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Deep learning to automatically 
evaluate HER2 gene amplification 
status from fluorescence in situ 
hybridization images
Tian Xue 1,2,4, Heng Chang 1,2,4, Min Ren 1,2, Haochen Wang 1,2, Yu Yang 1,2, Boyang Wang 3, 
Lei Lv 3, Licheng Tang 3, Chicheng Fu 3, Qu Fang 3, Chuan He 3, Xiaoli Zhu 1,2, 
Xiaoyan Zhou 1,2,4* & Qianming Bai 1,2,4*

Human epidermal growth factor receptor 2 (HER2) gene amplification helps identify breast cancer 
patients who may respond to targeted anti-HER2 therapy. This study aims to develop an automated 
method for quantifying HER2 fluorescence in situ hybridization (FISH) signals and improve the 
working efficiency of pathologists. An Aitrox artificial intelligence (AI) model based on deep learning 
was constructed, and a comparison between the AI model and traditional manual counting was 
performed. In total, 918 FISH images from 320 consecutive invasive breast cancers were analysed 
and automatically classified into 5 groups according to the 2018 ASCO/CAP guidelines. The overall 
classification accuracy was 85.33% (157/184) with a mean average precision of 0.735. In Group 5, the 
most common group, the consistency was as high as 95.90% (117/122), while the consistency was 
low in the other groups due to the limited number of cases. The causes of this inconsistency, including 
clustered HER2 signals, coarse CEP17 signals and some section quality problems, were analysed. The 
developed AI model is a reliable tool for evaluating HER2 amplification statuses, especially for breast 
cancer in Group 5; additional cases from multiple centres could further improve the accuracy achieved 
for other groups.

The human epidermal growth factor receptor 2 (HER2) oncogene is located on chromosome  17q121 and encodes 
a transmembrane tyrosine kinase receptor. Amplification of the HER2 gene occurs in 15–20% of breast cancer 
 patients2 and is related to poor disease  outcomes3. The introduction of the monoclonal antibody trastuzumab has 
greatly improved the prognoses of patients with HER2-positive breast  cancer4. In addition, combined with the 
oestrogen receptor (ER), the progesterone receptor (PR), Ki-67, CK5/6, and the epidermal growth factor recep-
tor (EGFR), HER2 plays an important role in the molecular classification of breast cancer 5. Different molecular 
subtypes might predict different  outcomes6and may be associated with preferred treatment  regimens5. Therefore, 
an accurate HER2 status assessment method is essential for breast cancer patients.

In clinical practice, immunohistochemistry (IHC) is the most widely used method. According to the 2018 
American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines, the immu-
nostaining results of HER2 are reported as follows: 0, negative; 1+, negative; 2+, equivocal; and 3+,  positive7. If 
an IHC result is 2+, a further HER2 assessment must be carried out by fluorescence in situ hybridization (FISH) 
with the same specimen or by a new test with another new  specimen7. For FISH, HER2 amplification statuses are 
divided into five groups based on the HER2/CEP17 ratio and the average HER2 copy  number7. Although IHC 
is efficient and economical, FISH is more objective and quantitative. In addition, FISH is superior in terms of 
predicting the clinical outcomes of breast  cancer8. More importantly, HER2 gene amplification can also be found 
in HER2 IHC 0 or 1+ cases by FISH  testing9,10. FISH is thus indispensable for HER2 assessment. However, it is 
undeniable that manually counting HER2 signals is time-consuming and that interobserver variability does exist. 
A series of automated image analysis methods for HER2 FISH interpretation have emerged over the past two dec-
ades, including automated image  analysers11,12, automated scanning-based imaging approaches  (Metasystems13 
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and the Ariol  system14), the Micrometastasis Detection System (MDS)15, and automated signal enumeration 
systems (CW4000 CytoFISH  software16 and Vysis  AutoVysion17). These automated techniques are greatly help-
ful for HER2 FISH assessments and can provide results that are consistent with manual  counting18. However, 
poorly segmented and incorrectly selected cells need to be manually  removed11, and the automated scoring results 
produced by HER2 FISH on the Ariol system did not show excellent concordance with  pathologists14. In addi-
tion, automated image analysis requires a large amount of storage power for recording FISH images, potentially 
resulting in clinical use limitations.

In recent years, deep learning and artificial intelligence (AI) have been greatly developed and utilized in a wide 
range of  fields19. Based on a deep learning approach, a previous study established an algorithm for automatically 
predicting the molecular subtypes and detecting the intratumoral heterogeneity of breast  cancer20. Additionally, 
an AI model can predict breast cancer grades, histologic subtypes, ER  statuses21 and HER2 IHC  scores22 from 
haematoxylin and eosin (HE)-stained images. However, studies assessing the HER2 gene amplification statuses 
of FISH images based on deep learning and AI are  scarce23.

In the present study, a deep learning-based AI method was established for automated HER2 FISH evaluation. 
To evaluate the algorithm, breast cancers belonging to five HER2 FISH groups in a testing set were diagnosed by 
the Aitrox AI model and the gold standard, and their diagnosis results were compared.

Materials and methods
Sample selection and HER2 FISH image acquisition. Three hundred and twenty invasive breast can-
cers determined with both HER2 IHC and FISH detection were collected consecutively from the archives of the 
Department of Pathology, Fudan University Shanghai Cancer Center (FUSCC). All 320 cases included primary 
breast cancers (293 cases) and metastatic breast cancer tissues in lymph nodes (17 cases), the lung (3 cases), the 
liver (3 cases), the chest wall (3 cases), and bone (1 case). All samples were included in the study with approval 
from the independent ethical committee/institutional review board, and all participants signed informed con-
sent forms. All methods were performed in accordance with the relevant guidelines and regulations. All study 
activities were conducted in accordance with the Declaration of Helsinki and relevant guidelines and regulations.

Representative 4-μm-thick formalin-fixed paraffin-embedded (FFPE) tumour sections were assessed by two 
pathologists (TX and QMB) to determine the carcinoma areas using HE-stained sections. Afterwards, the Path-
Vysion HER2 DNA Probe Kit (Abbott Molecular, Abbott Park, Illinois) was used for HER2 FISH according to 
the manufacturer’s instructions. The specific experimental method for FISH was as follows. The sections were 
baked at 65 °C for 30 min and dewaxed 3 times in xylene at room temperature for 10 min each time, followed 
by immersion in 100% ethanol for 5 min. The sections were sequentially placed in 100% ethanol for 2 min, 85% 
ethanol for 2 min and 70% ethanol for 2 min, and the sections were immersed in pure water at room temperature 
for 3 min. The sections were treated with pure water at 88–92 °C for 30 min. The pepsin solution was prepared 
as follows: pepsin powder (activity 1:3000, Solarbio) (75 mg) was dissolved in 150 ml 0.01 HCL with pH ≈ 2.0. 
After cooling the sections to below 60 °C, they were immersed in pepsin solution and incubated for 15–20 min at 
54 °C. The sections were then rinsed once in pure water. The sections were dehydrated in 70% ethanol for 1 min 
at room temperature. The slides were then dried. The probe working solution was added dropwise to the target 
hybridization areas of the sections, a coverslip was immediately applied, and the periphery of the coverslip was 
sealed with rubber cement. The slides were placed in a hybridization apparatus, and a hybridization procedure 
was set. Denaturation was performed at 80 °C for 8 min, and this was followed by hybridization at 39 °C for 
16–18 h. Then, the slide sealant was carefully removed in a dark environment, and the slides were immersed in 
0.4× saline sodium citrate solution for approximately 10 min. The slides were placed in a 0.3% NP-40/0.4× saline 
sodium citrate solution (preheated to 68–72 °C, pH ≈ 7.0), shaken for 1–3 s, and rinsed for 2 min. The slides were 
incubated at room temperature in 0.1% NP-40/2× saline sodium citrate (pH ≈ 7.0), shaken for 1–3 s, and rinsed 
for 1 min. The slides were then placed in 70% ethanol at room temperature and rinsed for 1 min. The slides were 
removed and dried. Approximately 20 µL of DAPI was added dropwise to each slide, followed by a coverslip.

The FISH results obtained for HER2 were independently evaluated by two pathologists (TX and QMB) 
according to the criteria described in the 2018 ASCO/CAP  guidelines7. The HER2 FISH results were designated 
into five groups. The FISH images of tumours were manually selected for scanning. High-quality FISH images 
were captured using the Microscope Image Information System (MIIS) from Shanghai Aitrox Technology Cor-
poration Limited (Shanghai, China) and saved in JPEG file format.

Aitrox AI model. Based on a deep convolutional neural network (DCNN), our method, named the Aitrox 
AI model, consists of two steps for automatically detecting HER2 amplification statuses in FISH images with a 
tumour cell nucleus detector and a signal detector. In the first step, tumour cell nuclei are localized in a whole 
FISH image by the tumour cell nucleus detector. The tumour cell nucleus detector has an architecture based on 
You Only Look Once version 3 (YOLOv3)24. YOLOv3 is a state-of-the-art DCNN that is widely used in object 
detection cases. YOLOv3 consists of two modules: a feature extractor and a predictor. The feature extractor uses 
a network named Darknet-53 with successive 3 × 3 and 1 × 1 convolutional layers and shortcut connections, and 
it performs on par with state-of-the-art classifiers and while converging more  quickly24. The predictor predicts 
bounding boxes using dimension clusters as anchor boxes at three different scales, which integrates rich feature 
maps from low to high levels and the classes that the bounding boxes may  contain25. A whole FISH image goes 
through the tumour cell nucleus detector, during which bounding boxes with tumour cell nucleus probabilities 
are predicted. The bounding boxes with higher probabilities (above a specified threshold) are taken as detected 
tumour cell nuclei.

In the second step, the numbers of HER2 and CEP17 signals are counted by the signal detector in one detected 
tumour cell nucleus derived from the tumour cell nucleus detector. ResNet  1826, a DCNN with good feature 
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extraction performance, is adopted as the signal detector. The signal detector takes one detected tumour cell 
nucleus as input and outputs its HER2 and CEP17 gene signal quantities, which is an obvious regression task. 
Subsequently, to convert the localization and counting results acquired from the tumour cell nucleus detector 
and the signal detector into image-level predictions, the numbers of HER2 gene signals and CEP17 gene signals 
in one FISH image are obtained, from which the average HER2 gene copy number is obtained and the HER2/
CEP17 ratio is calculated. The HER2 gene copy number equals the ratio of the number of tumour cell nuclei 
to the number of HER2 gene signals in one FISH image. The HER2/CEP17 ratio is defined as the ratio of the 
number of CEP17 gene signals to the number of HER2 gene signals within a FISH image. The whole workflow 
of the proposed deep learning framework is shown in Fig. 1.

Preprocessing and training procedure. The FISH images were divided into three groups: training, vali-
dation and test groups. To train the tumour cell nucleus detector and the signal detector, the FISH images were 
manually annotated by two pathologists (TX and MR) with two steps corresponding to the two DCNNs. First, 
bounding box annotations were provided to train the tumour cell nucleus detector. The bounding boxes were 
comprehensively annotated according to their tumour cell characteristics, such as their nucleus sizes and tissue 
structures. These bounding boxes had four coordinates for their positions and ranges in images and one single 
label named the tumour cell nucleus for their class. Second, the numbers of HER2 gene signals and CEP17 gene 
signals for each bounding box were annotated not only to train the signal detector but also to calculate the HER2 
gene copy number and HER2/CEP17 ratio. Within one FISH image, the number of tumour cell nuclei equalled 
the number of bounding boxes, which could be easily obtained after detecting the tumour cell nuclei with the 
tumour cell nucleus detector.

During the training procedure, a loss function and optimization were employed to improve the performance 
of the DCNNs. To better train the tumour cell nucleus detector, the loss function combined the generalized 
intersection over union (GIoU) loss, objectness loss and classification loss. Since the IoU loss only considers the 
ratio of the areas of intersection and merging between the real box and the prediction box, when the prediction 
box and the target box do not intersect, the gradient disappears, and the loss cannot accurately reflect the degree 
of overlap between the two boxes. We used the GIoU loss to add a penalty term to the IoU loss to alleviate the 
above problems and make the prediction results more accurate. We used adaptive moment estimation (Adam) 
optimization for training the tumour cell nucleus detector with a fixed learning rate of 1e−3. Adam combines 
the advantages of Adagrad, which is good at dealing with sparse gradients, and root-mean-square propagation 
(RMSprop), which is good at handling nonstationary targets. The parameters of each iteration were adjusted 
within a certain range so that these parameters remained relatively stable. For the signal detector, we took the 
mean square error loss as the loss function and Adam as the optimization function with a fixed learning rate of 
1e−3. In the pretraining phase, pretrained weights were loaded during the training procedures of both DCNNs. 
The pretrained weights of the tumour cell nucleus detector were obtained through pretraining on the COCO 
 dataset27, while the pretrained weights of the signal detector were obtained via pretraining on the ImageNet 
 dataset28. We used rotation, translation, etc., to enhance each input FISH image. Moreover, both DCNNs were 

Figure 1.  Pipeline of the Aitrox AI model for the automatic detection of HER2 amplification statuses in FISH 
images. First, a whole FISH image goes through the tumour cell nucleus detector with a feature extractor and 
predictor to localize the tumour cell nuclei. The detected tumour cell nuclei are cropped from the original image 
as patches. Second, the signal detector takes patches as input and outputs their HER2 and CEP17 gene signal 
quantities. HER2 amplification statuses are classified into 5 groups according to the ASCO/CAP guidelines.
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trained on one NVIDIA GeForce 1080Ti. The validation set was used to select the best-performing model dur-
ing the training procedure.

Ethics approval. This study was approved by the Institutional Review Board of Fudan University Shanghai 
Cancer Center.

Consent to participate. Informed consent was obtained from all individual participants included in the 
study.

Results
A total of 918 FISH images scanned from 320 patients were obtained from FUSCC. The FISH images were divided 
into three sets: training (551/918, 60.02%), validation (183/918, 19.94%) and test sets (184/918, 20.04%). Each 
patient’s FISH images only appeared within a single dataset. For the automated analysis, 4969 and 1275 bounding 
boxes with tumour cell nucleus labels were obtained in the training set and validation set, respectively. Each set 
was classified into five groups based on the ASCO/CAP guidelines. Detailed information on the distributions 
of the 918 FISH images contained in the three sets is shown in Fig. 2. No significant differences were observed 
among the three sets with respect to clinicopathologic characteristics, especially between the training and test 
sets (Table 1).

The case-based classifier’s performance was tested on 184 FISH images, and it achieved 85.33% (157/184) 
accuracy. The mean average precision (mAP) curve of the test dataset was obtained through the tumour cell 
nucleus detector network, and the mAP for the test dataset was 0.735 (Fig. 3). A comparison between the clas-
sification results obtained by the pathologists and the Aitrox AI model on the test set is shown in Fig. 4. In Group 
1, 67.86% (38/56) of the samples were correctly classified through the Aitrox AI model, while the remaining 
32.14% (18/56) were equally classified into Group 2, Group 4 and Group 5. In Group 2, both samples (2/2) were 
misclassified into Group 5. Group 3 only contained one sample, which was misclassified into Group 5. In Group 
4, 66.67% (2/3) of the samples were correctly classified. In Group 5, 95.90% (117/122) of the samples were cor-
rectly classified, while the remaining 1.64% (2/122) and 2.46% (3/122) were classified into Group 2 and Group 
4, respectively.

Representative samples from the five groups that were correctly predicted by the Aitrox AI model are shown 
in Fig. 5. Figure 5a shows the original image, the original image with labelled bounding boxes, and the original 
image with the AI-predicted bounding boxes for Group 1. The pathologist-labelled and AI-predicted average 
HER2 copies, CEP17 copies and HER2/CEP17 ratios were 13.80 and 8.00, 2.60 and 2.60, and 5.31 and 3.08, 
respectively. Figure 5b shows the original image, the original image with labelled bounding boxes, and the 
original image with the AI-predicted bounding boxes for Group 4. The pathologist-labelled and AI-predicted 
average HER2 copies, CEP17 copies and HER2/CEP17 ratios were 4.08 and 4.22, 2.75 and 3.28, and 1.49 and 
1.29, respectively. Figure 5c shows the original image, the original image with labelled bounding boxes, and the 
original image with the AI-predicted bounding boxes for Group 5. The pathologist-labelled and AI-predicted 
average HER2 copies, CEP17 copies and HER2/CEP17 ratios were 3.20 and 2.86, 2.21 and 2.24, and 1.33 and 
1.29, respectively.

Figure 6 shows selected and representative samples from the five groups that were incorrectly predicted by 
the Aitrox AI model. Figure 6a–c show the original image, the original image with labelled bounding boxes, and 
the original image with the AI-predicted bounding boxes for Group 1. However, the AI model incorrectly clas-
sified this sample into Group 2, Group 4 and Group 5. Figure 6d–f show the original image, the original image 
with labelled bounding boxes, and the original image with the AI-predicted bounding boxes for Groups 2, 3 and 

Figure 2.  Detailed information on the sample distributions of different datasets.
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4, respectively. However, the AI model incorrectly classified these samples into Group 5. Figure 6g,h show the 
original image, the original image with labelled bounding boxes, and the original image with the AI-predicted 
bounding boxes for Group 5. However, the AI model incorrectly classified these samples into Group 2 and Group 
4. Detailed information is provided in Fig. 6.

Discussion
HER2 protein overexpression and gene amplification statuses are crucial markers for evaluating prognoses 
and making treatment decisions for breast cancer patients. It is promising that the HER2 IHC score could be 
predicted using automated image  analysis29, and the experimental results exhibited good concordance with the 
FISH  results30. For HER2 FISH interpretation, a computer-aided image analysis method has been developed. 
The overall accuracy of automated spot counting and manual scoring ranged from 82 to 100%15–17,31,32. In addi-
tion, studies have demonstrated that image analysis can be performed a significantly shorter evaluation  time17,33. 
However, other studies have suggested that image analysis underestimates the HER2 and CEP17 data of FISH 
images compared with the results of the conventional  method34, and manual intervention is always required 
during the image analysis  process17. In this study, an automated detection method (the Aitrox AI model) for 

Table 1.  Clinicopathologic characteristics in training set, validation set and test set.

Training set Validation set Test set
p value  (training set vs. 
validation set) p value (training set vs. test set)

p value (validation set vs. 
test set)

Age (years)

 ≤ 50  93 31 36 0.657 0.530 0.900

 > 50  87 33 40

Tumor size (cm)

 < 2  27 8 10 0.284 0.446 0.764

 ≥ 2  38 19 20

Tumor grade

 1/2 63 20 27 0.304 0.898 0.434

 3 74 33 33

Node status

 Negative 68 32 25 0.302 0.708 0.603

 Positive 41 13 13

Molecular subtypes

 Luminal A 39 19 15 0.052 0.225 0.403

 Luminal B 90 21 29

 HER2-overexpression 21 6 12

 Triple-negative breast cancer 30 18 19

Figure 3.  Mean average precision (mAP) curve produced for the test dataset.
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FISH images was constructed through a two-step deep learning pipeline. First, the nuclei of tumours in FISH 
images were localized and classified by the tumour cell nucleus detector network. Then, the numbers of HER2 
and CEP17 gene signals were calculated by the signal detector network, and a final HER2/CEP17 ratio was 
obtained. This model correctly classified the majority of samples into different HER2 amplification status sub-
groups, especially for Group 5.

Among the incorrectly classified Group 1 cases, HER2 signals formed clusters in 12 cases, and AI obviously 
underestimated the HER2 count. In accordance with the presented results, previous studies have demonstrated 

Figure 4.  Confusion matrix obtained for the test set concerning the classifications provided by the pathologists 
and the Aitrox AI model.

Figure 5.  Selected and representative samples from the five groups that were correctly predicted by the Aitrox 
AI model. (a) Group 1. (b) Group 4. (c) Group 5. The first column shows the original images of the five groups. 
The second column shows the original images labelled by pathologists, which were used as the gold standard 
in the test dataset. The third column shows the original images predicted by our Aitrox AI model. The HER2/
CEP17 ratio was calculated for both the gold standard and our Aitrox AI model as the ratio of the number 
of CEP17 gene signals to the number of HER2 gene signals in one image, and details can be found in the last 
column.
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Figure 6.  Selected and representative samples from the five groups that were incorrectly predicted by the Aitrox 
AI model. (a–c) Group 1. (d) Group 2. (e) Group 3. (f) Group 4. (g,h) Group 5. The first column shows the 
original images of the five groups. The second column shows the original images labelled by pathologists, which 
were used as the gold standard in the test dataset. The third column shows the original images predicted by the 
Aitrox AI model. The HER2/CEP17 ratio was calculated for both the gold standard and our Aitrox AI model as 
the ratio of the number of CEP17 gene signals to the number of HER2 gene signals in one image, and details can 
be found in the last column.
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that clusters are not suitable for regression-based methods; they instead recommended density-based  methods35. 
However, undefined results are obtained through density-based methods when no CEP17 signals are available 
because signal quantification is completed on a single fluorescence  channel35. In fact, it is easy to identify cases 
with clustered HER2 signals and to manually draw conclusions in clinical practice. In addition, the numbers of 
CEP17 signals determined by the AI model were higher than the manual counts in eight misclassified Group 1 
cases and in two misclassified Group 2 cases, presumably because the CEP17 signals were slightly coarse. One 
case each in Group 3 and Group 4 was mistakenly classified into Group 5. In the misclassified images, the HER2 
signals in some cells were gathered, and the intensity levels of HER2 signals in some cells were inconsistent, 
which may have been the reason for the low HER2 signal count produced by the AI method. Among the incor-
rectly classified Group 5 cases, two cases were mistakenly classified into Group 2. In one case, the weak CEP17 
signals may not have been detected by the signal detector, and the reason for the other case was that a few cells 
were selected by the tumour cell nucleus detector. In the other three cases mistakenly assigned to Group 4, a few 
clustered nuclei were counted as one nucleus by AI in the two cases, leading to an increased number of HER2 
signals. The remaining case may have been caused by counting bias. In histological samples, nuclei often over-
lap, so their signals cannot be counted exactly within one tumour cell nucleus. A new method was suggested, 
which counted all dots in representative tumour areas and assessed HER2/CEP17 ratios without considering the 
nucleus  boundaries18. However, the HER2 copy number is also important, and HER2/CEP17 ratios cannot be 
considered alone when evaluating HER2 gene statuses. Therefore, AI may not be suitable for cases containing 
overlapping nuclei.

The present study has several limitations. In the tumour cell nucleus detector, the tile sampling method is 
used; however, the size of the tile does not always correspond to the size of a tumour cell nucleus, particularly 
when nuclei overlap. Nevertheless, tile-sampling analysis still performed well in previous  research17 as well as 
in our study. A tumour cell nucleus sampling classifier should be considered in our future work. Furthermore, 
only a few FISH images were contained in Group 2, Group 3, and Group 4. Our data might be representative 
of real-world data since our cases were collected consecutively from FUSCC. Nevertheless, we included 918 
FISH images in our study, making it the largest dataset in this field to our knowledge. To achieve improved AI 
classification accuracy for these three groups, further studies should include more cases from multiple centres.

Heterogeneity was also not assessed in our study. Heterogeneity can manifest in multiple patterns. HER2-
amplified cells and nonamplified cells can be completely separated or  intermingled36. Several studies have focused 
on automatically evaluating HER2 heterogeneity. Nguyen et al.37 developed a high-content quantitative analysis 
method based on microfluidic experimentation and image processing to detect HER2 intratumoral heterogene-
ity at the cellular level. Radziuviene et al.34 reported that an automated high-capacity nonselective tumour cell 
assay could generate evidence-based HER2 intratumor heterogeneity. However, the complicated experimental 
procedure in the abovementioned method may limit its clinical application.

Based on these limitations, we propose a method for combining pathologists with the Aitrox AI model, since 
scanning an entire FISH slice is time-consuming and requires significant storage space, and manual counting 
is insufficient for accurately counting tumour cells. Pathologists review the FISH sections under a fluorescence 
microscope (400x) to determine whether the HER2 signals are heterogeneous. If no heterogeneity is observed, 
several representative tumour regions are manually selected and then submitted to the Aitrox AI model for 
interpretation. If heterogeneity exists, several representative tumour regions in different groups will be manu-
ally selected and then submitted to AI for interpretation. In addition, pathologists could determine whether the 
HER2 signals form clusters, the signal intensities, and whether the nuclei overlapped during scanning whole-slide 
images to decide whether the slide is suitable to submit for Aitrox AI model interpretation. More importantly, 
HER2 amplification statuses could be preliminarily determined during this process. The artificial selection of 
regions can ensure the inclusion of tumour components. Pathologists can evaluate the AI interpretation result 
and manually modify it if the result does not meet expectations. Combining the advantages of manual quality 
control and AI counting, this method can not only ensure the accuracy of pathological reports but also improve 
the efficiency of pathologists, demonstrating great clinical practicability.

In conclusion, the Aitrox AI model is a reliable tool for automatically evaluating HER2 amplification statuses, 
especially for breast cancers in Group 5. Further studies involving more cases in other groups from multiple 
centres are still needed.

Data availability
The training, validation and test datasets utilized for the development of the deep-learning model cannot be 
publicly available due to the need to protect the privacy and health information of the patients involved. However, 
the datasets can be provided upon request if the Institutional Review Board of the ethics committee of Fudan 
University Shanghai Cancer Center (FUSCC) grants approval. The corresponding author (QMB) should be 
contacted if someone wants to request the data from this study.
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