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Automated, non‑invasive Varroa 
mite detection by vibrational 
measurements of gait combined 
with machine learning
Harriet Hall , Martin Bencsik * & Michael Newton 

Little is known about mite gait, but it has been suggested that there could be greater variation in 
locomotory styles for arachnids than insects. The Varroa destructor mite is a devastating ectoparasite 
of the honeybee. We aim to automatically detect Varroa‑specific signals in long‑term vibrational 
recordings of honeybee hives and additionally provide the first quantification and characterisation of 
Varroa gait through the analysis of its unique vibrational trace. These vibrations are used as part of a 
novel approach to achieve remote, non‑invasive Varroa monitoring in honeybee colonies, requiring 
discrimination between mite and honeybee signals. We measure the vibrations occurring in samples 
of freshly collected capped brood‑comb, and through combined critical listening and video recordings 
we build a training database for discrimination and classification purposes. In searching for a suitable 
vibrational feature, we demonstrate the outstanding value of two‑dimensional‑Fourier‑transforms in 
invertebrate vibration analysis. Discrimination was less reliable when testing datasets comprising of 
Varroa within capped brood‑cells, where Varroa induced signals are weaker than those produced on 
the cell surface. We here advance knowledge of Varroa vibration and locomotion, whilst expanding 
upon the remote detection strategies available for its control.

Current knowledge on Varroa gait style. The Varroa destructor mite is an extensively researched spe-
cies that specifically parasitises  honeybees1. Despite the abundance of Varroa studies, there are few descriptions 
of their locomotory  behaviour2. Of the gait characterisations that have been made, the focus has been on the 
forelegs, which are reported to function in the same way as insect antennae, detecting volatiles and mediat-
ing mite orientation towards honeybee hosts and conspecifics for  reproduction3–6. Varroa are described as lift-
ing their forelegs in an exploratory manner, leaving the 2nd, 3rd, and 4th pairs of legs to function as walking 
 appendages7,8. Yet, these are merely anecdotal comments, and features relating to Varroa mite ambulation have 
not been quantitated or explored in any further detail.

Other mite and tick gait. A similar situation is seen regarding other mite and tick species. For ticks, studies only 
refer to locomotory activity, distance, and directional responses to  hosts9–12. Many mite species are known to 
have modified forelegs that are used for a variety of purposes other than locomotion, and in the order Mesostig-
mata, to which Varroa belongs, the function is (like Varroa) sensory in  nature13. However, gait specific features 
are not well-researched in mites, and locomotion is more commonly discussed in relation to speed, grasping, or 
jumping  ability14,15, with limited observational references to six-legged  gait16–19.

Six‑legged arachnid gait. As Varroa walk with their forelegs raised above ground, using only the other six for 
ambulation, it is perhaps likely that their locomotory style is akin to that of other arachnid species also known 
to move using only six out of eight of their legs. For example, the jumping spider Myrmarachne formicaria can 
mimic the motion of its ant prey by lifting its forelegs to imitate antennal  behaviour20. There are other related 
orders within the Arachnid class that, like Varroa, have evolved legs that function as sensing systems, leading to 
tripodal gait. Harvestmen (Opiliones) have four different gait-types, and never use the second pair of legs, which 
instead are used for environmental  probing20,21. Whip spiders (Amblypygi) and whip scorpions (Thelyphonida) 
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have what are described as antenniform forelegs that have developed a sensory function and play no role in 
 ambulation14,22,23.

A unique gait style for Varroa? However, a detailed review on locomotion (including gait style, step cycles, 
running speed and morphological adaptations) in the arachnid class notes that gait types appear to vary far 
more in this group than  insects14, and it is therefore possible that Varroa locomotory style is unique to that of 
other arachnids, mite or otherwise. The species has unusual anatomical features noted in its muscular structure, 
and its body plan varies substantially to that of other  mites2. The coxae (first joint) of the legs are immovable in 
other arachnid species, yet in Varroa, retractor muscles in the coxae instead attach to an endosternite (part of the 
internal skeleton), rather than the body cuticle, enabling greater movement of the legs. Additionally, the somatic 
muscles crisscross the body, forming a knot, providing Varroa with another exceptional  feature2. Investigation 
into the gait of this species, which is described as being both efficient and  rapid2, is therefore likely to provide 
interesting further insight into Varroa biology. In this study, we make a start in this direction, and investigate 
Varroa gait in terms of its vibrational signature, primarily as a tool for its detection in honeybee colonies, but also 
to provide novel insight into the unique pattern of Varroa walking style via its electronic features.

Varroa mite infestation in honeybee colonies and the importance of its detection. Varroa act 
as a vector of disease and negatively influence a variety of bee functions and biological processes, including cog-
nition and immune system  activity1,24. If colonies are not well managed for mite infestation, they are likely to die 
between 6 months and 2 years after the parasite takes  hold25. The importance of monitoring and managing this 
high impact species within honeybee colonies is therefore paramount.

Monitoring for mite populations is critical in order to allow the appropriate timing of control methods, as 
over treating with acaricides can (i) have adverse effects on honeybee biological processes and (ii) can also lead 
to Varroa  resistance26,27. Not all colonies within an apiary will require treatment, i.e., those that lack, or have low 
levels of mites should be left untreated (but continue to be monitored) to lower beekeeping efforts and reduce 
over-treatment  risks28. Current approaches for identifying Varroa presence and infestation levels in honeybee 
colonies are practical in nature, requiring regular apiary visits and often causing disruption to the colony through 
the removal of bee and brood  samples27,29. Remote, non-invasive measurements of Varroa levels could therefore 
greatly benefit beekeeping and colony health for two reasons: (i) the beekeeper can be informed of the most 
suitable time to treat their hives through continuous measurements of mite population, and (ii) the method 
would require fewer in-person visitations/inspections, reducing colony disruption and freeing up more of the 
beekeepers’ time.

Remote mite monitoring is a new field of investigation that offers the potential to greatly improve colony 
management practices for the reasons discussed above. At present, olfactory, video, and acoustic measurements 
are being investigated for their success and reliability as non-invasive surveillance techniques, but so far, there are 
several limitations and disadvantages to these methods, preventing their implementation in commercial products.

Only one research group has so far compared the acoustic signature of a Varroa infested colony with that of a 
healthy colony, and the data used by the authors suffered from low quality data and low replication due to a small 
number of honeybee  colonies30. This is disadvantageous, as the interpretation of different colony states is a critical 
part of data analysis when it comes to remote monitoring, so that beekeepers can be correctly informed of hive 
 status31. High quality data coming from numerous colonies is essential for building algorithms that can discrimi-
nate one colony state/event from  another32, otherwise there is the risk of coincidental numerical categorisation.

Video capture has also been implemented as a Varroa detection method but is flawed by (i) the large amount 
of data produced (typically 20 to 100 fold higher than audio data, for example), (ii) difficulties in visual mite 
identification as they can reside on adult bees in a variety of positions, and (iii) the simple fact that video is only 
currently useful at the hive entrance, the only location where there is enough light and space to suitably collect 
information  visually31,33,34.

Gas sensors, which collect olfactory measurements based on the chemical composition of the hive atmos-
phere, are the latest method to be  scrutinised35. Most gas sensors are unfortunately only sensitive to one type of 
simple compound, and as the composition of beehive air, and that of Varroa infested hives is known to be highly 
complex this currently means that many devices are required for one  colony35,36. Other disadvantages include 
the need to be protected from propolisation, leading to the flaw that they are prone to errors if the measuring 
system is not cleaned regularly, which limits continuous monitoring  possibilities35,37.

Investigating Varroa gait and a novel approach to remote mite detection. We here present the 
first known quantitative characterisation of Varroa gait, based on its vibrational signature, and then use this as 
the basis of a novel, non-invasive mite detection approach in honeybee colonies. We use accelerometer sen-
sors, which are small devices that measure vibration by outputting an electrical signal that is proportional to 
the acceleration it  experiences38. This type of sensor is free of many of the restraints observed in other types of 
remote Varroa monitoring, proven through its success in capturing signals from both the entire honeybee colony 
and individual vibrations produced by single bee  individuals39–43. Unlike gas sensors and microphones, accel-
erometers can reside in the hive long-term, and remain fully functional without the need for protection from 
propolisation. Additionally, due to the small size of the sensors (1000  mm3), and the fact that the colony readily 
builds normal comb over them (often brood filled), it appears that there is little effect, if any, of accelerometer 
presence on bees.

A major challenge of remote colony monitoring could be data bias resulting from short-term measurement 
 periods32. Accelerometers overcome this as they record long-term (years), providing highly meaningful, con-
tinuous hive  data39–43. In utilising accelerometers, a dataset containing a large number of naturally occurring 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10202  | https://doi.org/10.1038/s41598-023-36810-0

www.nature.com/scientificreports/

vibrations can therefore be accrued, enabling the identification of patterns and trends, as well as the pinpointing 
of early warning signs for hive events such as  swarming40–43. Accelerometers are therefore an ideal device for 
gathering non-invasive colony measurements, although they do presently remain expensive and unaffordable 
for any beekeeper.

We have previously demonstrated that accelerometers can detect the minute vibrations of individual Varroa 
mites, and from this data have carefully and meticulously characterised the features of specific mite  pulses44. 
In the research presented here, we build upon our original characterisation of individual mite walking pulses, 
producing the first ever description of Varroa gait vibrational features. We then build a training database that 
exploits a highly effective feature of these vibrations, to be used as part of a classification system for identifying 
mite presence in capped brood, where mites spend 50% of their life  cycle1. We report that the unique vibrational 
trace of Varroa gait can be used to discriminate between a mite on brood-comb and a bee emerging from her 
cell, as these honeybee vibrations were prominent in our recordings of capped comb. In doing so, we show that 
our discrimination software is capable of correctly classifying a mite vibration based on the uniqueness of its 
two-dimensional-Fourier transform. These exceptional features are further demonstrated through a second dis-
crimination analysis of Varroa gait and that of two other invertebrate species (woodlouse and carabid beetle). We 
acknowledge some of the current limitations to our approach and offer future solutions. This research provides 
a significant step forward in Varroa biotremology as well as remote mite detection in colonies.

Results
Characterisation of Varroa gait features. The unique vibrational pattern that constitutes the gait of a 
Varroa mite walking on brood-comb is here identified and characterised (see Fig. 1). Walking most often occurs 
in short bursts that last 1–2 s, and therefore a feature time duration of 1 s of the recording was deemed ideal for 
allowing suitable characterisation of the vibrations. Honeybee emergence vibrations occurred more continu-
ously and are more variable than mite pulses in terms of frequency spectrum features (see supplementary Fig. 1).

Varroa mite walking, and honeybee emergence vibrations are easily identifiable via critical listening of the 
recordings (see supplementary Video 1). When viewed as 2DFTs, clear discriminatory features can be seen 
between the two types of vibration, alongside the third category of background noise (the reader is strongly 
advised to view supplementary Video 1 before reading any further), which was also separately looked into due 
to the poor signal-to-noise-ratio (SNR) that Varroa signals exhibit. The 2DFT image reveals both the funda-
mental frequency and any frequency harmonics observed in the vibration along the y axis, but in particular the 
visualisation of data as a 2DFT is remarkably suited to identifying repeating spectral signatures within a signal 

Figure 1.  A representative example of 1 s of Varroa walking vibrations on brood-comb, viewed as an 
accelerometer waveform (panel ‘a’), spectrogram (panel ‘b’), and 2DFT (panel ‘c’). Magnitude of acceleration is 
logarithmic (to the base 10) in ‘(b)’ and in ‘(c)’, where dark red is the maximum (3.4 ×  10–4 m/s2), and dark blue 
is the minimum (here forced to be 1/120 of the maximum). The spectrogram and 2DFT panels have been scaled 
identically and cropped to remove redundant frequencies (high pass filtered 0–500 Hz, cropped to remove 
frequencies above 4 kHz).
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that exhibits a burst of periodic, similar pulses. Such a signal yields clear vertical traces on the 2DFT, providing 
straightforward reading of the spectral repetition of the vibration (along the x axis).

The honeybee vibrations residing in the recordings in our study did not typically demonstrate specific recur-
ring frequency components (see supplementary Fig. 1). Mite walking vibrations, in contrast, exhibited repeated 
components that were more regular. Ten 2DFT images, each comprising of 1-s of Varroa walking vibrations 
from the recordings on both brood-comb and Petri-dish (a flat, homogenous surface, for comparison), were 
scrutinised. On both substrates, multiple spectral repetition frequencies were seen in each 2DFT, within a range 
between 4 and 60 Hz (see Fig. 1, see supplementary Fig. 2). Within this frequency range, 4 Hz (60%), 14 Hz 
(40%) and 6 Hz (30%) were seen most commonly on the brood-comb (some 2DFTs exhibited two strong peaks, 
hence the percentage total equalling 130%), whereas on the Petri-dish, more frequency variation occurred, with 
only 7 Hz (30%) observed more regularly. This feature is further highlighted when viewing the average 2DFT 
for each substrate, where frequency peaks are less identifiable on Petri-dish, due to the larger variation observed 
(see Fig. 2, panel ‘d’). The averaged 2DFT images show similar horizontal pulse spectral shape up to 80 Hz in the 
observed vibrational traces seen at 1000–1500 Hz (brood-comb) and 500 and 3000 Hz (Petri-dish) demonstrating 
that Varroa gait are comparable on both substrates (see Fig. 2, panels ‘b and ‘d’). It is known that mite vibrational 
traces vary in frequency features (vertical axis of the 2DFT) dependent on substrate vibrational  modes44.

A second, independent method of gait quantification was then carried out, where the time elapsed between 
two consecutive walking vibrational pulses was identified for 10 s of Varroa walking behaviour on (i) brood-comb 
and (ii) Petri-dish. This demonstrated that 0.04 to 0.08 s is the mode time duration between successive pulses 
on both the flat Petri-dish and irregular brood-comb substrates (see Fig. 2). Note that there is a discrepancy 
between the common spectral repetition rates observed in the 2DFTs and the time intervals between consecu-
tive walking vibrations (only 0.07 s matches the 14 Hz frequency component observed in the 2DFTs), due to the 
independent methodological differences. The 2DFT strongly emphasises periodicity in the pulses, whereas this 
information is deteriorated in the time analysis, as the intervals were quantitated between consecutive pulses, 
as is now further explained. Each walking leg produces its own revolutionary cycle as the Varroa moves, and as 
it was unknown which leg caused which vibrational trace, the pattern of this cycle can be lost (the time interval 

Figure 2.  A histogram representing another type of quantification of mite walking pulses on brood-comb 
(panel ‘a’), and Petri-dish (panel ‘c’). The averaged 2DFT for walking pulses on each substrate is also shown 
(panels ‘b’ and ‘d’). In the histograms, time elapsed between two consecutive pulses is shown on the x axis. The 
data was obtained from 10 s of continuous walking behaviour on each of the two substrates. The Petri-dish 
serves as a ‘control’ to compare to the brood-comb, which is a less homogenous substrate. On the Petri-dish, 
the mite walks unhindered by any environmental obstacles such as substrate edges, bumps, and raised areas, 
and so provides clear quantification of gait. The results from both substrates, however, demonstrate that Varroa 
locomotion is highly similar on brood-comb to that of a flat surface. In the averaged 2DFTs, a similar pulse 
spectral shape can be seen up to 80 Hz over the horizontal axis for both Petri-dish and brood-comb. Magnitude 
of acceleration is logarithmic (to the base 10), where dark red is the maximum (9 ×  10–5 m/s2) and dark blue the 
minimum (forced to be 1/400 of the maximum). Both 2DFTs have been scaled identically.
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between two pulses produced by the same leg cannot be known). The 2DFT is capable of extracting and revealing 
this periodicity, whereas consecutive pulse interval analysis is useful for establishing how quickly the legs move.

By comparing Petri-dish and brood-comb walking data, we have been able to confirm gait vibration feature 
similarities regardless of substrate. Our brood-comb data was limited by the number of mites seen walking and 
the fact that the behaviour was in short bursts (1–2 s) on this substrate in comparison to Petri-dish, where (in 
our experience) mites walk uninterrupted for prolonged periods.

A few seconds of Varroa gait data is insufficient to allow the identification of features that are truly generic to 
this mite. Therefore, to further substantiate the identification of unique features of the vibrations resulting from 
the gait of a Varroa and support the walking data that we have used for our detection analysis, we also compared 
the vibrations of mites walking with two other invertebrates also walking on Petri-dish.

A training database (TDB) was created that contained 1-s long extracts of three invertebrate species (6 Varroa 
individuals = 125 s, 3 woodlouse individuals = 239 s, 3 carabid beetle individuals = 113 s) walking on Petri-dish 
(the reader is strongly advised to view supplementary Video 2 before reading any further). A simple machine 
learning (principal component analysis (PCA)/discriminant function analysis (DFA)) algorithm was used to 
search this database for components that exhibited high variation, and the three species demonstrated clear 
clustering in DF space when using only 17% of all deviations (see Fig. 3, panel ‘a’). Some marginal, unavoidable 
(as the overlap occurred regardless of the percentage of deviations included) overlap can be seen between the 
woodlouse and beetle data (see Fig. 3, panel ‘a’). Two discriminant 2DFT images were also produced from this 
analysis, to visualise the feature variation that allowed the high-quality clustering in the dataset (see Fig. 3, panels 
‘b’ and ‘c’). The colour-coding of the discriminant images is the quantification of the 2DFT features in each cat-
egory that vary from one another. Discriminant 2DFT no.1 and no.2 respectively highlight the variation linked 
to the horizontal and vertical axes of DF score space, where the areas of highest variation can be seen mostly in 
red and blue (see Fig. 3, panels ‘b’ and ‘c’). Both discriminant images demonstrate high frequency harmonics 
(3500, 4000, 4500 Hz) that were observed in the 2DFTs of woodlice and beetles, but not Varroa (highest frequency 
band 3100 Hz), indicating that these are strong discriminatory features along both dimensions. Additionally, 
discriminant 2DFT no.2 has a strong spectral repetition feature at approximately 4 Hz which contributed to the 
variation between categories.

The scatterplot that illustrated the outcome of group clustering and the discriminant 2DFTs (see Fig. 3) were 
then used for further analysis, to test the ability of the machine learning to discriminate mite from woodlouse 
and beetle in recordings that did not contribute to the training of the computer. To do so, extracts of the three 

Figure 3.  The results gathered from machine learning on the invertebrate gait TDB. (Panel ‘a’) exhibits the 
scattering of mite (black), woodlouse (blue), and beetle (cyan) data in DF space. The centroid for each data 
group (mite = red, woodlouse = green, beetle = magenta) is also shown using a hollow circle. All categories 
demonstrate very good discrimination. (Panels ‘b’ and ‘c’) show images (discriminant 2DFTs) generated from 
the PCA/DFA that were then used as reference images in cross-correlation product analysis. Magnitude of 
acceleration is in arbitrary units, where dark red and dark blue indicate features of the 2DFT that have the 
strongest influence on the discrimination between the three groups. Green is indicative of zero, i.e., those 
features that do not contribute to the discrimination.
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types of invertebrate walking were plotted onto DF space following cross-correlation product analysis between 
the 1-s excerpts of the recording and the two discriminant 2DFTs. The outcome was highly successful, with a 
high percentage of points falling into the correct area of DF space (7/10 tested mite recordings =  > 80% points 
falling into the mite area of DF space), as dictated by the scatterplot (see Fig. 3, see supplementary Table 1). 
When observing the synchronised movements and vibrations of each animal, the success of the machine learning 
algorithm can also be seen (see supplementary Video 2), where the walking vibrations always fall in the vicinity 
of the correct scatterplot centroid.

To further substantiate the unique features of Varroa gait, analyses was carried out to demonstrate the speed 
of mite walking. Average Varroa velocity was calculated using 10 s of video of a mite walking on Petri-dish. 
Maximum velocity was found to be 4 mm/s, with an averaged mode speed of 2 mm/s when walking at a steady 
pace (see supplementary Fig. 3).

Returning to the honeybee and mite analysis, differences between the two species’ vibrations were not only 
observed in spectral repetition rate, but also in pulse spectral shape. Mite walking vibrations mostly occurred 
within one frequency band, between 500 and 2000 Hz (see Figs. 1 and 4), whereas honeybee vibrations gener-
ally exhibited two separate bandwidths, between 500 and 900 Hz, and 1250 and 2100 Hz (see Fig. 4, see supple-
mentary Fig. 1). Background vibrations, as expected, lacked any clear traces (see Fig. 4) as these are comprised 
only of the ambient noise experienced within the sound-isolated room in which the brood-comb recordings 
took place. This indicates that the way the animals leg collides with the substrate it is walking on is also different 
between different species.

The differences between each category of vibration (mite, bee, background) can also be seen when viewing 
video recordings synchronously with their vibrational data (see supplementary Video 1). Mite and background 
2DFTs are easily distinguishable from those of the honeybee category, but due to poor SNR, which is typical of 
Varroa mite vibrations, there are fewer strong discriminating features between the 2DFTs of mite and background 
(see supplementary Fig. 4).

Creation of a training database to identify variation between mite walking, honeybee emer‑
gence and background vibrations within brood‑comb samples. A separate TDB was created that 
contained 1 s excerpts of mite, bee, and background vibrations (see supplementary Fig. 4). The same analyses 
techniques as used for the invertebrate walking discrimination were then implemented for this entirely separate 
TDB. The three groups demonstrated clear clustering in DF space when using 25% deviations (see Fig. 5, see 

Figure 4.  Representative 1-s-long extracts of honeybee (panel ‘a’), mite (panel ‘b’), and background (panel ‘c’) 
vibrations, viewed as 2DFTs. The differences between the three types of signals can be seen here. The commonly 
occurring mite spectral repetition frequency can be seen around 4–6 Hz on the x axis (panel ‘b’) and can also 
be more clearly seen in Fig. 1, panel ‘c’. All accelerometer data has been high pass filtered (0–500 Hz) to reduce 
the impact of background vibrations on mite traces in particular. No traces of interest were identified beyond 
3500 Hz. Magnitude of acceleration is logarithmic (to the base 10), where dark red is the maximum (3.6 ×  10–

3 m/s2) and dark blue the minimum (forced to be 1/50,000 of the maximum). All three panels have been scaled 
identically.
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supplementary Video 1). Some negligible overlap between the mite and background data can however be seen 
(see Fig. 5), as expected from the already mentioned low SNR of the Varroa vibrational data.

Sections of discriminant 2DFT no.1 that are in colours representative of high variation (blues/reds) closely 
reflect that of a honeybee 2DFT, where the spectral repetition axis lacks specific frequency peaks. Indepen-
dently, 2DFT no.2 shows stronger variation (in orange) at a spectral repetition frequency of 7–13 Hz, close to 
that commonly seen in mite 2DFTs, but not honeybee or background, and therefore is the strongest feature that 
discriminates the categories along the vertical dimension (see Fig. 5).

The scatterplot that illustrated the outcome of group clustering and the discriminant 2DFTs (Fig. 5) were 
then used for further analysis, to test the ability of the machine learning to discriminate mite from honeybee in 
recordings that did not contribute to the training of the computer.

Classification of data within recordings that contributed to the training database (TDB). The 
full recordings from which excerpts were used to create the TDB (see supplementary Fig. 4) were first tested in 
this analysis. As the recordings were long (30–120 min), not all the vibrations found within them were used in 
the TDB formation (bee data used = 242 s, mite data used = 66 s, background data used = 87 s). It was necessary 
to start by establishing whether the remaining, known vibrations in these datasets could be successfully classified 
using the first training algorithm. The entire accelerometer track for each recording was therefore projected onto 
DF space (see Fig. 6) for categorisation purposes.

The performance of the classification analysis for all these recordings was very high, with the datapoints falling 
into the correct masks based on the known vibrations occurring in each (see Fig. 6). It is worth noting that ‘bee 
only’ and ‘mite only’ sections did still contain some background noise, as areas of recordings containing these 
activities are inherently, occasionally also comprising of pure background signal.

When considering the full duration of each recording, a negligible percentage of points fell into the incor-
rect mask e.g., a ‘honeybee only’ recording exhibited a small percentage of points in the Varroa mask (honeybee 
recording 1 = 0.07% of datapoints overlapping into the mite mask, honeybee recording 2 = 0.01% of datapoints 
overlapping into the mite mask, mite recording 1 = 0.7% of datapoints overlapping into the honeybee mask, mite 
recording 2 = 5% of datapoints overlapping into the honeybee mask) (see supplementary Table 2). In Varroa 
recordings, background noise was prominent as mites were seen to walk less frequently, and in shorter bursts 
than observed in honeybees producing vibrations (see supplementary Table 2).

Figure 5.  The results gathered from machine learning on the mite, honeybee, and background TDB. Panel ‘(a)’ 
exhibits the scattering of bee (blue), mite (black), and background (cyan) data in DF space. The centroid for each 
data group (bee = green, mite = red, background = magenta) is also shown using a hollow circle. All categories 
demonstrate very good discrimination. Panels ‘(b)’ and ‘(c)’ show images (discriminant 2DFTs) generated 
from the PCA/DFA that were then used as reference images in cross-correlation product analysis. Magnitude 
of acceleration is in arbitrary units, where dark red and dark blue indicate features of the 2DFT that have the 
strongest influence on the discrimination between the three groups. Green is indicative of zero, i.e., those 
features that do not contribute to the discrimination.
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The outcome of the automated discrimination for each recording was further scrutinised via critical listen-
ing and observation of the corresponding video data to determine the classification success. In light of the very 
simple machine learning algorithm used here, and the relatively small size of the training database, the perfor-
mance achieved is truly excellent, and further demonstrates the high specificity of the 2DFT to the information 
of interest.

Classification of data within recordings that did not contribute to the TDB. Following this suc-
cess, separate recordings that were not used in the formation of the database were then tested with the same 
algorithm. The samples used for these recordings each consisted of a section of capped brood-comb that was 
removed from a honeybee colony, and immediately placed in a sound-isolated room to be recorded both by an 
accelerometer and a camera, synchronously. Following this, these samples were then dissected to quantitate and 
establish whether Varroa mites were present within them or not. Eight recordings of specimen that contained 
Varroa, and eight that did not contain Varroa were then analysed in the same way as all previous recordings, 
using the same machine learning algorithm. However, it must be noted that it was not possible to gain any cor-
roborative evidence that the mites residing in the opaque capped cells of these samples were active during the 
recording period or not.

Unfortunately, the discrimination outcome for all 16 recordings was poor. Data projection varied from sam-
ple to sample, with no clearly identifiable features or differences between the Varroa present and Varroa absent 
categories (see supplementary Fig. 5). For most recordings, the data landed mostly over the honeybee and back-
ground masks, with negligible overlap into the mite mask (see supplementary Fig. 5, see also supplementary 
Table 3). One recording further demonstrated anomalous results, where the major area of clustering occurred 
over the mite mask, despite the fact that the recording originated from a specimen known to lack Varroa (see 
supplementary Fig. 6).

This recording was scrutinised in more detail, to explore whether improvements could be made to the training 
to enhance its success even with the anomalous recording.

Figure 6.  The TDB scatterplot (panel ‘a’) and the outcome of projecting data onto the same DF space (panels 
‘b’, ‘c’, and ‘d’). Panel ‘a’ shows the TDB scatterplot with the area of each cluster further highlighted as a filled 
polygon (blue area = bee, black area = mite, cyan area = background). The peripheral datapoints for each group 
(bee, mite, background) were used to define the coloured areas, and the original points for each cluster can 
be seen as dots within each mask (bee = green, mite = yellow, background = red). The other panels (‘b’, ‘c’, and 
‘d’) each show additional data (pink crosses) from carefully selected time periods within the recordings that 
contributed to the TDB. Panel ‘(b)’ shows 20 min of ‘bee only’ vibrations, panel ‘(c)’ 12 min of ‘mite only’ 
activity and panel ‘(d)’ 50 s of ‘background only’ noise. Note that as the mite walked intermittently in short 
bursts of 1 s, it was not possible to omit background vibrations completely from this category.
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Investigation into the anomalous recording. Upon critical listening of this particular Varroa absent 
recording, many honeybee vibrations were heard that exhibited features similar to those of Varroa walking (see 
supplementary Fig. 7). Both types of vibratory trace occurred between 500 and 2000 Hz, with similar patterns of 
production over a 1 s time window (see supplementary Fig. 7). However, when critically listening to the vibra-
tions produced by this bee, and a mite walking without visually inspecting the 2DFT images, 9/10 samples could 
be correctly identified.

Following the success of the critical listening task, it was deemed worthwhile to attempt feature discrimination 
between four, instead of three, categories: this anomalous recording and the original three categories in the TDB.

The TDB with four categories produced clouds of points exhibits strong between-category overlap in DF 
space. However, 50% of the Varroa data did cluster separately, showing that it was possible to discriminate 
between the anomalous honeybee and some mite vibrations, regardless of the initial similarity observed between 
their vibratory traces (see supplementary Fig. 8), and in good agreement with the promising discrimination 
achieved subjectively by critical listening.

When testing the long-term brood-comb recordings that either did, or did not, contain Varroa using this 
updated algorithm, the results still indicated a lack of features unique to each group (Varroa present or Varroa 
absent). The number of datapoints from these recordings that were observed to land in the ‘mite-only’ area of 
the mite mask, i.e., the area of the mask that did not overlap with the anomalous bee mask, was unfortunately 
negligible for both ’Varroa present’ and ‘Varroa absent’ recordings (see supplementary Table 4, see also sup-
plementary Fig. 8).

Average background removal from each of the recordings, and an increase in time duration of the acceler-
ometer extracts that contributed to the TDB (from 1 s to 1.5 s and 2 s), also did not improve the discrimination 
outcome any further, unfortunately.

Discussion
The unique vibrations resulting from the gait of a Varroa have here been characterised, demonstrating the two-
dimensional-Fourier-transformation feature as being remarkably well suited to its automatic and highly specific 
recognition. Previously, mite walking pulses have been discussed mostly in terms of frequency and magnitude of 
 acceleration44, and the work carried out as part of this study has now provided additional, distinctive informa-
tion on their features.

Although one specific bee recording of ours exhibited remarkable similarities to that of Varroa walking pulses, 
it was possible to retrain our algorithm and retain our claim that we have identified a vibration feature highly 
specific to Varroa gait. When critically listening to audio samples of this bee against that of a walking mite, 9 
out of 10 could be correctly recognised, indicating that there are features that define one type of vibration from 
the other. Additionally, when adding the vibrations of this bee to the TDB, discrimination could still be found 
between this category and 50% of mite walking vibrations, further confirming their differences. The unexpected 
Varroa-resembling bee vibrations were found in just 1 of 16 recordings, with no other exhibiting unusually 
similar vibrations to a mite walking.

The highly successful outcome of the invertebrate discrimination further demonstrates that Varroa gait is 
highly different to theirs, and combined with its unusual  anatomy2, provides tantalising indications that it may 
even be unique. Interestingly, both the woodlouse and beetle recordings could be discriminated from one another, 
but not as well as they could from mites, demonstrating that, for our study, gait vibrations are highly species 
specific for Varroa but not as much for woodlouse and beetle, despite the vast difference in appendage number 
(beetle = 6 legs, woodlice = 14 legs).

A comparison of 2DFT and pulse interval analysis in the identification and discrimination of 
Varroa gait features. Our results showcase the previously unknown features of Varroa gait vibrations 
through 2DFT and pulse interval analysis. The strength of the 2DFT in the identification and discrimination of 
Varroa gait has particularly been highlighted. Pulse interval analysis required at least 10 s of mite walking data 
to identify time elapsed between consecutive pulses, and therefore speed of movement. The 2DFTs, on the other 
hand, were created using just 1 s of walking recording, and revealed more accurate information. This is because 
pulse interval analysis relies heavily on each Varroa step producing a detectable vibrational trace. It is known that 
a percentage of vibrational pulses will not be picked up by the accelerometer, as mites will not produce vibrations 
at a consistent  strength44. The 2DFT makes up for this discrepancy, ‘filling in the blanks’ where vibrational data 
was not captured, therefore providing a more accurate representation of gait features.

Although not as successful as the 2DFT, pulse interval analysis was still a useful tool for confirming that our 
recordings of mites walking on brood-comb showed genuine Varroa gait patterns because (i) our brood-comb 
recordings comprised mostly of short bursts of activity (1–2 s), and (ii) the brood-comb is an irregular surface. 
Pulse interval analysis using Petri-dish data (a homogenous and flat surface, i.e., potentially less cumbersome 
for mites to locomote over and therefore suited for capturing gait features), and longer recordings (10 s each on 
brood-comb and Petri-dish), demonstrated that walking pulses are produced by mites rapidly, with an elapsed 
time of 0.04–0.08 s between consecutive vibrations on both types of substrate. This indicates that Varroa gait is 
not disadvantaged by the irregularity of the brood-comb surface. The analysis, alongside that of the invertebrate 
discrimination which tested the gait of 10 mite individuals, has helped to confirm that the brood-comb record-
ings used in the training data were representative of natural locomotion in Varroa, even though the mites did 
not move for long durations.

The 2DFT and pulse interval results, alongside the velocity analysis, also confirm former anecdotal descrip-
tions of Varroa locomotion that report the behaviour to be fast and  efficient2,8. We have affirmed that Varroa are 
capable walkers, regardless of media, with the first quantification of a common observation that Varroa can move 
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rapidly, which appears to be their natural locomotory style. This is an adaptation that must benefit the life cycle of 
the mite, as they need to move around on various substrates and remain safe from honeybees (e.g., the adult bee 
body where mites move between the abdominal tergites to feed and also avoid removal by  bees45,46, and the wax 
cell which they must navigate around to defecate, reproduce and avoid being squashed by the spinning  larvae47,48.

The benefits of 2DFT analysis as highlighted by comparisons to spectrogram analysis. Pre-
viously viewing individual mite walking traces as spectrograms provided the first perspective of their typical 
vibrations, disclosing the absolute timings of the vibrational pulses originating from the individual  steps44. In 
looking at a group of walking pulses as 2DFTs, we have here contributed an alternative viewpoint where the 
pattern of the time course of the successive pulses is shown, rather than their absolute timings. The 2DFT is not 
only offering novel representation of a Varroa mite vibration but it is also found to be a powerful feature of the 
gait, permitting its high-performance numerical discrimination. The use of spectrogram images was sub-par in 
comparison to that of 2DFTs, because in these, the absolute timings of the gait pulse is retained as an important, 
although irrelevant, signature in such analysis. In this case, the 2DFT provides a better gait feature, i.e., one that 
is not influenced by anything other than changes made by the animal, such as locomotory speed. The inclusion 
of absolute time in spectrogram images means that the pulses seen in the image window will differ dependent 
on when they were produced in time (and therefore the pulse interval gait feature will differ between spectro-
grams). As discussed earlier, the 2DFT is free of this constraint and will demonstrate the same periodicity fea-
tures regardless of absolute timings, so long as the mite retains consistent walking speed.

This led us to change our focus from the spectrogram to the 2DFT in our detection investigation. Previously, 
in the field of bioacoustics, 2DFT images have only been the focus for (i) the honeybee dorso-ventral abdominal 
vibrations and (ii) honeybee colony swarming  vibrations42,43. The results achieved in this study therefore expand 
the repertoire of 2DFT use in vibration feature analysis and invertebrate vibro-acoustic detection, which until 
now systematically relied on waveform or spectrogram  images49–54.

As mentioned, a quantitative feature of the 2DFT image is that the observed repeating frequency components 
will reflect the mite walking speed. This is most probably the reason why the recurring frequencies seen in the 
Petri-dish were not exactly the same as those in the brood-comb 2DFTs, as mites may have walked at a different 
speed dependent on substrate (frequency components were observed within a range between 4 and 60 Hz on both 
substrates, but there were spectral repetition features identified on the brood-comb that were commonly seen, 
whereas on Petri-dish these varied more substantially). It may also be that because the Petri-dish is a substrate 
foreign to the Varroa, it may alter its gait, accordingly, as has been seen in other invertebrates  (cockroaches55, 
 caterpillars56,  tardigrades57), which may have led to the variable frequencies observed. However, both brood-
comb and Petri-dish 2DFTs showed excellent clustering in our discrimination analyses, suggesting that walking 
speed is consistent for each substrate. When considering velocity in the brood cells, the environment available 
is highly space  limited47,48 and therefore mite locomotory speed should not vary too dramatically. As a result, 
2DFT analysis should offer reliability in the detection of mite walking within the cells.

Can Varroa walking vibrations be detected when mites are within the brood‑cells? When clas-
sifying honeybee, mite, and background vibrations from the recordings that partially contributed to the forma-
tion of the first TDB, the outcome was highly successful. Unfortunately, this was not the case when testing the 
completely independent set of brood-comb recordings, most probably because: (i) the vibrations originating 
from Varroa mites within capped brood cells are severely attenuated, and (ii) Varroa displacements and activities 
are perhaps more scarcely produced than when they are exposed, i.e., outside of the brood cell with more space 
to move around. The results gained from this endeavour can now be used to identify problems and solutions for 
future experimentation.

At present, we are limited by the sensitivity of the accelerometer sensor used (1000 mV/g), as this is the most 
sensitive device available on the market for that size (1000  mm3) and mass (10 g). As a result of the miniscule 
size and mass of Varroa mites (1–2 mm, 0.42 mg), signal-to-noise-ratio (SNR) was relatively poor and prob-
ably had a detrimental effect on the performance of the discrimination algorithm. Varroa vibrations typically 
suffered from low SNR when compared to honeybee emergence vibrations, which can be seen when viewing 
all the contributing TDB data (see supplementary Fig. 4). This is to be expected when considering the mass of a 
honeybee (115  mg58) and comparing it to that of a Varroa mite (0.42  mg44). When compared to another Varroa 
mite vibration (the jolting), walking pulses also generally exhibited weaker magnitudes of  acceleration44.

Additionally, the strength of the detected walking pulse may also be further reduced when originating from 
within the brood cells, in comparison to on the brood-comb, a drier and stiffer substrate. It was necessary to 
collect examples of mite walking in the latter scenario so that visual evidence could be corroborated with the 
corresponding vibrations. Although mites are known to move around regularly when within the capped cells, the 
free space available to them for movement is highly  restricted47,48. It is likely that mite walking vibrations suffer 
under these conditions, particularly as they are perhaps dampened by the presence of soft tissue of the develop-
ing bee. We have previously investigated Varroa walking behaviour on soft-bodied, developing honeybee larvae, 
and found that any vibrations related to this are never detected using accelerometer  sensors59. The mites in our 
study may also not have walked on the cell wall at all, instead remaining on the larvae/pupae, which would have 
likely degraded vibration propagation. Time spent on the cell wall varies dependent on the length of time that 
a Varroa has been in the capped cell, where individuals heavily reside on the larva following emergence from 
the larval food (0–6 h post capping), and periods spent on the cell wall then gradually increase over  time47,48. 
As we had no visual evidence of the movements carried out by Varroa in the capped brood samples, the activity 
levels and the substrate that individuals resided on were unknown, which may have contributed to the lack of 
detectable mite-related vibrations in our study.
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Walking pulses were focussed upon in this study as they are known to occur in the reproductive  phase47,48. 
However, it would be useful to further investigate other mite behaviours that occur in the brood cell and iden-
tify if any produce measurable vibrations. Perhaps there is an alternate activity that can be better detected for 
the purpose of remote mite monitoring. For instance, we have previously identified Varroa jolting as a suitable 
candidate for remote mite  detection44, although an initial investigation into whether mites produce this vibra-
tion when in the reproductive phase is first required. A second, detectable vibration produced by Varroa on 
the developing larvae, currently theorised to be ‘repetitive sampling’  behaviour48 has also been identified and 
somewhat characterised in terms of its vibrational  features59, although this behaviour and its corresponding 
vibration also require some further analyses.

Alternatively, a different experimental approach could be taken in terms of exploring other locations for mite 
detection. In this study, we focused on the brood cells as the most logical starting point for our mite monitoring 
investigation, as 65% of individuals are expected to reside here at any time during the brood rearing  season60. 
However, following the challenges faced in this initial exploration, and in the context of the very clear Varroa 
jolting pulses we have detected in a Petri-dish44, we would like to suggest an alternative location that may be 
more effective (we would not suggest the use of Varroa vibrations detected when they walk on the honeycomb, as 
this would occur very rarely, and if contact with the cell surface did occur, this would be only for a brief moment 
between leaving an adult bee and entering a larval  cell61).

Accelerometer placement on the bottom boards of colonies show promise as part of the remote mite detec-
tion strategy. Beekeepers use boards specifically for the purpose of counting mites that fall from the hive, and 
in doing so can gain accurate estimations of Varroa  populations29,62. Mites, in our own experience of counting 
individuals on boards, are often found alive, jolting, and walking around, demonstrating an exciting benefit to 
accelerometer placement in this area.

The measured vibrations would likely exhibit higher SNR, particularly as the board is largely free from the 
effect of the colony’s vibrations, as bees are not in direct contact with the substrate. This is unlike the brood-comb, 
which suffers not only from the vibrations of emerging bees, but also from those working on the comb externally. 
Furthermore, this substrate could be useful for jolting pulse capture, as we already know that mites produce 
this behaviour when placed outside of their usual environment (adult honeybees, or within capped brood)1,44. 
Jolting pulses are stronger than walking  ones44, and this would not only benefit the specific detection of mites, 
but perhaps also further our understanding of the behaviours’ function.

Conclusion
We have here discovered exciting, additional features of Varroa walking vibrations, revealed through the use of 
2DFT image analysis, which demonstrates the advantages of this method in Varroa vibration research.

The 2DFT has great potential for future machine learning and automated detection based on the vibrational 
features of Varroa gait. Our work here has laid the groundwork for future investigation into its use as a remote 
mite detection tool. We have established that excellent discrimination can be achieved when testing known 
accelerometer recordings, and although this method was less successful when examining independent record-
ings using Varroa in capped brood-cells, we believe that this was due to the enhanced signal attenuation, and 
the small size and potentially low activity levels of the Varroa mites within our capped brood samples. In order 
to make Varroa signals detectable with accelerometers, we suggest novel potential solutions to promote remote 
mite monitoring using accelerometer sensors. Importantly, this work has yielded the further characterisation 
and understanding of Varroa walking vibrations, which can benefit future management strategies and add to 
our knowledge of mite biology.

Remote honeybee colony monitoring is on the  rise32, and research into innovative methods such as vibra-
tion capture can only serve to support its improvement. For example, previous work using accelerometers has 
enabled the capture of important physiological honeybee activities such as the dorso-ventral-abdominal  signal42. 
Particular focus on the detection of important threats such as Varroa infestation is critical for the maintenance 
of healthy hives, our research offers a novel approach to this problem, which we will now continue to work on 
and improve, based on the investigations that we have carried out so far.

Methods
Data acquisition. Collection of mite vibrations. To enable successful Varroa mite waveform classification, 
a database of known vibrational specimen was built for training purposes. Mite vibrations were acquired from 
data collected in our previous  study44, where active mites were collected from the bottom-board of a honeybee 
hive, then placed on samples of brood-comb (approximately 3 × 3 × 2.5  cm3) for their behaviours to be observed 
and recorded. The vibrations that corresponded to mite walking and jolting behaviour were identified, extracted 
and characterised in terms of their specific vibrational  features44.

For this present study, a collection of mite walking pulses was chosen from this same data, based on their 
clarity within the accelerometer track, to ensure that the training database would be built using highly reliable 
examples of the vibration in question.

Collection of other vibrations present in brood‑comb. It was necessary to include in the training database other 
occurrences of vibration, to demonstrate whether pulses of mites could be successfully discriminated against 
alternative brood sample noise.

To do this, 18 sections of capped brood-comb of the same size were removed from colonies of Apis mellifera 
using a scalpel. These were transferred to the laboratory, where each sample was individually recorded using the 
same video camera and accelerometer attached to a Petri-dish as outlined previously in Hall et al., (2021)44. Video 
and vibrational data were collected for each sample over long-term periods of 30–120 min. Following this, the 
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sample was dissected to determine the number and age of each developing bee within. Any Varroa mites present 
in the sample were also counted (samples containing mites = 8, samples lacking mites = 10).

In many of the samples, ‘scratching’ vibrations were identified by critical listening. In one sample, these vibra-
tions were visibly attributed to a bee chewing at the capping of her cell and emerging. This was the only instance 
where a bee was seen exiting a cell, but ‘scratching’ vibrations were common in all capped brood-samples. As 
a result, we could not directly link all these vibrations to bee emergence activities, but could identify that they 
were made by bees, as these were the only species (alongside Varroa, which were found in half of the specimens) 
found in the samples. Short periods of “no vibration”, i.e., background noise, also occurred.

Collection of invertebrate vibrations. To further substantiate the unique vibrational features of Varroa gait and 
supplement the mite brood-comb data, recordings of mites walking on Petri-dish were used alongside two other 
species of invertebrates for a separate discrimination analysis.

Recordings of Varroa walking on Petri-dish were used from a previous  study44, where individuals (collected 
from the bottom-board of a honeybee hive) were recorded walking on a Petri-dish with an attached accelerom-
eter  (see44 for full methods).

Carabid beetles (n = 10) and woodlice (n = 5) were collected using pit-fall traps placed in a wooded area of 
Nottingham Trent University Clifton campus. Each invertebrate was individually recorded walking on the same 
Petri-dish, with identical set-up, as used in Hall et al., (2021)44, amounting to 49 min of beetle recordings and 
25 min of woodlouse recordings.

Preparing the data for analysis. Mite, honeybee, and background. Mite, bee, and background catego-
ries of vibrations, identified and categorised both by critical listening and video evidence, were extracted from 
(i) accelerometer tracks of the two recordings where the mite and bee were in view, (ii) an additional recording 
where a mite was captured walking on brood-comb (which lacked bee related vibrations) and (iii) another where 
a bee could clearly be heard ‘scratching’ at the capping (no visual evidence of the bee emerging was collected, 
but this sample was known to contain bees only; no Varroa were present in the sample) (no. of bee category 
extracts = 242, no. of mite category extracts = 66, no. of background category extracts = 87). Each extract was 1 s 
in length, which was deemed to be a suitable duration for capturing multiple walking or bee emergence pulses in 
a single time window. The accelerometer data for each vibration was then transformed into a two-dimensional-
Fourier-transform (2DFT)63, which best demonstrated the feature differences between each signal type (spectro-
gram images had previously been trialled separately and unsuccessfully).

Code written specifically for this study (Matlab 2020a), at Nottingham Trent University, was used for all 
analyses, and made available as indicated in the ‘data availability’ section. The horizontal axis of each 2DFT 
underwent interpolation to reduce the number of pixels that were unnecessarily present (over sampling) for 
analysis. Additionally, the 2DFTs were cropped to remove frequency bandwidths that contained no signal of 
interest (0–0.5 kHz and 4–24 kHz). All 2DFTs were then scaled by their maximum magnitude of acceleration to 
remove the signal strength from the discrimination exercise.

Mite, woodlouse, and beetle. For the invertebrate discrimination analysis, 3 recordings for each invertebrate 
were used to build a training database, consisting of 6 Varroa individuals, 3 woodlouse individuals and 3 beetle 
individuals. Periods of time where each animal was walking, uninterrupted (i.e., carrying out no other activity 
than locomotion, as beetles and woodlice were often seen antennating or scrabbling at the edge of the Petri-
dish), were identified and extracted for use in the training database (TDB).

The analysis for each 2DFT that contributed to the TDB was carried out in the same way as for the mite, 
honeybee, and background discrimination. However, no interpolation of the data was necessary in this case. All 
2DFTS were scaled by their mean magnitude of acceleration to remove signal strength from the discrimination 
exercise. Additionally, the averaged background noise was subtracted from each 2DFT to ensure that any differ-
ences in background vibration had no influence on the discrimination outcome, as the Varroa recordings were 
collected 2 years prior to those of the woodlouse and beetle.

Signal analysis. Mite, honeybee, and background. The TDB which was comprised of mite, bee, and back-
ground 2DFTs, then underwent principal component (PCA) and discriminant function analysis (DFA)43 to 
determine which features in the database exhibited high variance, and reduce the size of the dataset using the 
features that demonstrated the highest variance for supervised classification. From this, a scatterplot was created 
to visualise each group of signals (mite, bee and background) in DF space. The two generic discrimination im-
ages, one for each dimension (vertical and horizontal discrimination between the data clusters) were also saved 
in 2DFT format for the next stage of signal analysis (see below). Optimum clustering of the groups and clarity of 
the discriminant 2DFTs were achieved using 25% of the total deviations found in the dataset.

The peripheral points of each of the individual signal clusters (found in the DF space scatterplot) were used 
to identify the boundaries of each group. The space within each cluster was then filled with a solid colour as in 
any data masking technique, to better emphasise the reach of the specific data within DF space. We here refer to 
each of these coloured areas as ‘masks’. Note that the periphery of the honeybee cluster was extended to include a 
larger portion of bee data, based on the outcome of projecting the full honeybee recordings, and critical listening 
to confirm the nature of the data. This extension to the mask provided a better representation of the DF space that 
honeybee vibrations inhabit (see Fig. 5 for the original clustering of the data, and Fig. 6 for the extended cluster 
based on the larger portion of data, which can be seen to fill the previously empty space between the honeybee 
cluster and the mite and background clusters).
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New data points from the long-term brood-comb recordings (Varroa present and Varroa absent) could then 
be projected on this same DF space to determine if they fell into the correct cluster, to answer the question: can 
independent mite, bee, and background vibrations be correctly classified using this training data?

The same recordings that were used to create the TDB were also used for this analysis, but this time, exhaus-
tively. As each recording lasted 30–120 min, they included many time durations of data that were known to 
contain mite, bee, or background vibrations, but had not been used to train the algorithm. Specific periods of 
accelerometer track that contained the vibrations of each type of signal were identified by critical listening and 
video visual evidence, and the same data preparation as that used for the training was undertaken, in 1-s-long 
Sects. (2DFT interpolation, normalisation, and cropping).

Separate cross-correlation product analysis was then implemented between the first 1-s-long 2DFT of the 
tested recording and the two discriminant 2DFT images acquired during PCA/DFA, to get the two DF space 
scores required for projection into DF space. This analysis was then repeated on the next 1-s-long extract of the 
recording, by moving on in time steps of 0.25 s. For each second of the recording, a set of co-ordinates were thus 
obtained, one for the vertical and one for the horizontal axis of the DF space scatterplot. This data-point could 
then be plotted to identify whether it had been correctly classified or not, based on its position in comparison to 
that of the scatterplot cluster masks. By searching recordings of vibration of a known category, correct discrimi-
nation could be established with high certainty, further supported through critical listening and visualisation 
of the data.

If a data-point fell outside of the cluster masks, or into the wrong mask, the TDB was then updated to include 
this particular data and the training run again. This gradually led to a more generic training, with clusters that 
covered a larger and more accurate area of DF space, enabling better discrimination. The two additional record-
ings that contained a mite walking in view and a bee scratching at the capping were eventually included in the 
TDB to obtain further improvement, as is typical of machine learning techniques. This iterative process can be 
repeated as long as the outcome of the training keeps providing scatterplots with negligible overlapping between 
different categories.

Mite, woodlouse, and beetle. For the invertebrate discrimination analysis, the same methods were implemented 
as for the mite, honeybee, and background discrimination exercise. However, as with the building of this TDB, 
during cross-correlation product analysis the tested 2DFT data was not interpolated, the averaged background 
was subtracted from each 2DFT, and each was scaled by the mean magnitude of acceleration.

The TDB originally consisted of 1 mite, 1 woodlouse, and 1 beetle recording, consisting of 3 mite individuals, 
1 woodlouse individual, and 1 beetle individual. Following the testing of the data that contributed to the TDB, it 
was deemed appropriate to build upon it and add a further 3 recordings, one for each species (the updated TDB 
then contained the vibrations originating from 6 mite, 3 woodlice, and 3 beetle individuals). Following this, all 
data that was tested was either novel walking periods from recordings that contributed to the TDB, or walking 
periods taken from recordings that did not contribute to the TDB at all. The plotting outcome of these tested 
recordings can be seen in supplementary Table 1.

Testing the TDB with novel brood‑comb sample recordings. Mite, honeybee, and background. The 
improved TDB was then tested for its classification ability using additional long-term brood-comb sample re-
cordings that did not contribute, at all, to its creation. Of the brood-comb samples that had been collected and 
recorded (discussed earlier in this methods section), eight that contained Varroa and eight that did not contain 
Varroa were tested in their entirety, to establish if a difference in the projected outcome could be found between 
mite “present” and “absent” samples.

A fourth category was also added to the TDB following this analysis, as one recording was found to contain 
particularly anomalous results. The full method of signal analysis was run once more using this four-category 
TDB, to determine whether an improved discrimination outcome could be achieved.

Varroa gait comparison between brood‑comb and Petri‑dish. A comparison was made between 
Varroa gait on the irregular brood-comb substrate and a flat, homogenous surface (Petri-dish), to find out 
whether the walking behaviour seen on brood-comb is repeated on a more regular media.

Average spectral repetition features were established for ten 1-s-long 2DFTs per substrate. Additionally, the 
distribution of the time elapsed between each consecutive walking vibration pulse seen for these two 10 s walking 
extracts (brood-comb and Petri-dish) was quantitated, and the mode time established.

Varroa instantaneous velocity was also calculated for 10 s of walking behaviour on Petri-dish, by select-
ing a specific locus on the Varroa body (between the two antennae) and determining the coordinates of that 
pixel for every-other-frame of the 50 frames-per-second video. Average velocity was also quantitated using this 
information.
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