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A comparison of machine learning 
methods to classify radioactive 
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neutron activation data
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The detection of illicit radiological materials is critical to establishing a robust second line of defence 
in nuclear security. Neutron‑capture prompt‑gamma activation analysis (PGAA) can be used to detect 
multiple radioactive materials across the entire Periodic Table. However, long detection times and a 
high rate of false positives pose a significant hindrance in the deployment of PGAA‑based systems 
to identify the presence of illicit substances in nuclear forensics. In the present work, six different 
machine‑learning algorithms were developed to classify radioactive elements based on the PGAA 
energy spectra. The model performance was evaluated using standard classification metrics and 
trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for 
classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, 
F1‑score, Specificity, Confusion matrix, ROC‑AUC curves, and Geometric Mean Score (GMS) measures. 
The tree‑based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently 
outperformed Support Vector Machine and K‑Nearest Neighbours. Based on the results presented, 
AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the 
high recall and minimal false negatives reported in the minority class.

Abbreviations
PGAA   Prompt gamma ray neutron activation analysis
ML  Machine learning
KNN  K-nearest neighbours
ANN  Artificial neural network
SVM  Support vector machines
DT  Decision trees
RF  Random forest
AB  AdaBoost
TP  True positive
TN  True negative
FP  False positive
FN  False negative
FPR  False positive rate
TNR  True negative rate
ROC  Receiver operating characteristics
AUC   Area under the curve
GMS  Geometric mean score
IBA  Index balanced accuracy
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There are growing concerns over the threat from nuclear terrorism caused by illicit trafficking and other mali-
cious acts involving nuclear and radiological materials, especially those originating from special nuclear mate-
rial (SNM). Nuclear security must adapt and improve to combat these threats by using a multi-layered defence 
model that includes robust prevention, detection, and response  mechanisms1. The detection of illicit materials is 
crucial to safeguard a robust second-line of defence that involves screening of potential threats at borders, ports, 
airports, and nuclear facilities. Henceforth, development and deployment of nuclear security systems with proven 
detection technologies will remain a key  priority2. Nuclear-forensics-based analytical methods are increasingly 
being used to investigate radiological material for its isotopic and elemental composition that lead to useful infer-
ences over the origin of the material. Gamma and neutron detection instruments are predominantly used for 
identifying the presence of illicit material due to their greater penetration capabilities compared to other types 
of radiation. However, reducing the false alarm rate is one of the major challenges with such detector systems.

Prompt-Gamma Activation Analysis (PGAA)3–5 is an efficient non-destructive radio-analytical technique 
used for detecting elements via excitation of the target nuclei resulting in the generation of prompt-gamma-
rays from neutron capture during the gamma emission (n, γ) reaction. PGAA can perform rapid in situ multi-
elemental detection of radioactive materials, using γ-ray detectors typically made with high-purity germanium 
(HPGe)6. The gamma-ray spectra are subsequently processed and analysed using an electronic data acquisition 
system. Further, the composite elements of the target samples can be identified by comparing the energies and 
peak intensities with the PGAA library of prompt-gamma-rays emitted by individual elements. Figure 1 shows 
a schematic representation of the PGAA technique and presents an illustration of various stages of the elemental 
detection. PGAA exploits the prompt capture gamma rays directly by triggering a radioactive capture reaction 
between a neutron and the nucleus of any atom. The neutron then interacts with the target nucleus and a com-
pound nucleus is formed in an excited state. PGAA exhibit relatively complicated gamma spectra and there is 
interference from the neutron source and background radiation. In pulsed neutron sources, the detection limit 
of PGAA relies on the effective capture cross-section through (n, γ) reaction of the target sample. The major 
drawback of PGAA is that the high γ-ray background from the epithermal neutron beamline can cause prolonged 
detection times in order to obtain acceptable elemental peaks for low signal  amplitudes7. The detection time can 
be significantly reduced by enhancing the signal-to-noise ratio through noise reduction techniques to yield reli-
able results in real time. Furthermore, the calibration process involving the comparison of the observed spectra 
in the investigated material with a standard sample spectrum can be quite  cumbersome8. Moreover, the rate of 
false positives for detection of any illicit material remains quite high in PGAA 6.

Machine learning has been extensively used to analyse gamma-ray spectrometry data for identification of 
radioisotopes and detection of explosives. Alamaniotis et al. developed a fuzzy logic radioisotope  identifier9 
and a hybrid fuzzy genetic approach for rapid identification of spectral peaks in complex gamma ray  spectra10. 
Fatah et al.11 proposed a Levenberg-Marquadt non-linear least-square fitting for analysis of gamma ray spectra. 
Varley et al.12 used a combination of principal component analysis and neural networks for mapping activity and 
spatial distribution of 226Ra. Sullivan et al.13 and Kamuda et al.14,15 presented an automated isotope algorithm in 
a large dataset of low-resolution gamma ray spectra containing a mixture of multiple radio-isotopes based on 
Bayesian and artificial neural networks respectively. Specifically, PGAA data have been analysed via applying 
machine-learning methods for detection of illicit  materials16–18, online  monitoring19, material  classification20 
and thermal neutron beam  optimisation21. Recently, Kamuda et al. 22 compared the performance of artificial 

Figure 1.  Schematic illustration of prompt-gamma-ray neutron activation analysis (PGAA).
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neural networks and convolutional neural networks for automated gamma-ray spectroscopy to identify mixtures 
of radioisotopes. However, there is no comprehensive study to-date comparing the performance of different 
machine learning methods for classifying PGAA spectral information. Such  studies23–25 can throw light on the 
efficacy of different machine learning algorithms that can be potentially beneficial for reducing false alarm rates 
within detector systems. Additionally, multi-class classification of datasets with skewed distributions represents 
a major challenge in machine  learning26. The use of sampling techniques and extended metrics can be effectively 
used to minimise the discrepancies arising from imbalanced  classes27–29. However, over-sampling can further 
increase the computational burden and under-sampling can potentially result in loss of valuable information. 
Recently, Nega et al.30 reviewed different methods primarily based on resampling and classifier adaptation for 
handling imbalance in multi-label classification whilst addressing its advantages and limitations. An important 
outcome of this study was developing a comprehensive framework for handling class imbalance is still under-
studied despite the increasing application of multi-label classification in different domains.

Elemental identification in PGAA is based on comparing the sample spectrum with the gamma ray database 
consisting of majority of elements from hydrogen to uranium. The elements are then qualitatively identified based 
on the energies of the dominant peaks. Large number of gamma rays may be required to redundantly identify 
an element. Furthermore, to ensure reliability of the element identification, appropriate statistical comparison 
of the energies, comparison of the relative gamma-ray intensities in the database, and consideration of possible 
background contaminants from the (n, γ) reactions in the surrounding material have to be undertaken. In 
addition, the background spectra are used to correct the analysis when necessary. Overall, this can be a tedious 
and time-consuming process, hence we used ML algorithms to effectively classify the radioactive elements by 
identifying the underlying patterns in the PGAA spectral data and constitute the rational of this study. In this 
work, six different machine learning algorithms were developed to undertake classification of radioactive ele-
ments with imbalanced classes using PGAA spectral data. Radioactive elements positioned at different locations 
of the periodic table that are more likely to be stolen and used in illicit activities such as cobalt (27Co), caesium 
(55Cs), iridium (77Ir), uranium (92U) and thorium (90

Th) were classified based on the PGAA energy spectra 
(Eɣ) and capture cross-section (σ). The most common classification algorithms in supervised learning that are 
also diverse in nature, For instance, K-Nearest Neighbours are based on nearest neighbours, Artificial neural 
networks (Deep learning), Decision trees (Tree based learning), AdaBoost (Tree based gradient boosting), Ran-
dom Forest (Bootstrap aggregation of Trees) and Support vector machines (Kernel based learning) were used 
to perform robust comparison studies with a focus on evaluation metrics. We evaluate the model performance 
based on conventionally used classification metrics and trend curves. We also use extended metrics to evaluate 
the effectiveness and to enhance the understanding of different machine learning algorithms that are best suited 
for classifying PGAA spectral information.

In the following sections, we discuss the PGAA data in detail, followed by the different supervised algorithms 
and cross-validation techniques used in this work. In the subsequent sections, we present the results and discus-
sion of the study covering various classification metrics and trend curves used for critical comparison of the 
applied machine learning algorithms.

Methods
PGAA database. The PGAA  database3 was developed for elemental analysis by the coordinated efforts of 
the International Atomic Energy Agency (IAEA) and the International Nuclear Data Committee (INDC) are 
representative of scenarios found in nuclear security and safeguards. The PGAA database (data can be accessed 
using the supplementary file provided) comprises a wide range of neutron source facilities that can be broadly 
divided into neutrons from nuclear reactors, and smaller mobile systems such as neutron generators, accel-
erators, and isotopic sources. The largest source of radiative neutron capture gamma-ray cross sections is the 
Institute of Isotope and Surface Chemistry, using the thermal-neutron beam facility of the Budapest Research 
 Reactor31. The different radioisotopes generated during neutron activation are categorized by different γ–ray 
energies and half-lives. The neutron energy spectrum and fraction of epithermal neutrons have a strong influ-
ence on the measured capture rate. It is widely understood that the specific element that captures a neutron will 
decay promptly by emitting a γ-ray of energy Eγ. Further, radioisotopes can be analysed quantitatively based on 
their peak intensities associated with a specific γ-ray energy. The partial capture cross section of the nucleus (σγ 
(Eγ)), is expressed as the product form P(Eγ).σ0; where P(Eγ) is the absolute γ emission probability (γs emitted 
per capture) of the prompt gamma ray of energy Eγ and σ0 is the 2200  ms–1 neutron capture cross-section.

The elemental capture cross-section in a partial form for an element Z is expressed as:

where θ is the isotopic abundance. Note, the term σZ
γ (Eγ ) refers to the cross-section required to generate a specific 

gamma-ray of energy Eγ. The effective capture cross-section can be then defined as the averaged cross-section 
over the neutron energy spectrum using:

where v is the neutron speed and v0 equals 2200  ms–1, n(v)dv is the number density ofneutrons with speed 
between v and v + dv, σγ(v) is the neutron capture cross-section that is dependent on the speed of the investigated 
nuclide, and ρ(v) is the neutron speed distribution function after normalization. In this study, the energy of 
the γ–ray spectra (Eγ) and effective capture cross-section ( ∧σ  ) data are used to develop the classification models.

The features were standardised by removing the mean and scaling to unit variance.

(1)σZ
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The standard score of a sample x is calculated as:

where µ is the mean of the training samples, and s is the standard deviation of the training samples.
Figure 2 shows a graphical representation of PGAA data using bar charts showing sample size of different 

classes (1600 samples were used for training and testing the algorithms with a percentage split of 70:30). The 
proportion of minority class in the dataset was found to be less than 25% of the majority class, signifying the 
presence of moderate class imbalance. The majority classes can thereby have a detrimental effect on the learner’s 
behaviour and can adversely affect the classifier’s performance in the minority  classes32. In the present paper, we 
focus on comparing the classifier performance while also identifying the most effective algorithms and metrics 
when dealing with imbalanced datasets.

Machine learning algorithms and optimisation strategy. Multi-class classification of imbalanced 
data represents a major significant challenge, especially in predicting minority class examples due to the skewed 
distribution of output classes. Suitable optimisation strategies must be undertaken to prevent overfitting and to 
address the bias-variance trade-off. This involves tuning the hyper-parameters of the machine learning algo-
rithms and implementing an appropriate cross-validation  mechanism33. In the present work, machine learn-
ing algorithms are developed in the Python scripting language using the Scikit-learn  library34 with the default 
parameter settings. The hyper-parameters of individual machine learning models were optimised using the 
GridSearchCV routine. Table 1 shows the parameter details of different classification algorithms used in this 
work. Machine learning  algorithms35 work on the fundamental principle of learning from representative exam-
ples to correlate different features through optimisation of an objective function. K-Nearest Neighbours (KNN) 
is possibly the simplest algorithm presented in this study, that works based on the idea of proximity (‘Minkowski 
distance’). Artificial Neural Networks (ANNs) learn by abstract representations of mapping features to targets 
using activation functions and feedback signals from successive layers. Support Vector Machine (SVM) works 
based on finding a hyperplane in a given feature space that can best separate the different classes. With SVM, 
we used the one-vs-rest (ovr) method for multi-class classification where a multi-class classification problem is 
split into multiple binary classification problems. By contrast, tree-based models such as Decision Tree (DT), 
Random Forest (RF) and AdaBoost (AB) are a class of non-parameterised models that work by generating a 
set of splitting rules to partition the feature space into a number of non-overlapping regions. Random Forest is 
a modification of Decision Tree that builds an ensemble of de-correlated trees based on bootstrap aggregation 
known as bagging; aggregation of prediction from individual trees can reduce the variance resulting in better 
predictive performance. AdaBoost on the other hand is an ensemble form of Decision Tree based on boosting 
that combines multiple weak classifiers in order to assign an appropriate weighting in the final voting to enhance 
the overall performance.

Different methods for splitting data were applied in conjunction with several cross-validation techniques to 
evaluate the accuracy of different algorithms using the cross-validation modules available in Scikit-learn  library34. 
Figure 3 illustrates the different types of cross-validation techniques used for generating random splits of training 
and test datasets. In KFold cross-validator, the dataset is split into k consecutive folds and each fold is then used 
for validation while the k–1 remaining folds are used for training. Group KFold is a KFold variant with non-
overlapping groups where the same group is not used in two different folds and are approximately balanced such 
that the number of distinct groups is the same in each fold. In shufflesplit, a random permutation is employed 
to yield indices to divide data for training and testing. However, contrary to other cross-validation strategies, 
random splits may not result in all the folds to be different. Another variation of K-Fold is Stratified KFold that 

(3)z = (x − µ)/s

Figure 2.  (a) Data visualisation of PGAA showing different classes. The proportion of minority class in the 
dataset was less than 25% of the majority class signifying the presence of moderate class imbalance (b) Box 
plot showing the distribution of Energy spectra for different radiological elements analysed in this study. Box 
plot represents the five number summary of the data showing the Min, Q1 (lower quartile), Median, Q3 (upper 
quartile) and Max value.
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returns stratified folds made by selecting samples from each class and ensuring the class strength is preserved. 
Further, in Group shufflesplit the group information is applied to obtain domain-specific stratifications in the 
form of integers for all the samples. However, the major difference compared to LeavePGroupsOut is that the 
splits are generated by all subsets of P unique groups, whereas in GroupShuffleSplit the splits are generated by 
the user based on random test splits, each with a user specified fraction of unique groups. Stratified ShuffleSplit 
is implemented by merging StratifiedKFold and ShuffleSplit that returns stratified randomized folds made by 
using appropriate percentage of samples in each class.

Results and discussion
Classification metrics. The classification ability of algorithms can be evaluated using multiple perfor-
mance indicators, and often plays an important role in the design of the learning system. The selection of appro-
priate metrics is deemed to be as crucial as selecting the learning algorithm for a given classification problem. 
Accuracy is the most simple and easy to evaluate metric that can summarize a model’s performance. However, 
accuracy can often be misleading in imbalanced distributions because of the skewed nature of classes. Impor-
tantly, a measure of accuracy is unable to distinguish between the number of correctly classified examples of least 
represented or minority classes.

Accuracy is defined as:

where TP and TN are the numbers of True Positives and True Negatives respectively; and FN and FP are the 
numbers of False Negatives and False Positives respectively.

Figure 4 shows the heat map of cross validation accuracy (with 4 splits) using different algorithms. DT, RF 
and AB give the highest accuracy (in the range of 0.66–0.69) followed by ANN (accuracy range = 0.62–0.65). 
The cross-validation accuracy of KNN and SVM were observed to be the least with a value close to 0.55. Overall, 
the cross-validation accuracy has been found to be consistent regardless of the technique used to split the data.

Among classification metrics, a lot of emphasis is given to measures of precision and recall (sensitivity) as they 
are more effective in dealing with imbalanced distributions. However, it is difficult to achieve a trade-off between 
precision and recall parameters and the requirement is often dictated by the nature of the classification problem. 
Precision is the ratio between the true positives and all the positive cases observed, whereas Recall is the model’s 
ability to correctly identify true positives. Precision is more relevant when there is substantial interest to achieve 
high performance in identifying positive cases or there is higher margin for false negatives. Recall proves more 
reliable if the objective is to detect all the positives without fail or false positives are acceptable within certain 
margin. The Precision and Recall (true positive rate) terms can be expressed as:

(4)Accuracy =
TP + TN

TP + FN + TN + FP

Table 1.  Parameter specifications of different classification algorithms used in this study.

Algorithm Descriptors

KNN

Number of neighbors (K_range) = 1–100,
weights = ’uniform’,
algorithm = ’auto’,
leaf_size = 30,
Power parameter for the Minkowski metric (p) = 2,
metric = ’minkowski’

ANN

Max_iter = 1000
hidden_layer_sizes: 20
activation: [’tanh’, ’relu’],
solver: [’sgd’, ’adam’],
alpha: [0.0001, 0.05],

SVM
decision_function_shape = ’ovr’,
degree = 3,
gamma = ’auto’,
kernel = ’rbf ’,

DT

criterion = ’gini’,
splitter = ’best’,
max_depth = 6,
min_samples_split = 2,
min_samples_leaf = 1,

RF

criterion = ’gini’,
max_depth = 6,
min_impurity_decrease = 1e-07,
min_samples_split = 2,
n_estimators = 10,

AB
max_depth = 6
n_estimators = 600,
learning_rate = 1.5,
algorithm = ’SAMME’
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In the context of threat detection, recall is more important than precision as false negatives can lead to severe 
consequences. However, there is an increasing desire to improve the efficiency of detector systems by reducing 
the rate of false positives. The F1-score is used when precision and recall are equally important (defined as the 
harmonic mean of Precision and Recall):

Another classification metric called Specificity gives the measure of negative samples that are correctly clas-
sified. It is expressed as:

Classification metrics Precision, Recall, F1-score and Specificity for different classes are described in Table 2 
(highest value of the metric is highlighted). DT is the winner with the precision metrics reportedly giving the 

(5)Precision =
TP

TP + FP

(6)Recall (Sensitivity or TPR) =
TP

TP + FN

(7)F1 - score = 2×
Precision × Recall

Precision + Recall

(8)Specificity (TNR) =
TN

TN + FP

Figure 3.  Data visualisation of different types of cross validation techniques performed in this study for 
generating random split of training and test sets. Data structure comprises of 1600 datapoints, 5 classes split 
unevenly across datapoints, and 10 groups split evenly across datapoints. The data is split into 4 folds where in 
on each split, the indices chosen for the training set (in blue) and the test set (in red) are visualised.
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highest values for both majority and minority classes. However, AB seems to be the most consistent with Recall 
metrics especially in minority classes. Furthermore, in the case of F1-score and Specificity, DT was found to 
give the highest metric values.

Overall, tree-based algorithms were the clear winners with DT emerging as the best performer followed by RF 
and AB. Interestingly, tree-based algorithms have outperformed ANN taking into the account the performance 
metrics in both majority and minority classes, whereas SVM and KNN were found to be the weakest performers 
by a significant margin.

For better interpretability, the macro and weighted average of Precision, Recall, and F1 score are presented in 
Fig. 5. Macro average is calculated using the unweighted mean that can penalize the model if the performance in 

Figure 4.  Heat map of cross validation accuracy (4 splits) using different machine learning algorithms. Among 
the classifiers used, Decision Trees (DT) followed by AdaBoost (AB) achieved the highest cross validation 
accuracy whereas K-Nearest Neighbours (KNN) and Support Vector Machines (SVM) reported the lowest 
metrics.

Table 2.  Classification metrics Precision, Recall, F1-score and Specificity for different classes. Classes are 
constituted as 1- Cobalt, 2- Caesium, 3- Iridium, 4- Uranium and 5- Thorium for the PGAA database used in 
this study. Best metric values are indicated in bold.

Metric

Algorithm

KNN ANN SVM DT RF ABClass

Precision

1 0.50 0.76 0.58 0.78 0.71 0.69

2 0.49 0.53 0.58 0.54 0.54 0.53

3 0.65 0.74 0.57 0.78 0.76 0.76

4 0.40 0.50 0.58 0.60 0.49 0.53

5 0.39 0.63 0.28 0.62 0.66 0.58

Recall

1 0.33 0.61 0.52 0.64 0.64 0.65

2 0.61 0.73 0.27 0.68 0.58 0.54

3 0.90 0.86 0.98 0.89 0.82 0.76

4 0.32 0.37 0.39 0.39 0.47 0.55

5 0.13 0.28 0.16 0.43 0.57 0.57

F1-score

1 0.40 0.68 0.55 0.70 0.67 0.67

2 0.54 0.61 0.37 0.61 0.56 0.53

3 0.76 0.80 0.72 0.83 0.79 0.76

4 0.35 0.42 0.47 0.48 0.48 0.53

5 0.20 0.39 0.21 0.50 0.61 0.58

Specificity

1 0.91 0.95 0.90 0.95 0.93 0.92

2 0.80 0.79 0.94 0.82 0.84 0.87

3 0.77 0.85 0.64 0.88 0.88 0.87

4 0.96 0.97 0.98 0.98 0.96 0.95

5 0.97 0.97 0.93 0.96 0.95 0.94
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minority classes is poor. On the other hand, weighted average takes into account the number of true instances in 
each class to cope with class imbalance and consequently favours the majority class. DT has recorded the high-
est precision measures with macro and weighted averages, closely followed by ANN, RF and AB (see Fig. 5a,b). 
In the case of recall, AB has emerged as the best performer compared to the other tree-based algorithms with 
macro-average as a performance indicator. In the category of weighted average, DT is leading the performance 
chart followed by AB and RF (see Fig. 5c,d). In the case of F1-score, AB leads its counterparts based on the macro 
average and DT comes out as the top performer with weighted average (Fig. 5e,f). In comparison to tree-based 
algorithms, ANN is the only other algorithm that has shown similar level of performance, whereas KNN and 
SVM are seen to be ineffective for handling imbalanced classes. In summary, tree-based algorithms are found 
to be superior considering the precision, recall and F1-score indicators, with DT appearing more frequently on 
the leader board with weighted averages and AB with macro averages. Nevertheless, macro averages should be 
preferred over weighted averages in detection applications with skewed distributions as the former shows a true 
reflection of the performance in minority classes.

Further, we performed a Wilcoxon Sign-Ranked test on the classification metrics obtained from KNN, SVM, 
ANN, RF and AB (see Table 3) with the Null hypothesis that the difference between the pairs follows a sym-
metric distribution around zero. Samples were paired with metrics obtained from Decision Trees as it was the 

Figure 5.  Macro and weighted average of precision, recall and F1-score evaluated using (a) K-Nearest 
Neighbours (b) Artificial Neural Networks (c) Support Vector Machines (d) Decision Trees (e) Random Forest 
(f) AdaBoost gradient algorithms. For a given metric P, Macro average is calculated using the aggregation 
process P1class1 + P2class2 + ….Pnclassn results in greater penalisation when the model does not perform well in 
minority class. However, in weighted average the scores of independent class is added with a weight (W) using 
P1class1 × W1 + P2class2 × W2 + ….Pnclassn × Wn favouring the majority class.
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most consistent performer as evidenced in Table 2. The resulting p-value was insignificant (p-value > 0.05) as 
observed in DT-RF and DT-AB sample pairs. Hence the performance difference from the Tree-based methods 
can be considered as statistically insignificant. On the contrary, the performance metric was statistically better 
compared to the metrics obtained from KNN, SVM and ANN.

A Confusion Matrix provides a graphical representation of the classification results by comparing the true 
labels and the predicted labels. The matrix (Cij) takes the form of an N × N square matrix where N is the num-
ber of target classes such that true positives are represented as the diagonal elements of the matrix. The total 
number of false positives (Type 1 error) in a class can be evaluated by taking the sum of elements along the 
column excluding the diagonal elements of the square matrix. For instance, for class 1 the false positives can be 
expressed as the sum of Ci1 elements (i = 1 to 5). Similarly, the total number of false negatives (Type 2 error) in a 
class can be calculated by taking the sum of row elements: i.e., for class 1, the sum of C1j, (j = 1–5). Figure 6 shows 
the Confusion matrix obtained using different machine learning algorithms. The Type 1 (FP) and Type 2 (FN) 
errors can be directly calculated from the Confusion matrix. Table 4 presents a comparison of Type 1 and Type 
2 errors for majority and minority classes for different algorithms. The least Type 1 error of 40 in the majority 
class is reported with DT and RF algorithms out of 157 classifications where highest number of false positives 
is observed in SVM. In minority class, DT has superior performance with just 10 cases of false positives among 
38 observations. However, when it comes to Type 2 error, SVM reports the best performance of just 3 out of 
271 observations in the majority class. This clearly shows a systematic bias in SVM with very high recall value 
in the majority class whilst demonstrating poor performance in other classes. The frequency of false negatives 
(Type 2 error) in minority class is lowest with AB and validates the high recall reported in the minority class. 
Overall, tree-based algorithms are the most consistent with DT demonstrating slightly better performance in 
Type 1 error and AB in Type 2 error.

ROC curves and AUC score. The Receiver Operating Characteristic (ROC) is a trend curve used to quan-
tify the multi-class classification performance of various threshold  settings34,36. ROC represents a probability 
curve that can give some insight on how capable a model is to distinguish different classes. ROC is a plot of the 
True Positive Rate (TPR) on the Y-axis and the False Positive Rate (FPR) on the X-axis. The steepness associ-
ated with ROC curves signify to what extent the model is capable of maximising the TPR while minimizing the 
FPR. Area Under the Curve (AUC) is another performance measure used to demonstrate the model’s ability to 
separate different classes. The higher the value of the AUC, the better its ability to strike a balance between sensi-
tivity and specificity. The AUC can be very effective whilst dealing with imbalanced distributions, and can avoid 
overfitting to a single class. In order to generate ROC curves, averaged set of TPR against fixed FPR was obtained 
after binarizing the output using One-vs-Rest scheme that compares each class against all the others (assumed 
as one). The predicted labels are provided in an array with values ranging from 1 to 5 (number of classes), and 
the scores correspond to the probability estimates that a sample belongs to a particular class. Figure 7 shows the 
Receiver Operating Characteristics (ROC) curves using different machine learning algorithms using One-vs-
Rest scheme. The highest micro and macro average was obtained using ANN and AB algorithms. However, AB 
has the competitive edge as it gives the highest class-wise metric for the minority class. Other tree-based algo-
rithms DT and RF also performed appreciably well and closely match the results of AB and ANN. Table 5 shows 
the AUC score obtained by using different machine learning algorithms. In One-vs-Rest (OvR), the AUC is 
evaluated based on each class against the rest and is sensitive to class imbalance. On the contrary, the multi-class 
One-vs-One (OvO) scheme compares every unique pairwise combination of classes and is not sensitive to class 
imbalance. The AUC was calculated using the OvR and OvO schemes for computing both macro average and 
prevalence-weighted average. ANN reportedly indicate the highest macro and weighted average in OvR whereas 
AB emerged as the most superior in the OvO scheme clearly showing the ability to deal with skewed classes.

Extended metrics. The classification performance is evaluated based on some extended metrics that are 
specific to imbalanced distributions. One such metric is the Geometric Mean Score (GMS) defined as the n-th 
root of the product of sensitivity of each class. This measure effectively maximizes the accuracy of each class 
while obtaining good balance. Although GMS can reduce the inhibitory effects of skewed classes, it cannot sepa-
rate the contribution of each class to the overall performance or reduce the effect of the dominant class. Another 
metric called the Index Balanced Accuracy (IBA) can be defined for any performance metric. The advantage of 

Table 3.  Results from Wilcoxon Sign-Ranked test performed on classification metrics from K-Nearest 
Neighbour, Support Vector Machine, Artificial Neural Network, Random Forest and Ada Boost. Samples are 
paired with metrics obtained from Decision Trees. The resulting p-value is insignificant (p-value > 0.05) in 
DT-RF and DT-AB sample pairs.

Paired samples T-value p-value

DT-KNN 3.0 9.53e−06

DT-SVM 18.5 0.0035

DT-ANN 19.0 0.0037

DT-RF 54.5 0.4847

DT-AB 75.5 0.2942
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Figure 6.  Confusion matrix obtained using: (a) K-Nearest Neighbours (b) Artificial Neural Networks (c) 
Support Vector Machines (d) Decision Trees (e) Random Forest (f) AdaBoost gradient algorithms. In a 
Confusion matrix (Cij) diagonal elements of the matrix denote the true positives, false positives (Type 1 error) 
can be evaluated by taking the sum of elements along the column (for class 1 the false positives can be expressed 
as the sum of Ci1 elements (i = 1 to 5). The total number of false negatives (Type 2 error) in class 1 can be 
calculated by taking the sum of row elements i.e. the sum of C1j, (j = 1 to 5).
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using IBA is that it takes into account the effect of the dominant class by utilizing a scoring function. Here we 
evaluate the IBA of GMS expressed as:

where Dominance is an index to measure to signify the dominance of the majority class and α is a term that 
defines the weighting factor. In the present work we used the default value of α = 0.1.

Figure 8 shows the Heat map showing the class-wise distribution of the Geometric Mean Score (GMS) and 
Index Balanced Accuracy of GMS. Both metrics follow similar patterns in the class-wise distributions. DT is 
the best performer in the majority class, followed by ANN and then RF and AB. However, AB performs better 
than any other algorithms with the metrics associated with the minority class by a significant margin. We also 
present the mean values of geometric mean score (GMS) and index-balanced accuracy of GMS  (GMSIBA) evalu-
ated using different ML algorithms in Table 6. Here, DT is the winner closely followed by RF and AB. Overall, 
Tree-based algorithms lead the chart of performance metrics among the classification algorithms. Interestingly, 
the superior performance of AB in the minority class is not reflected in the mean metrics of GMS and  GMSIBA. 
This emphasises why it is important to consider the class-wise distributions rather than evaluating a global metric 
in the case of skewed distributions.

Overall, the classification metrics imply that the tree-based algorithms and ANN have performed exceed-
ingly well, whilst SVM and KNN displayed poor performance and were highly inconsistent. Both KNN and 
SVM have been particularly susceptible to class imbalance and are biased towards the majority instances of the 
training space. However, it is not a straightforward task to select a winner despite the majority of the classifica-
tion metrics suggesting DT as the best-performing algorithm. This is because in the context of threat detection 
of illicit materials, the algorithm must be able to detect all the positive cases (flagged as potential threats) from 
a very large sample space dominated by non-threat classes. Hence, recall is more important than precision and 
the ability to identify false negatives in the minority classes plays a crucial role in determining the efficacy of an 
algorithm. This has been a major weakness associated with DT despite the fact that it has been consistent and 
leads the performance metric in multiple categories. Hence, the performance of DT may be greatly influenced 
by the contribution of the dominant classes. In contrast, AB has been more consistent and much more supe-
rior with Recall metric and performance in the minority class. Moreover, AB was found to be leading in the 
ROC-AUC metric and reportedly the top performer in the GMS within the minority class. Furthermore, the 
classification metrics used in this study have been helpful in comparing different ML algorithms. However, the 
metrics should be carefully chosen based on the application domain and more weighting should be given to the 
metrics to address the precision-recall trade-off and the class-wise distribution of the spectral data. Furthermore, 
as a recommendation for selecting the best algorithm in skewed distributions, the class-wise sensitivity of the 
metrics should be considered rather than evaluating a global metric that may favour the majority classes in the 
spectral data.

In practice, the consequences of misclassification can have serious security and cost implications depending 
on the impact on the type of application within the nuclear context. Importantly, false alarm (false positive) in 
nuclear security may be seen as the case which has less severe consequences than a missed classification (false 
negative). For instance, in a hidden source scenario (e.g., cargo scanning) if the caesium is misclassified as ura-
nium, then there is a need for further detailed search that involves manual inspection and results in higher costs. 
On the other hand, the consequences may be less severe if caesium is misclassified as cobalt as it is not a special 
nuclear material. However, the misclassification of caesium with cobalt may raise an alarm in the facility as it 
indicates the illicit movement of cobalt, which may have been stolen from the premises undertaking radiological 
therapies and can lead to additional financial liabilities to validate the finding.

(9)GMSIBA = (1+ α . Dominance) . Gmean2

(10)Dominance = TPR - FPR

Table 4.  Comparison of Type 1 and Type error for majority and minority classes for different algorithms. 
Class 3 (Iridium) represents the majority class and Class 4 (Uranium) stands for the minority class. Best metric 
values are indicated in bold.

Algorithm

Type 1 error (False positives) Type 2 error (False negatives)

Majority class Minority class Majority class Minority class

KNN 75 18 16 26

ANN 47 14 22 24

SVM 117 11 3 23

DT 40 10 18 23

RF 40 19 28 20

AB 43 21 30 14
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Conclusions
In this study, prompt-gamma activation analysis (PGAA) spectral data are used to examine the classification 
performance of different Machine Learning algorithms for threat detection of radiological materials. Several 
classification metrics were used undertake to perform robust comparative studies of different Machine Learning 
algorithms. The main conclusions of this study can be summarized as follows,

• Tree-based classifiers are found to be superior considering the precision, recall, F1- score, Receiver Operating 
Characteristics, Area under the Curve and Geometric Mean Score indicators to analyse PGAA spectral data 
with imbalanced class distributions. Tree-based algorithms have consistently outperformed Support Vector 
Machines and K-Nearest Neighbours whilst in comparison, Artificial Neural Networks is the only other 
algorithm that has shown similar level of performance. In general, K-Nearest Neighbours and Support Vector 
Machines are found to be ineffective for handling PGAA spectral data with imbalanced class distributions.

Figure 7.  Receiver operating characteristic (ROC) curves using One-vs-Rest scheme: (a) K-Nearest Neighbours 
(b) Artificial Neural Networks (c) Support Vector Machines (d) Decision Trees (e) Random Forest (f) AdaBoost 
gradient algorithms. In the ROC curve, micro-average was calculated by aggregating the contributions of all 
classes whereas macro-average gives equal weight to the classification of each class.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9948  | https://doi.org/10.1038/s41598-023-36832-8

www.nature.com/scientificreports/

• Decision Tree reported the highest values with majority of the classification metrics but this outcome was 
greatly influenced by the contribution of the dominant classes and demonstrated a bias towards high preci-
sion. However, based on the results presented, AdaBoost is the preferred classifier to analyse PGAA data due 
to the high recall and least number of false negatives in the minority classes.

• The classification metrics used in this study have been helpful in comparing the effectiveness of different 
Machine Learning algorithms for classifying PGAA data. However, in detection applications, the metrics 
should be carefully chosen in order to address the precision-recall trade-off and the class-wise distribution 
of the spectral data. Specifically, it is recommended that the algorithm for application in skewed distributions 
should be selected based on class-wise sensitivity of the metrics rather than evaluating a global metric that 
is deemed less reliable as it favours the majority classes.

Table 5.  Area under the curve (AUC) score obtained from different ML algorithms used in this study. Best 
metric values are indicated in bold.

AUC score

One-vs-Rest One-vs-One

macro weighted by prevalence macro weighted by prevalence

KNN 0.8129 0.8200 0.7865 0.8067

ANN 0.8850 0.8898 0.8610 0.8789

SVM 0.8526 0.8554 0.8340 0.8478

DT 0.8760 0.8747 0.8648 0.8648

RF 0.8801 0.8810 0.8734 0.8794

AB 0.8824 0.8774 0.8769 0.8822

Figure 8.  Heat map showing the variation of (a) Geometric Mean Score (GMS) and (b) Index Balanced 
Accuracy of geometric mean score  (GMSIBA) for different algorithms. With both metrics, Decision Trees showed 
the highest score in the majority classes whereas AdaBoost was the lead performer in the minority classes 
(Uranium and Thorium).

Table 6.  Mean values of geometric mean score (GMS) and index balanced accuracy (IBA) evaluated using 
different ML algorithms. Best metric values are indicated in bold.

Algorithm

Metrics

GMS (mean) GMSIBA (mean)

KNN 0.65 0.44

ANN 0.75 0.56

SVM 0.63 0.41

DT 0.77 0.59

RF 0.77 0.58

AB 0.76 0.57
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Data availability
The datasets analysed during the current study are available in the PGAA prompt gamma data repository, using 
the link: https:// www- nds. iaea. org/ pgaa/ datab ases. htm.
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