S3). The quality factors for these models were  Q2 > 0.879 and  R2Y > 0.983, and the P-values from permutation 
tests (n = 2000) were less than 5E−4 (Table S3), which means that the metabolites profiles of these two groups 
could not be more different. But in the PCA scores plot, we didn’t see a big difference between the LG and HG 
BC patients (data not shown). In the LG BC vs. NCs OPLS-DA model, 26 identified chemical compounds were 
considered significant (VIP > 1, P-value 0.05) in both the training set and the validation set (Table S2, supple-
mentary information 2).

Analysis of HG BC vs. NCs in the training and validation sets of the OPLS-DA model showed that 63 com-
monly identified compounds were important in separating the two groups (Table S3, supplementary information 
2). Based on the results of univariate ROC curve analyses, it was determined that these models have satisfactory 
diagnostic performance. Two of the twenty-six metabolites in the LG versus NCs model and thirteen of the 
sixty-three in the HG vs. NCs model had AUC values higher than 0.90 with sensitivity and specificity of more 
than 80 and 87%, respectively (Table 1). Selected metabolites most differentiating different grades of BC and 
NCs are shown in Fig. 2e–h.

Determination of different stages of bladder cancer and control urine samples. To differentiate 
between the various stages of bladder cancer, PCA and OPLS-DA models were developed. The 68 urine samples 

Table 1.  Differential metabolites for discrimination between BC patients and NCs (P-value and FDR < 0.001; 
VIP > 1; FC < 0.5 and > 2; AUC > 0.9). a Experimental monoisotopic mass of ion; bVIP scores derived from 
OPLS-DA model; cfold change between cancer and control serum calculated from the abundance mean values 
for each group – cancer-to-normal ratio; dROC curve analysis for individual biomarkers; ethe metabolites 
identified by high precursor mass accuracy; fthe metabolites identified by matching retention time; gthe 
metabolites identified by matching isotopic pattern; hthe metabolites identified by matching MS/MS fragment 
spectra; AUC: area under the curve; FC: fold change; FDR: false discovery rate; m/z: mass-to-charge ratio; RT: 
retention time; Sens.: Sensitivity; Spec.: Specificity; VIP: variable influence on projection.

No. Name Formula m/za RT [min] VIPb FCc P-value FDR AUC Spec. [%]d Sens. [%]d

1 Oleamidee,g,h

Cancer versus control

C18H35NO 282.2790 5.08 1.70 3.00 2.34E−20 1.73E−18 0.953 90 89

2 Indoleacetic  acide,f,g C10H9NO2 217.0974 2.02 2.08 0.15 1.14E−19 5.43E−18 0.944 90 90

3 Isostearic  acide,g,h C18H36O2 285.2785 0.20 1.95 0.16 1.28E−19 5.99E-18 0.944 86 89

4 N-Alpha-acetyllysinee,f,g C8H16N2O3 268.1056 0.14 1.96 14.89 4.17E−17 9.94E-16 0.912 80 90

5 Azelaic  acide,f,g,h C9H16O4 171.1014 2.54 1.94 0.35 2.97E−16 6.01E−15 0.900 87 81

6 Indoleacetic  acide,f,g

LG versus control
C10H9NO2 217.0974 2.02 2.12 0.18 1.16E−13 4.19E−12 0.934 87 96

7 Isostearic  acide,g,h C18H36O2 285.2785 0.20 1.97 0.18 4.91E−13 1.50E−11 0.923 89 82

8 Isostearic  acide,g,h

HG versus control

C18H36O2 285.2785 0.20 1.94 0.13 1.64E−13 1.43E−11 0.967 97 87

9 Oleamidee,g,h C18H35NO 282.2790 5.08 1.73 4.65 2.88E−13 1.85E−11 0.962 96 87

10 Indoleacetic  acide,f,g C10H9NO2 217.0974 2.02 2.12 0.12 5.02E−13 2.75E−11 0.958 96 93

11 2-Furoylglycinee,f,g,h C7H7NO4 170.0447 1.60 2.00 0.11 7.81E−13 3.66E−11 0.954 96 87

12 Azelaic  acide,f,g,h C9H16O4 171.1014 2.54 1.87 0.27 1.87E−12 7.16E−11 0.946 90 87

13 Cis,cis-Muconic  acide,f,h C6H6O4 125.0232 1.53 1.97 0.09 3.03E−12 1.08E−10 0.942 91 87

14 Phenylglyoxylic  acide,f,g C8H6O3 151.0386 1.85 1.89 0.18 5.16E−12 1.62E−10 0.937 96 83

15 N-Alpha-acetyllysinee,f,g C8H16N2O3 268.1056 0.14 1.85 15.22 1.47E−11 3.85E−10 0.928 100 80

16 Methylmalonic  acide C4H6O4 119.0344 0.03 2.12 0.13 1.55E−11 3.95E−10 0.927 93 90

17 3,4-Dihydroxymandelic 
 acide C8H8O5 226.0709 1.85 1.79 0.19 4.10E−11 8.36E−10 0.918 90 83

18 N-Acetylserotonine,f C12H14N2O2 175.1227 1.75 1.81 0.21 8.73E−11 1.57E−09 0.911 87 90

19 3-Hydroxy-4-methoxycin-
namic  aicde C10H10O4 195.0654 1.79 1.87 0.15 1.06E−10 1.87E−09 0.909 86 87

20 Tiglylglycinee,f C7H11NO3 199.1076 1.56 1.69 0.32 1.66E−10 2.74E−09 0.905 81 87
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from patients with noninvasive papillary carcinomas (pTa) were divided into training (70 NCs, 47 patients with 
pTa) and validation (30 NCs, 21 patients with pTa) sets. The 19 urine samples from patients with the pT1 stage 
of BC were divided into training (70 NCs, 15 patients with pT1) and validation (30 NCs, 5 patients with pT1) 

Figure 2.  Metabolomic analysis of HG/LG BC and NCs of urine samples in the training set. (a) PCA and 
(b) OPLS-DA score plots of HG BC (violet) and control (orange) urine samples. (c) PCA and (d) OPLS-DA 
score plots of LG BC (green) and control (orange) urine samples. (e, h) The box-and-whisker plots of selected 
metabolites were observed in the control, HG, and LG BC urine samples.
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sets. In the case of the pT2 stage of BC, the analysis was performed without dividing it into two sets (30 NCs, 12 
patients with pT2). The PCA and OPLS-DA score plots demonstrated a decent separation between NCs and the 
various stages of BC (pTa vs. NCs, pT1 vs. NCs, and pT2 vs. NCs, Fig. 3 a-f).

Quality factors for these models were  Q2 > 0.836 and  R2Y > 0.985, and P-values derived from permutation tests 
(n = 2000) were less than 5E-4 (Table S2), suggesting very strong discrimination of metabolite profiles between 
these groups. The performance of three models in differentiating between pTa, pT1, and pT2 bladder cancer 
stages and NCs was then evaluated using ROC curve analysis. Based on the cut-off criteria (FC > 2 < 0.5, VIP > 1; 
AUC > 0.7, P-value and FDR < 0.05), finally, 19, 68, and 81 chemical compounds appeared to be most relevant 
for sample distinction between pTa BC vs. NCs, pT1 BC vs. NCs, and pT2 BC vs. NCs, respectively (Table S4-S6, 
supplementary information 2). Comparing the three cancer stage groups (pT1 versus pTa versus pT2) revealed 

Figure 3.  Metabolomic analysis of pTa/pT1/pT2 BC and NCs of urine samples in the training set. (a) PCA 
and (b) OPLS-DA score plots of pTa BC (blue) and control (orange) urine samples. (c) PCA and (d) OPLS-DA 
score plots of pT1 BC (violet) and control (orange) urine samples. (e) PCA and (f) OPLS-DA score plots of pT2 
BC (green) and control (orange) urine samples. (g–k) The box-and-whisker plots of selected metabolites were 
observed in control, pTa, pT1, and pT2 BC urine samples.
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no statistically significant differences (data not shown). Selected metabolites most differentiating different stages 
of BC and NCs are shown in Fig. 3g–k.

Sex‑related differentiation of metabolomic profiles. The differentiation of metabolites in urine 
extracts from patients of different sexes was studied. The control group consisted of people matched to a given 
sex. The comparison of the male BC patients with the male control group was performed with a division into the 
training (55 male BC, 51 male control) and validation (26 male BC, 19 male control) sets. The group of female 
patients was compared on the whole data set (19 female BC, 30 female control).

In both the training and validation sets, PCA and OPLS-DA score plots revealed good discrimination between 
separate control and cancer groups of different sex (Fig. 4a–d).

The quality factors for those models amounted to  Q2 > 0.907 and  R2Y > 0.986, and the P-values derived from 
the permutation tests indicated perfect discrimination of metabolite profiles between those groups. However, 
we did not find a significant difference between the two groups when comparing the male and female patients 
using the PCA scores plot (data not shown).

The performance of two models in differentiating between male and female BC patients and male and female 
NCs was then evaluated using ROC curve analysis. Based on the cut-off criteria (FC > 2 < 0.5, VIP > 1; AUC > 0.7, 
P-value and FDR < 0.05), finally, 79 and 48 chemical compounds appeared to be most relevant for sample distinc-
tion between male BC vs. male NCs, and female BC versus female NCs, respectively (Table S7-S8, supplementary 
information 2). Selected metabolites that differentiate BC patients with different gender from NCs are shown 
in Fig. 4e–h.

Age‑related differentiation of metabolomic profiles. The difference in metabolites in urine extracts 
from patients of various ages was examined. The control group was made up of people of the same age. The entire 
set of LC–MS data from urine samples from BC and NCs patients was divided into three age groups. The first 
group consisted of 11 samples from BC patients aged 40 to 60 and 49 controls of the same age. The second group 
included 24 samples from BC patients aged 40 to 60 and 13 controls of the same age. The third group consisted 
of 65 samples from BC patients aged 40 to 60 and 13 controls of the same age. PCA and OPLS-DA score plots 
indicated strong age-specific identification of distinct NCs and BC groups (Fig. 5a–f).

The quality factors for those models amounted to  Q2 > 0.867 and  R2Y > 0.990, and the P-values derived from 
the permutation tests indicated perfect discrimination of metabolite profiles between those groups. The per-
formance of three models in differentiating between BC patients of different ages and NCs was then evaluated 
using ROC curve analysis. Based on the cut-off criteria (FC > 2 < 0.5, VIP > 1; AUC > 0.7, P-value and FDR < 0.05), 
finally, 65, 55, and 66 chemical compounds appeared to be most relevant for sample distinction between BC 
patients aged 40 to 60 vs. NCs aged 40 to 60, BC patients aged 61 to 70 versus NCs aged 61 to 70 and BC patients 
aged 71 to 90 vs. NCs aged 71 to 90 (Table S9–S11, supplementary information 2). Selected metabolites that 
differentiate BC patients with different age from NCs are shown in Fig. 5g–j.

Pathway analysis of potential biomarkers. MetaboAnalyst 5.0 was used to perform a metabolic path-
way impact analysis to identify the most relevant pathways involved in the observed changes in urine metabolite 
levels. Pathway and quantitative pathway enrichment analyses were performed on 116 metabolites identified 
in the UHPLC-UHRMS analysis. A total of 100 compounds were discovered to be relevant to human metabo-
lism. When comparing BC to NCs, four metabolic pathways were significantly impacted (P-value): tryptophan 
metabolism, pantothenate and CoA biosynthesis, tyrosine metabolism and vitamin B6 metabolism. Figure 6a 
and Table S2 show the results of the pathway impact analysis (supplementary information 1).

We conducted a quantitative enrichment analysis with the MetaboAnalyst 5.0 pathway enrichment module 
and its associated Small Molecule Pathway Database (SMPDB) to expand the metabolomic study of bladder 
cancer-related pathways. Figure 6b and Table S3 show two significant pathways associated with bladder cancer: 
tryptophan metabolism, and vitamin B6 metabolism.

Discussion
Over the last ten years, metabolomics studies have revealed potentially valuable information regarding the meta-
bolic profiles of individuals afflicted with various diseases, including cancer, and possible disease progression or 
recurrence markers. Rapidly proliferating cancer cells have the potential to change their metabolism to suit their 
increased energy demands. Monitoring variations in the concentrations of various metabolites in cancer cells 
or bodily fluids could be a source of novel cancer biomarkers. Several studies have demonstrated the significant 
potential of metabolomic markers in diagnosing multiple cancers and the comprehension of the mechanisms 
behind cancer onset and  progression39.

This investigation compare changes in urine metabolite levels between 100 patients with BC and 100 NCs. 
The 51 metabolites that distinguished these two groups the most were identified. A large group of compounds 
differentiating the NCs group from the BC patients (table S1, supplementary information 1) was lipids and its 
derivatives. Lipids serve as long-term energy storage and are the fundamental building blocks of all cell mem-
branes. Furthermore, lipids play essential roles in living organisms, including nerve impulse transmission, hor-
mone production and regulation, cushioning vital organs, intracellular signal transmission, and cell transporting 
systems. Lipid metabolism is involved in several processes related to cancer cells. Numerous studies over the last 
decade have shown that lipids and metabolites associated with lipid metabolism may be potential markers in 
human cancers, including bladder  cancer40. We found that the urine content of 10 lipids, including four medium-
chain fatty acids (2-hydroxyaproic acid, sebacic acid, azelaic acid, cis,cis-muconic acid), three acylcarnitines 
(3-methylglutarylcarnitine, isovalerylcarnitine, L-acetylcarnitine), two long-chain fatty acids (isostearic acid, 
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palmitic acid) and one hydroxy fatty acid (3-hydroxymethylglutaric acid) was significantly higher in the urine of 
NCs than in the BC subjects. The opposite trend was observed for oleamide (Fig. 1d), which was found in much 
higher concentrations in the urine of BC patients compared to the NCs group, and which turned out to be the 

Figure 4.  Metabolomic analysis of female/male BC and NCs of urine samples. (a) PCA and (b) OPLS-DA 
score plots of female BC (violet) and control female (orange) urine samples in the training set. (c) PCA and (d) 
OPLS-DA score plots of male BC (blue) and control male (green) urine samples. (e–h). The box-and-whisker 
plots of selected metabolites were observed in control, male, and female BC urine samples.
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most distinguishing compound between these two groups. Of all the lipids recognized as the most differentiating, 
oleamide, isostearic acid, and azelaic acid with AUC > 0.9 were the most important.

Oleamide is a member of the fatty amides class of organic compounds. It is an endogenous chemical com-
pound found naturally in blood and urine. This compound has been demonstrated to have a wide variety of 
neuropharmacological effects on many neurochemical systems, and it is recognized as a fatty acid amide that 
induces  sleep41. Oleamide is an agonist of cannabinoid 1 and 2 (CB1 and CB2) receptors that promote cell growth 
and migration via adhesion and/or ionic signals at Gap junctions. Recent studies have shown that oleamide 

Figure 5.  Metabolomic analysis of female/male BC and NCs of urine samples. (a) PCA and (b) OPLS-DA 
score plots of BC patients aged 40 to 60 (violet) and the control group aged 40 to 60 (orange) of urine samples. 
(c) PCA and (d) OPLS-DA score plots of BC patients aged 61 to 70 (green) and the control group aged 61 to 70 
(orange) of urine samples. (e) PCA and (b) OPLS-DA score plots of BC patients aged 71 to 90 (blue) and the 
control group aged 71 to 90 (orange) of urine samples. (g–j) The box-and-whisker plots of selected metabolites 
were observed in control BC urine samples from people of different ages.
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induces cell death in glioblastoma RG2  cells42 and inhibits Caco-2 colon cancer cell  proliferation43. Moreover, 
it was also demonstrated that oleamide increases calcium ions in T24 bladder cancer cell lines, suggesting that 
this compound may alter the cellular function in the urinary  system44. Oleamide has not yet been found as a 
possible biomarker for BC. Yet, an earlier study has revealed that the content of oleamide in the urine of patients 
with kidney and laryngeal cancer is greater than that of healthy people serving as  controls45,46 and in the serum 
of patients with colorectal  cancer47.

Among the lipids most differentiating cancer and the control group, there were also isostearic (Fig. 1f) and 
azelaic acids (Fig. 1h). Azelaic acid is a saturated nine-carbon dicarboxylic acid generated from fatty acid oxida-
tion that suppresses neutrophil reactive oxygen species formation. Azelaic acid has been identified as a potential 
biomarker for colorectal cancer, with significantly lower levels in the urine of patients whit this tumor compared 
to healthy  controls48. Similarly, in our studies, the urine level of azelaic acid was more deficient in BC patients 
than NCs (Fig. 1h).

Indoleacetic acid (IAA) was the second compound, after oleamide, to differentiate the BC group from the 
NCs group (Fig. 1e). IAA is a breakdown product of tryptophan metabolism in mammalian tissues that may be 
produced by the decarboxylation of tryptamine or the oxidative deamination of tryptophan. Some studies indi-
cated an elevated level of IAA in the urine of patients with cervical  cancer49 compared to controls, which may be 
associated with increased secretion of this compound by tumor tissues. IAA was also detected at a high level in 
serum samples of BC patients compared to healthy  controls50. Our research shows a significantly lower amount 
of IAA in BC patients’ urine than NCs. Similar results were obtained in analyzing urinary metabolites in patients 
with breast  cancer51. Moreover, indoleacetic acid is a metabolite of gut bacteria. It is possible that the changes in 
this metabolite were due to changes in the gut microbiome in BC patients, as previously suggested by Tan et al.50.

N-Alpha-acetyllysine is involved in DNA transcriptional activities, including the acetylation of lysine cata-
lyzed by histone acetyltransferase enzymes by adding acetyl groups from acetyl-CoA onto lysine residues histones 
and nonhistone proteins. In this investigation, the level of N-alpha-acetyllysine in urine was higher in the BC 
group than in NCs individuals (Fig. 1g). This aligns with previous studies conducted by Yumba Mpanga and 
coworkers, 58, who identified and quantified this compound in the urine of patients with BC. Interestingly, 
acetyllysine was among the most statistically significant metabolites discriminating against patients with prostate 
cancer (PC) and healthy individuals at high-significantly lower concentrations in urine from PCa  patients52.

To implement the proper treatment regimens for BC patients, it is required to clearly and adequately define the 
stage and grade of this malignancy and indicate the neoplasm. In total, 51 differential metabolites were identified 
as a potential markers for discriminating between LG BC patients and NCs. Indoleacetic acid (specificity—96%, 
sensitivity—93%) and isostearic acid (specificity—97%, sensitivity—87%) were found to be the most differentiat-
ing compounds in this model, with AUC > 0.9. Fifty-nine differential metabolites were identified as a potential 
marker for discriminating between HG BC patients and NCs. Among these metabolites, 5 had tremendous 
discriminant significance with an AUC greater than 0.95, including isostearic acid, oleamide, indoleacetic acid, 
2-furoylglycine, and azelaic acid. Apart from oleamide, other compounds were identified in significantly lower 

Figure 6.  Analysis of the topology of selected statistically significant metabolites in BC. (a) Pathway analysis 
based on KEGG, with bubble area corresponding to the impact of each pathway and color representing 
significance from red to white, from greatest to least. (1) tryptophan metabolism; (2) pantothenate and CoA 
biosynthesis; (3) tyrosine metabolism (4) vitamin B6 metabolism (5) citrate cycle (TCA cycle); (6) beta-alanine 
metabolism; (b) Quantitative enrichment analysis based on SMPDB.
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levels in the urine of HG BC patients compared to NCs. 2-Furoylglycine belongs to the N-acyl-alpha amino acids 
class and is a product of fatty acid catabolism linked to mitochondrial fatty acid beta-oxidation. Earlier urine 
analysis of prostate cancer patients also showed significantly decreased levels of this compound in the cancer 
group compared to  controls53.

Our study shows that a urine-based metabolite profile could accurately discriminate different stages of BC 
(pTa, pT1, and pT2) and NCs (Table 2). In the urine of patients with pTa, pT1, and pT2 stages of BC, we identified 
22 the most differentiating compounds (with AUC > 0.91). One of the compounds that determined stages of BC 
from NCs to the greatest extent was benzaldehyde, which was identified in a much higher amount in the urine 
of patients from the control group. Benzaldehyde is a simple alkane whose levels rise during inflammation and 
oxidative stress, both of which are hallmarks of  cancer54. In previous studies benzaldehyde was found significantly 
increased in BC cells  lines55. Aldehydes are established indicators of oxidative stress and tissue damage, however 
in our study this does not explain the substantially lower quantities found in BC patients’ urine.

Many studies have found that clinical conditions, genetic background, race, age, sex, lifestyle, diet, and medi-
cines strongly impact the urine metabolic  profile32,56. Age and gender are significant determinants that influence 
the urine metabolome, according to inter-individual variance analyses. Knowing the specific differences in 
metabolites linked with age and gender can give a foundation for comparative studies as well as insight into the 
metabolic systems of a healthy body. In literature there are evidences to suggest that sex-related differentiation can 
influence metabolomic profiles. Several studies have demonstrated differences in metabolomic profiles between 
males and females in various physiological and pathological  conditions57. For example, a study published by 
Fan et al.58 analyzed the urine metabolome of healthy individuals and found significant sex-related differences 
in metabolic profiles. The study identified several metabolites that showed sex-specific variations, suggesting 
inherent metabolic distinctions between males and females. Another example of report of this kind was published 
 recently59. The researchers identified sex-specific metabolic signatures and found that certain metabolites were 
significantly different between males and females, indicating potential sex-related metabolic variations. Further-
more, sex-related differences in metabolomic profiles have been observed in various diseases and conditions, 
including cardiovascular diseases, cancer, diabetes, and obesity. These differences may arise from variations in 
hormonal levels, genetic factors, and sex-specific physiological processes. However, sex-related differentiation of 

Table 2.  Differential metabolites for discrimination between pTa, pT1 and pT2 BC patients and NCs 
(P-value < 0.05; FDR < 0.05; VIP > 1; FC < 0.5 and > 2; AUC > 0.91). a Experimental monoisotopic mass of ion; 
bfold change between cancer and control serum calculated from the abundance mean values for each group 
– cancer-to-normal ratio; cROC curve analysis for individual biomarkers; dthe metabolites identified by high 
precursor mass accuracy; ethe metabolites identified by matching retention time; fthe metabolites identified by 
matching isotopic pattern; gthe metabolites identified by matching MS/MS fragment spectra; FC: fold change; 
m/z: mass-to-charge ratio; RT: retention time; Sens.: Sensitivity; Spec.: Specificity.

No Metabolites Formula m/za RT [min]

pTa versus control pT1 versus control pT2 versus control

FCb Spec. [%]c Sens. [%]c FCb Spec. [%]c Sens. [%]c FCb Spec. [%]c Sens. [%]c

1 2,5-Furandicarboxylic 
 acidd,e,g C6H4O5 157.0130 1.28 – – – 0.19 83 100 – – –

2 2-Furoylglycined,e,f,g C7H7NO4 170.0447 1.60 – – – 0.07 97 87 0.13 93 92

3 3,4-Dihydroxymandelic 
 acidd C8H8O5 226.0709 1.85 – – – - – – 0.20 90 83

4 Azelaic  acidd,e,f,g C9H16O4 171.1014 2.54 – – – 0.26 79 93 0.30 93 100

5 Benzaldehyded C7H6O 107.0490 3.30 0.29 100 94 0.32 100 87 0.27 87 92

6 Cholined C5H14NO 143.0702 1.81 – – – 0.19 81 87 – – –

7 Cis,cis-Muconic  acidd,e,g C6H6O4 125.0232 1.53 – – – 0.09 91 93 0.08 83 92

8 Indoleacetic  acidd,e,f C10H9NO2 217.0974 2.02 0.18 87 87 0.09 96 93 0.08 90 100

9 Isostearic  acidd,f,g C18H36O2 285.2785 0.20 0.14 87 87 0.20 87 87 0.47 93 92

10 Methylmalonic  acidd C4H6O4 119.0344 0.03 – – – 0.19 94 87 – – –

11 Mevalonic  acidd C6H12O4 190.1069 2.03 – – – - – – 0.28 90 83

12 N-Acetylserotonind,e C12H14N2O2 175.1227 1.75 – – – 0.17 90 93 0.18 97 83

13 N-Alpha-acetyllysined,e,f C8H16N2O3 268.1056 0.14 – – – 14.06 87 87 – – –

14 Oleamided,f,g C18H35NO 282.2790 5.08 – – – 6.99 96 100 2.14 83 83

15 Palmitamided,f,g C16H33NO 256.2633 5.02 – – – 4.04 93 93 – – –

16 Pantothenic  acidd,f,g C9H17NO5 220.1179 1.68 – – – – – – 0.44 90 92

17 Phenylacetylglycined,e,g C10H11NO3 194.0811 2.19 – – – – – – 0.24 83 83

18 Phenylglyoxylic  acidd,e,f C8H6O3 151.0387 1.85 – – – – – – 0.15 90 92

19 Picolinuric  acidd,f,g C8H8N2O3 181.0607 1.88 – – – 0.40 90 80 – – –

20 Sebacic  acidd,e,f C10H18O4 203.1275 2.22 – – – 0.28 81 93 0.38 83 92

21 Succinic  acide,f C4H6O4 119.0344 0.26 – – – 0.46 94 80 – – –

22 Vanillic  acidd,e,g C8H8O4 169.0491 1.79 – – – – – – 0.27 87 92
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metabolomic profiles is a complex phenomenon influenced by multiple factors, and further research is needed 
to fully understand its underlying mechanisms and implications especially in BC.

Our research further explored the detailed urinary metabolites associated with BC patients of different sex. As 
presented in Table S3 (supplementary information 1), we have identified 19 of the most differentiating metabolites 
(AUC > 0.9) that most significantly determine the urine of males and females with BC from NCs. One of the 
compounds that the most differentiate males from the control group is tryptophan, which was found in signifi-
cantly more significant amounts in urine samples from males with BC patients compared to females with BC and 
NCs. Tryptophan is involved in several mechanisms, including synthesizing biogenic amines such as serotonin, 
melatonin, and tryptamine. It contributes to the formation of nicotinamide adenine dinucleotide  (NAD+), an 
essential coenzyme for energy metabolism in animals (such as the citrate cycle). Prior research suggested that 
tryptophan metabolism may influence human lifespan regulation.

Tryptophan metabolism has been extensively studied in relation to bladder cancer, and its significance has 
been consistently reported in the  literature60. Previous studies have observed significant increases in tryptophan 
levels in urine, serum, and tissue samples from bladder cancer patients compared to control  groups18,61–63. Sex-
related differences have been identified in the metabolism of tryptophan, suggesting a potential link between sex 
hormones and tryptophan-related pathways in the context of bladder  cancer32,61. The disruption of tryptophan 
metabolism in bladder cancer patients involves various mechanisms affecting enzymes and pathways. One expla-
nation is the increased degradation of tryptophan. Bladder cancer cells may upregulate enzymes like tryptophan 
2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), leading to heightened tryptophan degradation. 
This depletion reduces the availability of tryptophan for vital cellular  functions64. Additionally, the activation of 
the kynurenine pathway was implicated. In bladder cancer, this pathway can become activated, resulting in the 
production of immunosuppressive and tumor-promoting metabolites like kynurenine, 3-hydroxykynurenine, 
and kynurenic  acid65. Alterations in enzyme expression also contribute to tryptophan metabolism disruption. 
Changes in the levels of enzymes involved in tryptophan metabolism, such as tryptophan hydroxylase, kynure-
nine aminotransferases, and kynureninase, can impact the conversion of tryptophan into downstream metabo-
lites, leading to metabolic  dysregulation66. Immune cells like tumor-associated macrophages or regulatory T 
cells can stimulate the expression of IDO or TDO, resulting in tryptophan depletion and immune  evasion67. 
These various mechanisms collectively contribute to the disruption of tryptophan metabolism in bladder cancer, 
highlighting the complexity of its involvement in the disease.

In conclusion, we show that ultra-high-resolution mass spectrometry is an effective method for character-
izing urine metabolome variations in BC. We have indicated several dozen metabolites that have the potential to 
distinguish urine from BC patients from the urine of healthy volunteers, considering the division into different 
grades and stages of BC cancer as well as gender and age. To date, there is no published research indicating the 
specific combinations of metabolites like these proposed by our study that could potentially serve as important 
markers for early detection of BC. Furthermore, it was crucial to consider factors such as the stage and grade of 
malignancy, as well as the influence of sex and age, which can further contribute to the complexity of identifying 
relevant metabolomic signatures in BC. Future investigations are needed to explore these potential associations 
and provide a deeper understanding of the intricate interplay between metabolites, disease characteristics, and 
individual factors in the context of BC. Our results have the potential to help develop simple, non-invasive 
specific, and sensitive diagnostic tests to detect different stages and grades of BC, as well as to monitor disease 
recurrence.

Data availability
The corresponding author’s data supporting this study’s findings are available upon reasonable request.
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