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Monitoring and risk analysis 
of residual pesticides drifted 
by unmanned aerial spraying
Chang Jo Kim 1, Xiu Yuan 1, Min Kim 1, Kee Sung Kyung 2* & Hyun Ho Noh 1*

This study aimed to investigate the residual characteristics of pesticides drifted by unmanned aerial 
spray according to buffer strip, windbreak, and morphological characteristics of non-target crops, 
suggest prevention for drift reduction, and finally conduct a risk analysis on pesticides exceeding the 
maximum residue limit (MRL) or uniform level (0.01 mg/kg) of the positive list system (PLS). Non-
target crops were collected around the aerial sprayed area (paddy rice) in Boryeong, Seocheon, and 
Pyeongtaek after UAV spray. When pesticides were detected in more than three samples, Duncan’s 
multiple range test was performed. In cases where pesticides were detected in only two samples, an 
independent sample t-test was conducted (p < 0.05). The drift rate of pesticides tends to decrease by 
up to 100% as the buffer distance from aerial sprayed area increases or when a windbreak, such as 
maize, is present between two locations. Thus, the reduction of drifted pesticides could be effective 
if both factors were applied near the UAV spray area. Moreover, the residue of drifted pesticides was 
found to be the highest in leafy vegetables such as perilla leaves or leaf and stem vegetables such as 
Welsh onion, followed by fruit vegetables and cucurbits, owing to the morphological characteristics 
of crops. Therefore, selecting pulse or cereal such as soybean or maize as a farm product near the UAV 
spray area can be considered to minimize the drift. For pesticides that exceed the MRL or PLS uniform 
level, %acceptable dietary intake is 0–0.81% with no risk. Additionally, employing pesticides approved 
for both paddy rice and farm products in UAV spraying can effectively minimize instances where 
MRL or PLS are exceeded. Therefore, this study aims to provide farmers with effective guidelines for 
mitigating drift. Furthermore, we strive to promote stable and uninterrupted food production while 
facilitating the utilization of agricultural technologies such as UAV spraying to address labor shortages 
and ensure sustainable food security.

Pesticides application is considered a necessary procedure to protect agricultural products from harmful insects 
and  diseases1, and total pesticide use has increased by approximately 50% in the 2020s compared to the  1990s2. 
However, concerns have been raised regarding the excessive use of pesticides and the risks they pose to both 
human health and the  environment3. Furthermore, some countries are attempting to reduce the use of pesticides 
to achieve sustainable intensification (SI) in food production to meet the needs of a growing global  population4.

However, in response to these concerns, the Agricultural Chemical Regulation  Law5 and risk  assessment6 
have been implemented for the safe use of pesticides, as has been done in other developed  countries7. Addi-
tionally, SI could be made feasible via technology, such as Internet of Things (IoT)8, big  data9, artificial intel-
ligence (AI)10, and unmanned aerial vehicles (UAVs)11 in agriculture. In particular, UAVs could prove to be an 
effective alternative solution to address labor shortages in agricultural work by enabling crop monitoring and 
pesticide  spraying12,13, as the population of farmers has decreased while their average age has increased in some 
 countries14–16.

Nevertheless, upon spraying pesticides with UAVs, the airborne pesticides could drift to non-target areas 
through the  air17, resulting in unintentionally contaminating humans, plants, animals, and the  environment18. 
To reduce pesticide drift, some factors have been studied, including (1) meteorological  conditions19 such as wind 
direction and  speed20, humidity, and  temperature21; (2) UAV spray conditions such as spray  pressure22, flight 
 height23, and flight  speed24; (3) UAV components such as  rotor25 and  nozzle26,27; and (4) physical properties of 
spray solutions according to  adjuvant28 and  formulation29.
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However, in the context of aerial spraying conducted over paddy rice fields in diverse topographies during 
a specific period in Korea, the factors contributing to drift, including meteorological conditions, UAV spray 
conditions, UAV components, types of UAVs (multicopter or helicopter), and physical properties of the spray 
 solution30, were not identified. Furthermore, it is important to note that drifted pesticides have the potential to 
impact individuals residing in proximity to farming  areas31 and pose a risk of drifting onto non-target crops, 
considering that UAVs primarily apply pesticides onto paddy  fields32. In such a case, the residue of pesticides 
in these crops would exceed the maximum residue limits (MRL) or positive list system (PLS) uniform standard 
(0.01 mg/kg), which could pose a risk to human health if such contaminated crops are ingested.

However, buffer  strips33,  windbreaks34, and morphological  characteristics35 can potentially impact the residue 
of drifted pesticides and should be investigated following UAV spraying. Furthermore, although drift mitigation 
measures have shown some reduction in pesticide contamination over time, significant risks to human health 
and the environment still  persist36. Therefore, it is necessary to monitor drifted pesticides considering these 
three factors and conduct risk analysis after UAV pesticide application to ensure effective prevention. Hence, 
this study aims to achieve the following objectives: (1) investigate the residual characteristics of pesticides that 
have drifted onto non-target crops surrounding the aerial sprayed area (paddy rice), taking into account three 
factors, that is, buffer strip, windbreak, and morphological characteristics of non-target crops; (2) implement 
preventive measures to reduce pesticide drift by monitoring various non-target crops near paddy rice in three 
regions (Boryeong, Seocheon, and Pyeongtaek) in the Republic of Korea; and (3) conduct a risk analysis to assess 
the risk posed by drifted pesticides in non-target crops, utilizing the residue levels of pesticides exceeding the 
standard MRL or PLS (0.01 mg/kg).

Materials and methods
Target pesticide and sample. Dinotefuran + etofenprox 13(5 + 3)% micro-emulsion and azox-
ystrobin + propiconaozle 18.71(7.01 + 11.7)% suspo-emulsion were sprayed in Boryeong-si, and dinote-
furan + etofenprox 13(5 + 3)% and azoxystrobin + hexaconazole 13(12 + 1)% suspension concentrate (SC) were 
sprayed in Seocheon-gun, Chungcheongnam-do, Republic of Korea. Additionally, azoxystrobin + ferimzone 
21.5(6.5 + 15)% SC and chlorantraniliprole + clothianidin 4.7(2.7 + 2)% SC were sprayed in Pyeongtaek-si, 
Gyeonggi-do, Republic of Korea. The test pesticides used in this study include insecticides such as chlorant-
raniliprole (diamide), clothianidin (neonicotinoid), dinotefuran (neonicotinoid), and etofenprox (pyrethroid), 
as well as fungicides such as azoxystrobin (strobilurin), ferimzone (pyrimidine), hexaconazole (triazole), and 
propiconazole (triazole). The target pesticides in each location were sprayed onto paddy rice with UAVs, follow-
ing land registration maps that confirmed the aerial spray area. The land registration maps were obtained from 
the National Agricultural Cooperative Federation, and then crops around aerial sprayed area were collected with 
optional information, such as the distance (in meters) and windbreak between the collected crops and the aerial 
sprayed area, to determine the residual characteristics of the drifted pesticides.

The collected samples include chili pepper (Capsicum annuum), squash (Cucurbita pepo), squash leaves, 
dureup (Aralia cordata), perilla leaves (Perilla frutescens), Welsh onion (Allium fistulosum), tomato (Solanum 
lycopersicum), cucumber (Cucumis sativus), eggplant (Solanum melongena), peach (Cucumis sativus), apple 
(Malus pumila), grape (Vitis vinifera), pear (Pyrus pyrifolia), soybean (Glycine max), soybean leaves, maize 
(Zea mays), white-flowered gourd (Lagenaria siceraria), and white-flowered gourd leaves with inedible parts, 
such as maize leaves and sesame leaves (Sesamum indicum), to evaluate the residual characteristics of drifted 
pesticides (Supplementary Table S1). Collected samples were stored below − 20 ℃ immediately after chopping 
and blending with dry  ice37.

Approval statement. The samples were collected for monitoring pesticide drift by UAV spray with the 
approval of the farmers. Additionally, all methods, from collection of samples to analysis of residual pesticides, 
were performed in accordance with the relevant guidelines and regulations of the National Institute of Agricul-
tural Sciences (NAS) and Ministry of Government Legislation (MOLEG).

Reagent and instrument. Reference materials (RM) for etofenprox (purity > 99.0%), hexaconazole 
(purity > 98.7%), and propiconazole (purity > 98.5%) were obtained from Dr. Ehrenstrofer GmbH (Augsburg, 
Germany) and were weighted with precision balance (New Jersey, US) to prepare stock solution. Azoxystrobin, 
clothianidin, chlorantraniliprole, dinotefuran, (E)-ferimzone, (Z)-ferimzone, and 1000  mg/L stock solution 
were obtained from Accustandard (New Haven, USA). LiChrosolv-grade acetonitrile and methanol were 
secured from Merk (Darmstadt, Germany). QuEChER EN packet (Cat No. 5982-5650) and dispersive-SPE (Cat 
No. 5982-5021) were obtained from Agilent Technologies (California, US). Deionized water was used along 
with Autwomatic Plus 1 + 2 from Waaserlab (de Navarra, Spain). Formic acid (purity > 98.0%) was secured from 
Merk (Darmstadt, Germany). The extract machine used was the 2010 Geno/Grinder from SPEX SamplePrep 
(Metuchen, US), and the vortex mixer was Vortex-Genie 2 from Scientific industry (New York, US). Finally, the 
centrifuge was from Hanil Science (Incheon, Korea).

Stock and working solution. To prepare 1,000  mg/L of stock solutions of pesticides, each RM was 
weighted with precision balance, considering the purities of the RM. Thus, 20.26 mg of etofenprox, 20.20 mg 
of hexaconazole, and 20.30 mg of propiconazole were dissolved in 20 mL of methanol. Each stock solution was 
diluted with acetonitrile to concentrations ranging from 0.005 to 100 mg/L. These concentrations were used to 
plot the regression curve and conduct the recovery test.
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Sample preparation. The sample preparation was conducted according to the QuEChERS  method38. The 
samples (10 g) were placed in a 50-mL conical centrifuge tube (FalcornTM, US) and shaken with acetonitrile 
(10 mL) for 5 min at 1300 rpm. The sample was then shaken again under the same conditions with magnesium 
sulfate (4 g), sodium chloride (1 g), trisodium citrate dihydrate (1 g), and disodium hydrogencitrate sesqui-
hydrate (0.5 g) (QuEChERS EN extraction packet). The mixture was centrifuged for 5 min at 3500 rpm, and 
the supernatant (1 mL) was added in a dispersive Solid-Phase Extraction (d-SPE) tube containing magnesium 
sulfate (150 mg) and primary secondary amine (PSA) (25 mg) for clean-up. The tube was then vortexed for 30 s. 
The purified solution was filtered using a syringe filter (PTFE, 13 mm, 0.22 µm) after centrifuging for 5 min at 
12,000 rpm. The supernatant was then mixed in a 50:50 (v/v) proportion with acetonitrile to create a matrix-
matched sample, which was analyzed with LC–MS/MS according to Supplementary Table S239. For soybean, the 
sample was analyzed directly after matrix matching without performing the purification procedure.

Verification of analysis method. The limit of quantitation (LOQ) was determined by setting a signal-
to-noise ratio of over 10 in a matrix-matched standard considering the PLS uniform standard (0.01 mg/kg)40. 
A regression curve for calibration was plotted by analyzing more than five matrix-matched standards and 
comparing the concentration and intensity of the peaks to evaluate the correlation coefficient (r2) according to 
SANTE/11312/202141. The recovery test was conducted with apple, wakegi onion, perilla leaves, and soybean as 
representative crops from commodity groups of collected  crops42. The accuracy and repetition of the recovery 
test were evaluated using three fortification levels of LOQ, 10 LOQ, and 50 LOQ with recovery (%) and relative 
standard deviation (RSD) according to performance criteria for analysis of  pesticide43.

Decision on drifted pesticides. To understand the drift of pesticides through UAV spraying, a wealth of 
information is required, encompassing meteorological conditions, UAV types, spray conditions, UAV compo-
nents, and physical properties of the spray solution that can influence drift. However, in this study, pesticides 
were simultaneously sprayed onto paddy rice in various topographies using two types of UAVs within a specific 
timeframe. Consequently, it was not feasible to capture all the details during each spraying event. Additionally, 
the presence of residual pesticides in non-target crops may not be solely attributed to UAV drift but could also 
be attributed to farmer practices. Hence, we explore other factors that could influence drift and are applicable for 
investigation even after UAV spraying.

The residue of drifted pesticides is influenced by plant  morphology44, buffer  strips45, and  windbreaks46. There-
fore, we examined these factors when collecting non-target crops. To understand the characteristics of residual 
pesticides, we analyze the pesticide residues based on three factors: buffer strip, crop morphology, and windbreak. 
Furthermore, we investigate whether the aerially sprayed pesticides are commonly detected and registered in 
the harvested crops.

Risk analysis. A risk analysis was conducted using estimated daily intake (EDI) and % acceptable daily 
intake (%ADI) in cases where the residue of pesticides in crop around aerial sprayed area exceed MRL or PLS 
uniform standard (0.01 mg/kg), specifically for crops with an established  ADI47. To calculate EDI and %ADI, 
food consumption (g/day) was determined from the “National Food & Nutrition Statistics”48. Moreover, the 
average weight of an adult in Korea, which is 66.55 kg, was established based on the “National Health Screening 
Statistical Yearbook” (Eqs. 1 and 2)49.

Statistical analysis. To plot a calibration regression curve and assess the correlation coefficient, Microsoft 
Excel (USA) was utilized. The residual characteristics of the collected samples with drifted pesticides were ana-
lyzed using Statistical Package for the Social Sciences (SPSS) software (Ver. 26, IBM Corporation, USA). In cases 
where pesticides were detected in only two samples at a specific site, an independent sample t-test was employed 
for residue analysis. In cases where pesticides were detected in more than three samples, a one-way analysis of 
variance (ANOVA) was conducted, followed by Duncan’s multiple range test (DMRT) with a significance level 
of p < 0.05.

Results and discussion
Verification of analysis. The LOQ of all pesticides, including azoxystrobin, chlorantraniliprole, clothia-
nidin, dinotefuran, etofenprox, ferimzone, hexaconazole, and propiconazole, was 0.01 mg/kg. The linearity of 
all matrix-matched standards was high, with a correlation coefficient higher than 0.99. The recoveries of tar-
get pesticides in representative crops ranged from 72.3 to 116.6% (with a relative standard deviation (RSD) of 
0.2–10.7%). Thus, it can be concluded that the sample preparation and LC–MS/MS conditions were appropriate 
for analyzing the pesticides (Supplementary Table S3).

Analysis result of residual pesticide. Decision on drifted pesticides. The investigation of pesticide resi-
due in crops considering various factors including morphology of the crop, buffer distance, and windbreaks 

(1)EDI =

{
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)}
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(Tables 1, 2 and 3) suggests that the target pesticides sprayed by UAVs did not drift in 13 out of 39 locations 
where samples were collected (location nos. 1, 3, 6-1, 6-2, 6-3, 7, 13, 18, 19, 20, 22, 26, 27) at a significance level 
of p < 0.05. Target pesticides were not detected in seven of these locations (location nos. 6-3, 7, 13, 18, 22, 26, 
27). In the remaining locations (location nos. 1, 3, 6-1, 6-2, 19, 20), although a maximum of two pesticides were 
detected, the residue of pesticides did not decrease as distance from the aerial sprayed area increased (p < 0.05). 
Therefore, the residual pesticides in non-target crops were probably already present before the UAV spraying.

In three locations (location nos. 1, 14, and 16), the residues of both etofenprox in peach and azoxystrobin 
in chili pepper exceeded the MRL (Tables 1, 2 and 3). However, the other pesticides sprayed by UAVs were not 
detected, and there was no evidence of drifted pesticides, as the residue of two pesticides did not decrease as the 
distance increased from the sprayed  area32. Furthermore, azoxystrobin is commonly used in farm products such 
as chili  pepper50, and etofenprox is frequently detected in both herbal fruits and stalk and stem  vegetables51,52. 
Therefore, it can be concluded that the five cases that exceeded the MRL were not due to the drift of airborne 
pesticides but rather the presence of pesticides that were already sprayed before the UAV spraying.

In total, the residue of pesticides exceeded the PLS uniform standard in 31 cases across 15 locations (location 
nos. 2, 6-4, 10, 12, 21, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36). These include one case of etofenprox in white-flowered 
gourd, five cases of propiconazole (three cases of squash leaves and a case of dureup and white-flowered gourd), 
21 cases of ferimzone (four cases of soybean leaves, eight cases of chili pepper, four cases of Welsh onion, two 
cases of eggplant, and one case each of squash leaves, perilla leaves, and tomato), and four cases of dinotefuran in 
soybean leaves. It was inferred that the pesticides that exceeded the PLS uniform standards were drifted by UAV 
spray, as all the cases showed uniform residual tendency of pesticides according to distance from the sprayed 
area, windbreak, and morphology of  crops32, and the pesticides sprayed by UAV were commonly detected. It is 
recommended that pesticides for UAV spray be chosen in the case of both rice and farm products, considering 
ferimzone, which is only applied to rice, and the 68% of total cases that exceeded PLS.

Drift characteristics according to buffer strip. Airborne pesticides were found to decrease as the distance from 
the aerial sprayed area increased, with 0–100% drift reduction (location nos. 2, 4, 5, 6-4, 8, 9, 11, 12, 14, 15, 21, 
25, 29, 30, 32, 33, 35). This trend is consistent with the results of wind tunnel and field tests, which also showed 
that the amount of airborne pesticides decreased with increasing  distance22,53. The samples were collected from 
distances ranging from 0 to 22 m from the aerial sprayed area, with an average distance of 5.7 m. It appears that 
crops were grown around aerial sprayed area without a uniform buffer strip. Therefore, it would be appropriate 
to establish a uniform buffer strip around the aerial sprayed  area34. However, target pesticides were detected 
in non-target fruits and leafy vegetables, such as squash leaves, white-flowered gourd leaves, and maize leaves, 
beyond 5.7 m from the sprayed area (Tables 1, 2 and 3). Moreover, wind speeds have been identified as a fac-
tor influencing drift  deposition54, and it has been advised to establish a buffer strip ranging from 25 to 300 m 
in the case of herbicide  spraying34. However, the effectiveness of a buffer strip in reducing pesticide drift can 
vary, resulting in inconsistent levels of drift reduction ranging from 0 to 100%. This variability is attributed to 
the influence of other factors, including meteorological conditions, morphological characteristics of non-target 
crops, and UAV spray conditions. Consequently, relying solely on the implementation of a buffer strip may prove 
insufficient in preventing drift.

Drift characteristics according to crop morphology. The residue of airborne pesticides in non-target samples var-
ies according to the morphological characteristics of the collected samples (location nos. 6-4, 9, 12, 17, 21, 23, 24, 
25, 28, 30, 34, 36). Analysis results show that pesticide residue was higher in leafy or stalk and stem vegetables 
than fruiting vegetables other than cucurbits, followed by cucurbits (p < 0.05). Soybean and maize appear to be 
less susceptible to drifted pesticides because of their outer layer, and the residue of pesticides was less than in 
other crops (Tables 1, 2 and 3). This tendency is similar to earlier reports stating that the residue of carbamates 
pesticide was the lowest in cereal and  pulses55 and that residues of pesticides were higher in leafy vegetables than 
in leaves of root and bulb vegetables, including pulses with pods, fruits, pulses and cereal grains, and root and 
bulb  vegetables44.

In addition, peach, perilla leaves, and squash leaves with glandular hair tended to have higher residues of 
pesticides (p < 0.05). The deposition of droplets was affected by components such as microstructure, wax, sto-
mata, and hair on the surface of  leaves56. The retention of droplets improves in leaves with longer even hairs or 
rougher  surface57. Additionally, four types of leaves, namely cocklebur, morning glory, velvet leaf, and coffee 
senna, showed 99, 77, 65, and 55% of deposition efficiencies, respectively, when sprayed with 140 µm of  droplets35. 
Similarly, needle-like leaves had two to four times higher deposition than broad  leaves58; thus, it was concluded 
that the amount of deposit of airborne pesticides could differ according to the morphological characteristics of 
crops. Consequently, it is recommended to grow crops less susceptible to retention of airborne pesticides around 
aerial sprayed area to prevent unintentional contamination.

Given the early- or mid-growth stages of the collected samples, it was not an appropriate time to assess the 
safety of pesticides. Furthermore, the residue of pesticides tends to dissipate or degrade over time due to the 
growth of agricultural products, which is influenced by meteorological conditions such as radiation, temperature, 
humidity, and rainfall, as well as the physio-chemical properties of the  pesticides59. Consequently, it is likely 
that the residue of drifted pesticides in farm products will decrease by the time of harvest. The following section 
describes the residual patterns of drifted pesticides, assuming that they were caused by drift.

Drift characteristics according to windbreak. The analysis of residual pesticides indicates that the residues of 
pesticides were lower when windbreaks were between non-target crop and aerial sprayed area (location nos. 
10, 16, 17, 21, 25, 30, p < 0.05). Notably, the analysis reveals a reduction of 30–100% in the residue of drifted 
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Location no Crop
Distance from 
spray area (m)

Windbreak 
(height, m)

Residue (mean ± SD, mg/kg)

Azoxystrobin Dinotefuran Etofenprox Propiconazole

1a
Soybean leaves

9 –  < LOQ  < LOQ 0.59 ± 0.02 e  < LOQ

11 –  < LOQ  < LOQ 1.58 ± 0.07 d  < LOQ

13 –  < LOQ  < LOQ 2.54 ± 0.09 b  < LOQ

15 –  < LOQ  < LOQ 3.01 ± 0.03 a  < LOQ

17 –  < LOQ  < LOQ 2.12 ± 0.13 c  < LOQ

Peach 3.5 –  < LOQ  < LOQ 2.88 ± 0.20 a  < LOQ

2 Squash leaves
1 – 0.01 ± 0.00 0.02 ± 0.00 * 0.01 ± 0.00 0.01 ± 0.00

8 –  < LOQ 0.03 ± 0.00 *  < LOQ  < LOQ

3 Chili  pepperc

3.5

–

 < LOQ 0.14 ± 0.00 a  < LOQ  < LOQ

5.5  < LOQ 0.02 ± 0.00 c  < LOQ  < LOQ

7.5  < LOQ 0.13 ± 0.01 b  < LOQ  < LOQ

4 Chili pepper

6 –  < LOQ 0.05 ± 0.00 c 0.03 ± 0.00 0.03 ± 0.00

8 –  < LOQ 0.10 ± 0.00 b  < LOQ  < LOQ

10 –  < LOQ 0.16 ± 0.01 c  < LOQ  < LOQ

5 Chili pepper

5 – 0.12 ± 0.01 c  < LOQ 0.01 ± 0.00  < LOQ

7 – 0.18 ± 0.00 a  < LOQ  < LOQ  < LOQ

9 – 0.19 ± 0.01 a  < LOQ  < LOQ  < LOQ

18 – 0.16 ± 0.01 b  < LOQ  < LOQ  < LOQ

6-1 Chili pepper 4 Structure (2) 0.03 ± 0.00  < LOQ  < LOQ  < LOQ

6-2

Maize
9 –

 < LOQ  < LOQ  < LOQ  < LOQ

Maize leaves 0.02 ± 0.00 c  < LOQ  < LOQ  < LOQ

Chili pepper
9

Maize (1.5)

0.04 ± 0.00 a 0.02 ± 0.00 *  < LOQ  < LOQ

14 0.03 ± 0.00 b 0.04 ± 0.00 *  < LOQ  < LOQ

Maize
19

 < LOQ  < LOQ  < LOQ  < LOQ

Maize leaves  < LOQ  < LOQ  < LOQ  < LOQ

6-3 Eggplant 9 –  < LOQ  < LOQ  < LOQ  < LOQ

6-4

Maize
3 Maize (1.5)

 < LOQ  < LOQ  < LOQ  < LOQ

Maize leaves  < LOQ  < LOQ 0.04 ± 0.00 b 0.02 ± 0.00 b

Squash leaves
3.5

Maize (1.5)
 < LOQ  < LOQ 0.13 ± 0.01 a 0.04 ± 0.00 a

10  < LOQ  < LOQ 0.04 ± 0.00 b 0.02 ± 0.00 b

7

Chili pepper 2

–

 < LOQ  < LOQ  < LOQ  < LOQ

Squash 3  < LOQ  < LOQ  < LOQ  < LOQ

Chili  pepperd

5  < LOQ  < LOQ  < LOQ  < LOQ

7.5 Pumpkin leaves 
(1.5)  < LOQ  < LOQ  < LOQ  < LOQ

8 –  < LOQ  < LOQ  < LOQ  < LOQ

8 Dureup

5 –  < LOQ  < LOQ  < LOQ 0.02 ± 0.00

10 –  < LOQ  < LOQ  < LOQ  < LOQ

22 –  < LOQ  < LOQ  < LOQ  < LOQ

9
Perilla leaves 1 – 10.72 ± 0.31 *  < LOQ 7.00 ± 0.16 * 13.31 ± 0.37 *

Chili pepper 2 – 0.08 ± 0.00 *  < LOQ 0.13 ± 0.01 * 0.15 ± 0.02 *

10
Sesame leaves 1 – 1.31 ± 0.00  < LOQ 1.19 ± 0.01 * 1.36 ± 0.05

Chili pepper 2 Sesame leaves 
(1.5)  < LOQ  < LOQ 0.06 ± 0.01 *  < LOQ

11b Chili pepper

2 – 0.01 ± 0.00 b 0.03 ± 0.00 c 0.03 ± 0.00 b 0.03 ± 0.00 b

2 – 0.07 ± 0.01 a 0.06 ± 0.00 b 0.11 ± 0.01 a 0.14 ± 0.01 a

2 – 0.01 ± 0.01 b 0.02 ± 0.00 d 0.02 ± 0.01 b 0.03 ± 0.01 b

7 –  < LOQ 0.17 ± 0.00 a  < LOQ  < LOQ

7 –  < LOQ 0.18 ± 0.00 a  < LOQ  < LOQ

Continued
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pesticides, even when the same crops were collected from the same distance from the aerial sprayed area (loca-
tion nos. 16, 17, 30, p < 0.05). The degree of drift varied based on several factors, such as structural parameters 
(porosity, length, width, and height) and climatic factors, among  others34,60–62. For instance, the drift of airborne 
pesticides by a boom sprayer or UAV was reduced when maize was used as a  windbreak34,46. Thus, proper place-
ment of windbreaks tailored to the topography of each location can prevent unintentional contamination (Sup-
plementary Figs. S1–S3).

Risk analysis. The result of the risk analysis involving 36 cases that exceeded the MRL or PLS uniform 
standard showed that the %ADI ranged from 0.00 to 0.81% (Table 4); this shows that there was no  risk63. Con-
sidering that processing treatments, including washing, peeling, heat treatments, and drying, can effectively 
eliminate residual  pesticides64, the likelihood of consuming these farm products with any associated risk is low. 
However, it is essential to maintain ongoing monitoring of residual pesticides that drift onto non-target crops 
through aerial application. This continued monitoring aims to investigate the causes and potential risks posed 
by drifted pesticides, specifically to implement preventive measures against drift.

Conclusion
To address the labor shortage in domestic agriculture, the use of pesticides sprayed by UAVs has become neces-
sary. However, this practice poses the risk of pesticide drift onto non-target crops and potential harm to humans. 
Consequently, monitoring the drift of pesticides and conducting risk analysis on non-target crops is crucial. The 
analysis results indicate that pesticide drift can be minimized by increasing the distance between non-target crops 
and the UAV spray area or by implementing windbreaks, such as planting maize, between them. Moreover, the 

Table 1.  Residual concentration of pesticides in the crops surrounding paddy rice sprayed with UAV in 
Boryeong. a It was considered that the pesticide was already sprayed before UAV spraying took place. b Location 
was surrounded by UAV sprayed area. c It was grown in vinyl house with a side window opened by 0.8 m. 
d It was grown in vinyl house. *There were significant differences at the p < 0.05 level by t-test. No significant 
difference exists within the same location if the same small letter appears in the same column (p < 0.05).

Location no Crop
Distance from 
spray area (m)

Windbreak 
(height, m)

Residue (mean ± SD, mg/kg)

Azoxystrobin Dinotefuran Etofenprox Propiconazole

12

White-flowered 
gourd

0
–

 < LOQ  < LOQ 0.04 ± 0.00 c 0.03 ± 0.00 c

2  < LOQ  < LOQ  < LOQ  < LOQ

6
Maize (2)

 < LOQ  < LOQ  < LOQ  < LOQ

11  < LOQ  < LOQ  < LOQ  < LOQ

White-flowered 
gourd leaves

0
–

2.08 ± 0.11 *  < LOQ 3.51 ± 0.18 a 3.99 ± 0.08 a

2 0.02 ± 0.00 *  < LOQ 0.53 ± 0.00 b 0.41 ± 0.02 b

6

Maize (2)

 < LOQ  < LOQ 0.03 ± 0.00 c 0.01 ± 0.00 c

11  < LOQ  < LOQ  < LOQ  < LOQ

Maize
5  < LOQ  < LOQ  < LOQ  < LOQ

10  < LOQ  < LOQ  < LOQ  < LOQ

Maize leaves
5  < LOQ  < LOQ 0.03 ± 0.00 c 0.01 ± 0.00 c

10  < LOQ  < LOQ  < LOQ  < LOQ

13 Chili pepper 5
–  < LOQ  < LOQ  < LOQ  < LOQ

Maize (1.8)  < LOQ  < LOQ  < LOQ  < LOQ

14 Chili pepper

3 – 0.18 ± 0.01 c  < LOQ 0.01 ± 0.00 0.02 ± 0.00

5 – 2.87 ± 0.21 a  < LOQ  < LOQ  < LOQ

7 – 2.11 ± 0.11 b  < LOQ  < LOQ  < LOQ

15

Welsh onion
2.5 – 0.43 ± 0.03 *  < LOQ 0.36 ± 0.02 * 0.61 ± 0.03 *

5 – 0.04 ± 0.00 *  < LOQ 0.02 ± 0.00 * 0.05 ± 0.00 *

Chili pepper

5.5 –  < LOQ  < LOQ  < LOQ  < LOQ

9.5 –  < LOQ  < LOQ  < LOQ  < LOQ

13.5 –  < LOQ  < LOQ  < LOQ  < LOQ

16

Welsh onion 1
– 0.05 ± 0.00 d  < LOQ 0.04 ± 0.00 a 0.07 ± 0.00 a

Tree (3.5) 0.04 ± 0.00 d  < LOQ 0.01 ± 0.00 b 0.02 ± 0.00 b

Chili pepper

4 – 1.83 ± 0.05 c  < LOQ  < LOQ 0.02 ± 0.00 c

6 – 2.50 ± 0.03 b  < LOQ  < LOQ  < LOQ

8 – 4.85 ± 0.17 a  < LOQ  < LOQ  < LOQ

17

Apple 0 – 0.03 ± 0.00 b  < LOQ 0.06 ± 0.00 c 0.06 ± 0.00 c

Welsh onion 1 – 0.24 ± 0.00 a  < LOQ 0.19 ± 0.01 a 0.47 ± 0.00 a

Chili pepper 3
Tree (5)  < LOQ  < LOQ  < LOQ 0.02 ± 0.00 d

– 0.02 ± 0.00 c  < LOQ 0.11 ± 0.01 b 0.14 ± 0.00 b
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residue of drifted pesticides tends to be lower in pulses or cereal grains, such as soybeans or maize, compared to 
leafy or stalk vegetables such as Welsh onions or crops with granular hairs, such as perilla leaves. Additionally, 
using pesticides registered for both paddy rice and other farm products in UAV spraying helps prevent uninten-
tional pesticide contamination. Therefore, it is anticipated that these guidelines will assist farmers in avoiding 
violations of PLS or MRL, thereby enabling stable and continuous food production in agricultural fields and 
positively impacting food self-sufficiency rates. Furthermore, we envision that agricultural technologies such as 
UAV spraying can be utilized not only to address labor shortages but also to enhance sustainable food security.

In future research, we plan to investigate specific prevention measures for drift using a geographic information 
system to understand how terrain factors can potentially influence drift resulting from UAV spraying. Addition-
ally, we will consider factors such as buffer strips, windbreaks, crop morphology, and the choice of pesticides for 
UAV spraying to assess their effectiveness in reducing drift.

Table 2.  Residual concentration of pesticides in the crops surrounding paddy rice sprayed with UAV in 
Seocheon. a It was considered that the pesticide was already sprayed before UAV spraying took place. b It was 
grown in vinyl house with a side window opened by 1 m. c It was grown in vinyl house. *There were significant 
differences at p < 0.05 level by t-test. No significant difference exists within the same location if the same small 
letter appears in the same column (p < 0.05).

Location no Crop
Distance from 
spray area (m)

Wind break 
(height, m)

Residue (mean ± SD, mg/kg)

Azoxystrobin Dinotefuran Etofenprox Hexaconazole

18a Chili pepper

10.5 –  < LOQ  < LOQ  < LOQ  < LOQ

12.5 –  < LOQ  < LOQ  < LOQ  < LOQ

14.5 –  < LOQ  < LOQ  < LOQ  < LOQ

20.5 –  < LOQ  < LOQ  < LOQ  < LOQ

19 Chili pepper

6 –  < LOQ 0.04 ± 0.00 b  < LOQ  < LOQ

7.5 –  < LOQ 0.03 ± 0.00 c  < LOQ  < LOQ

9 –  < LOQ 0.03 ± 0.00 d  < LOQ  < LOQ

10.5 –  < LOQ 0.05 ± 0.00 a  < LOQ  < LOQ

12 –  < LOQ 0.04 ± 0.00 b  < LOQ  < LOQ

20 Grape
0

–
 < LOQ 0.06 ± 0.00*  < LOQ  < LOQ

3c  < LOQ 0.07 ± 0.00*  < LOQ  < LOQ

21b

Soybean
1.5 –

0.02 ± 0.00 c 0.02 ± 0.00* 0.02 ± 0.00*  < LOQ

Soybean leaves 2.67 ± 0.17 b 0.92 ± 0.01* 1.17 ± 0.05* 0.08 ± 0.00

Soybean
5.5 Soybean (2)

0.03 ± 0.00 c  < LOQ  < LOQ  < LOQ

Soybean leaves 13.22 ± 0.89 a  < LOQ  < LOQ  < LOQ

22 Peach
4.5 –  < LOQ  < LOQ  < LOQ  < LOQ

7.5 –  < LOQ  < LOQ  < LOQ  < LOQ

23

Peach 0 –  < LOQ 0.02 ± 0.00 0.04 ± 0.01  < LOQ

Pear
1 –  < LOQ  < LOQ  < LOQ  < LOQ

3 –  < LOQ  < LOQ  < LOQ  < LOQ

24

Pear
2.5

–  < LOQ  < LOQ  < LOQ  < LOQ

Apple –  < LOQ  < LOQ  < LOQ  < LOQ

Peach 3 –  < LOQ 0.03 ± 0.00 0.03 ± 0.00  < LOQ

25
Soybean leaves

0 – 2.50 ± 0.06 a 2.08 ± 0.08 a 8.84 ± 0.38 a 0.33 ± 0.02 a

1.5 – 0.45 ± 0.02 b 0.59 ± 0.03 b 3.68 ± 0.18 b 0.12 ± 0.00 b

Maize 3.5 –  < LOQ  < LOQ  < LOQ  < LOQ

26 Peach 4 –  < LOQ  < LOQ  < LOQ  < LOQ
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Table 3.  Residual concentration of pesticides in the crops surrounding paddy rice sprayed with UAV in 
Pyeongtaek. a It was considered that the pesticide was already sprayed before UAV spraying took place. 
b Location was an interjection of two sides of UAV sprayed area. *There were significant differences at p < 0.05 
level by t-test. No significant difference exists within the same location if the same small letter appears in the 
same column (p < 0.05).

Location no Crop
Distance from spray 
area (m)

Wind break (height, 
m)

Residue (mean ± SD, mg/kg)

Azoxystrobin Clothianidin Chlorantraniliprole Ferimzone

27a

Chili pepper
2.5

–  < LOQ  < LOQ  < LOQ  < LOQ

Eggplant –  < LOQ  < LOQ  < LOQ  < LOQ

Chili pepper
6

–  < LOQ  < LOQ  < LOQ  < LOQ

Eggplant –  < LOQ  < LOQ  < LOQ  < LOQ

28
Soybean leaves

1
– 0.02 ± 0.00  < LOQ  < LOQ 0.03 ± 0.00

Welsh onion –  < LOQ  < LOQ  < LOQ  < LOQ

29

Squash leaves 0.5 – 0.01 ± 0.00  < LOQ  < LOQ 0.03 ± 0.00

Tomato

4.5 Voluble stem of 
pumpkin (1.5)

 < LOQ  < LOQ  < LOQ  < LOQ

Cucumber  < LOQ  < LOQ  < LOQ  < LOQ

Eggplant  < LOQ  < LOQ  < LOQ  < LOQ

Chili pepper  < LOQ  < LOQ  < LOQ  < LOQ

Apple 13  < LOQ  < LOQ  < LOQ  < LOQ

30

Soybean leaves

1

– 1.86 ± 0.03 b 0.27 ± 0.01 a 0.53 ± 0.01 a 4.45 ± 0.24 a

Chili pepper – 0.11 ± 0.00 d 0.02 ± 0.00 e 0.03 ± 0.00 f. 0.30 ± 0.01 d

Eggplant –  < LOQ  < LOQ  < LOQ  < LOQ

Welsh onion – 0.41 ± 0.02 c 0.06 ± 0.00 c 0.12 ± 0.00 c 0.94 ± 0.02 c

Perilla leaves – 6.14 ± 0.08 a 0.24 ± 0.02 b 0.38 ± 0.02 b 3.35 ± 0.10 b

Soybean leaves 6
– 0.38 ± 0.01 c 0.05 ± 0.00 cd 0.10 ± 0.00 d 0.88 ± 0.02 c

Maize (1.5) 0.13 ± 0.01 d 0.04 ± 0.01 d 0.07 ± 0.01 e 0.39 ± 0.04 d

31 Welsh onion 3.5 – 0.12 ± 0.01 0.01 ± 0.00 0.03 ± 0.00 0.18 ± 0.02

32 Chili pepper

3 – 0.18 ± 0.01 a 0.24 ± 0.01 b 0.06 ± 0.00 a 0.47 ± 0.03 a

4 – 0.09 ± 0.00 b 0.30 ± 0.01 a 0.03 ± 0.00 b 0.19 ± 0.01 b

5 – 0.03 ± 0.00 c 0.18 ± 0.00 c 0.01 ± 0.00 c 0.08 ± 0.00 c

6 – 0.04 ± 0.00 c 0.31 ± 0.01 a 0.01 ± 0.00 d 0.08 ± 0.00 c

7 –  < LOQ 0.23 ± 0.01 b  < LOQ 0.01 ± 0.00 d

33 Peach
2.5 –  < LOQ 0.05 ± 0.00* 0.06 ± 0.00*  < LOQ

9 –  < LOQ 0.04 ± 0.00* 0.04 ± 0.00*  < LOQ

34

Welsh onion

1

– 0.24 ± 0.00 a 0.04 ± 0.00* 0.09 ± 0.01* 0.51 ± 0.00 a

Chili pepper – 0.11 ± 0.01 b 0.01 ± 0.00* 0.03 ± 0.00* 0.21 ± 0.02 b

Eggplant – 0.03 ± 0.00 c  < LOQ  < LOQ 0.05 ± 0.00 c

35 Chili pepper

2.3 – 0.01 ± 0.00  < LOQ  < LOQ 0.04 ± 0.00

3.6 –  < LOQ  < LOQ  < LOQ  < LOQ

4.9 –  < LOQ  < LOQ  < LOQ  < LOQ

36

Welsh onion

1.5

– 0.13 ± 0.02 b 0.02 ± 0.00* 0.05 ± 0.01* 0.28 ± 0.03 b

Eggplantb – 0.24 ± 0.01 a 0.04 ± 0.00* 0.07 ± 0.00* 0.46 ± 0.02 a

Tomato – 0.02 ± 0.00 c  < LOQ  < LOQ 0.03 ± 0.00 c
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Data availability
The datasets used and analyzed during the current study can be made available from the corresponding author 
upon reasonable request.
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