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Upper limb modeling 
and motion extraction based 
on multi‑space‑fusion
Honggang Wang 1, Junlong Guo 1, Shuo Pei 1, Jiajia Wang 1 & Yufeng Yao 1,2*

Modeling and motion extraction of human upper limbs are essential for interpreting the natural 
behavior of upper limb. Owing to the high degrees of freedom (DOF) and highly dynamic nature, 
existing upper limb modeling methods have limited applications. This study proposes a generic 
modeling and motion extraction method, named Primitive‑Based triangular body segment method 
(P‑BTBS), which follows the physiology of upper limbs, allows high accuracy of motion angles, and 
describes upper‑limb motions with high accuracy. For utilizing the upper‑limb modular motion model, 
the motion angles and bones can be selected as per the research topics (The generic nature of the 
study targets). Additionally, P‑BTBS is suitable in most scenarios for estimating spatial coordinates 
(The generic nature of equipment and technology). Experiments in continuous motions with seven 
DOFs and upper‑limb motion description validated the excellent performance and robustness of 
P‑BTBS in extracting motion information and describing upper‑limb motions, respectively. P‑BTBS 
provides a new perspective and mathematical tool for human understanding and exploration of upper‑
limb motions, which theoretically supports upper‑limb research.

In the past decade, the field of medical robotics has gained momentum and technology has  matured1. However, 
more than one billion people worldwide are disabled, and the number is growing  rapidly2. Among them, more 
than 80% of people disabled due to stroke suffer from upper-limb disability, and only 10% can regain partial 
mobility of the upper limb after  treatment3. Limb motion is highly correlated with neuronal activity (neural 
plasticity)4,5, which is a potential mechanism for upper-limb motion  recovery6,7. Based on this, upper-limb 
rehabilitation robotics has flourished, providing strong support for upper-limb motion  recovery8. Upper-limb 
rehabilitation robots have the advantages and potential of compensating for motor deficits, motion enhancement, 
restoration of upper-limb functions, and rehabilitation task  performance9–12.

Despite this, there is still conflict between patients with upper limb disabilities and those undergoing medical 
rehabilitation. The upper-limb rehabilitation equipment  (exoskeleton6,12,13 and end-effector12,14) widely accepted 
mode of rehabilitation, drives or compensates for the motion of the affected limb, and provides intense rehabilita-
tive training. However, the global outbreak of COVID-19 has severely hampered the rehabilitation of disabled 
 people2 and has greatly reduced the efficiency of rehabilitation. Furthermore, moderate-to-severe patients can-
not independently move the affected limb during the pre-rehabilitation period; they can only receive passive 
rehabilitation training. This model fails to play the key role of the healthy limb and is inefficient in rehabilitation.

The rehabilitation efficacy can be improved by organically integrating the upper-limb rehabilitation robot 
with the patient’s sense of autonomy. Research on  human7,15–17 and  marmoset4 brains has shown that self-directed 
actions can repair damaged neural circuits in the brain to some extent. Furthermore, observational learning leads 
to the activation of the mirror neural system in the observer’s  brain18 (observed with  fMRI19) and had been shown 
to improve upper-limb motor  function18,20. Mirroring  motions21 and observational learning are both initiated by 
the patient’s brain; therefore, the rehabilitation effect can be reversed to act directly on the brain, thus increasing 
the rehabilitation efficacy. Therefore, extracting motion information from the upper limb and implementing it 
in the rehabilitation process can lead to optimal upper-limb rehabilitation effects.

Information regarding the motion of the human upper limb consists mainly of motion angles and holistic 
motion. For upper-limb rehabilitation motion, the holistic motion of the upper limb is of significant concern. 
The method of analyzing human upper-limb motion information can advance the research process of upper-limb 
motion recovery. The scope of the analysis should include the major human upper-limb motor bones: clavicle, 
humerus, forearm, and palm.
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Numerous scholars have analyzed and explored upper-limb motion from different perspectives. Motion cap-
ture systems (e.g. VICON), which have become more popular in recent years and can provide accurate informa-
tion on upper-limb motions, are generally utilized as experimental tools, and are not widely promoted because of 
their high cost and low interference resistance  performance22,23. The Kinect depth  camera24 acquired 3D spatial 
points from different parts of the upper limb and processed the data that can be utilized to build a remote sys-
tem for assessing upper-limb  motility25, determining upper-limb kinematic parameters (joint range of motion, 
displacement in the local coordinate system, joint smoothness, upper-limb length, etc.)26,27, solving upper-limb 
joint motion  angles28–30, combining sliding mode control algorithms for human–machine  interaction31, applying 
Kalman filtering techniques to fuse multiple Kinect data and track human  motion32, etc. While Kinect’s human 
skeleton recognition technology offers the advantages of high flexibility, low cost, and non-invasiveness33, the 
number of human joint spatial points identified and extracted from the upper limb is very limited. Innovative 
approaches (multi-camera data  fusion32 and inertial sensor  compensation34,35) and wearable  devices36–38 have 
been developed to improve the accuracy of Kinect depth camera data and measure upper-limb motion angles. 
However, the simplification of the upper limb to six degrees of freedom (DOFs) and below is inconsistent with the 
physiological properties of the upper limb. Meanwhile, a sizable research has been conducted for modeling upper-
limb motion, including dissecting shoulder motion during the design of the upper-limb exoskeleton (ARMin 
 series39–41,  HARMONY42,  CLEVERarm43,  WINDER44,  ChARMin45, etc.) and developing Denavit-Hartenberg 
based models of upper limb forward and reverse kinematics and  dynamics46,47, hybrid twist-based model of 
shoulder  kinematics48, rigid body model describing the kinematics of the scapula relative to the  sternum49, and 
a musculoskeletal model of the upper  limb50–52, etc. The established kinematic models describe localized motions 
of the upper limb and thus cannot completely describe the overall upper-limb motions.

In this study, we propose a general modelling and kinematic angle-solving method for simplified models of 
upper limbs with 1–8 DOFs (rotational) and named Primitive-Based triangular body segment method (P-BTBS). 
P-BTBS defines a triangular primitive space (TPS), maps the problem in Euclidean space to TPS, is utilized for 
inverse solving of 1–8 DOFs of the upper limb, and provides a mathematical description of upper-limb motions. 
The results largely satisfied realistic motion of the upper limbs. The coordinate information of a maximum of 
six spatial points and only one coordinate system transformation is required to analyze and extract the upper-
limb motion information. In engineering applications, the Kinect’s human skeleton recognition technique is 
the optimal method for extracting 3D coordinates, and the six spatial points are largely consistent with those 

Figure 1.  Overview of P-BTBS. The study targets of P-BTBS are the human upper limb (especially the 
abnormal upper limb, which is a global problem). The two dark blue triangles indicate the Euclidean space and 
Triangular primitive space (TPS), respectively. P-BTBS is aimed at dissecting upper-limb motions from the 
complex composition of the brain, nerves, muscles, and bones. The P-BTBS is suitable for various equipment 
and technologies (e.g. depth cameras and motion capture systems), and can be applied to a wide range of 
research areas (especially in the field of the medical robot).
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identified by this technique. Therefore, the P-BTBS (Fig. 1) has generic nature of the equipment, technology, and 
study targets. The ingenious and convenient modelling and calculation method is in line with the physiological 
characteristics of the upper limb, providing new ideas for upper-limb motion research and theoretical support for 
upper-limb mirroring  rehabilitation21,53,54, motor function  assessment42,55,56, upper-limb motion  recognition36,57, 
etc. In conclusion, this study achieved ingenious and convenient kinematic analysis and description that better 
matched the physiological characteristics of the human upper limb by utilizing multi-spatial fusion, and provided 
theoretical support to advance the engineering application of upper limb modelling and motion extraction in 
various research fields.

Results
Sources of inspiration. Inspired by the fact that, defect-free Sierpiński triangles can be self-assembled on 
a silver surface in the microscopic  world58, this led us to realize that matter moves with the property of triangles. 
Then we started to think about whether this was a base motion, which was the origin of the TPS.

Simplified model of the upper limb. As shown in Fig. 2a, the clavicle, scapula, humerus, forearm, and 
hand were the main components of the upper limb. The hand is composed of many bones including five meta-
carpals. The joint houses the main components of the upper-limb motion: the sternoclavicular joint (SC), elbow 
joint (EL), acromioclavicular joint (AC), glenohumeral joint (GH), scapulothoracic joint (ST), wrist joint (WR), 
and other joints in the palm. Both the EL and WR are composite joints.

To simulate the skeletal motions of the upper limb, the discontinuous line segments are divided, each of which 
is called the body segment (BS). In this article, the red, green, golden, and dark blue BSs indicate the clavicle, 
humerus, forearm, and metacarpal, respectively. The red, green, and golden BSs are equal to the length of the 
clavicle, humerus, and forearm, respectively, and the dark blue BS is equal to the length of the third metacarpal 

Figure 2.  Overview of P-BTBS application object and method. (a) Four groups of bones and five joints (the 
scapulothoracic joint was not considered) are involved in this study. Each group of bones is given a distinctive 
color, and the body segments are represented by the corresponding color for the different bones. (b) A spatial 
triangle in Euclidean space consists of three spatial points with an area of S, the projected areas in the X–Y, 
X–Z, and Y–Z planes are Sm, Sn, and Su, respectively. A spatial triangle in the triangular primitive space (TPS) is 
represented by a point whose coordinates are (Sm, Sn, Su). (c) The coordinates PW in the world coordinate system 
can be expressed as PL in the local coordinate system utilizing a coordinate system transformation (rotation 
w

L
R and translation PLORG). Red points indicate actual spatial points on the joints (The locations are shown in 

Table 1).
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(longest metacarpal). The coordinate system was established using the International Society of Biomechanics 
(ISB) recommended coordinate  system59. In numerous studies, scholars have mechanically simplified the joints 
of the upper limbs. The following simplifications were made in this study:

1. SC is a rotary  joint47,60 with two DOFs rotating around the X- and Y-axes (the basal joint of the entire upper 
limb and serves as a mechanical support).

2. GH is a ball  joint47,61,62 with three DOFs rotating around the X-, Y-, and Z-axes (the largest range of motion 
joint in the upper limb and greatly extending upper limb motion).

3. EL is a rotary  joint47,62 with one DOF rotating around the Z-axes (the composite joint structure contributes 
significantly to the stability of forearm motion).

4. WR is a rotary  joint47,63 with two DOFs rotating around the X- and Z-axes (the composite joint structure 
contributes significantly to the sophisticated motions and stability of the palm).

5. The clavicle is horizontal (parallel to the X–Z plane) when the arm is in its natural downward state.

The motions of the scapula are special among the limb bones because the motion of the joints connected to the 
scapula is somewhat complex (sliding and rotation of the SC; translation and rotation of the AC)64 and therefore 
cannot be conventionally simplified. The scapula has many muscles attached to it, which are used to maintain 
the stability of the shoulder joint and even the head and neck position and to provide strength for the motion 
of the upper limbs. Therefore, the most prominent role of the scapula should be reflected in  biomechanics49, 
without denying that the scapula increases the flexibility of the upper limb in terms of kinematics. In addition, 
the scapula is located under the skin, which makes observing its motion in a non-invasive way  difficult65, there-
fore the visual motion of the scapula was not considered in this study, but the upper-limb motion was observed 
directly by P-BTBS.

Upper‑limb modular motion model and coordinate system transformation. The locations of all 
actual spatial points and bones are presented in Table 1. The length and spatial geometry relationships are shown 
in Fig. 3, and the angle between the clavicle and frontal plane was 20  degree66. The geometric features of the vir-
tual spatial points can be obtained according to the definition of triangular spatial points, and the coordinates of 
the virtual spatial points are calculated using the coordinates of the actual spatial points. The spatial coordinates 
of P1–2 and P5–7 can be easily obtained as shown in Fig. 3. The spatial coordinates of P11 and P12 can be estimated 
using Eq. (1), which is obtained from the vertical and length relationships:

where i = 11 or 12, l10,13 denotes the length of vector −→L 10,13.
The local coordinate system was established using ISB’s suggested method, with the origin located at point 

3. As shown in Fig. 2a,c rotation w
L
R and translation PLORG transformation relationship exists between local and 

world coordinate systems. Rotational transformations follow the form of Z-Y-X Euler angles. The coordinates 
of spatial point 3 in the world coordinate system are (x3, y3, z3) as a result of Eq. (2).

The rotation matrix of Euler angles as shown in Eq. (3),

where cx = cos(x) and sx = sin(x); α, β, and γ denote the rotation angles around the Z, Y, and X axes, respectively.
In popular spatial position acquisition techniques (e.g. motion capture systems and depth cameras etc.) the 

posture of the world coordinate system can be adjusted. So, the singularity problem of Euler angles can there-
fore be mitigated by adjusting the position of the world coordinate system to avoid a 90-degree rotation of the 
intermediate axes.

(1)

�

x9 − x10 y9 − y10 z9 − z10
0 1 0

xi − 2x10 yi − 2y10 zi − 2z10

��

xi
yi
zi

�

=





x10(x9 − x10)+ y10
�

y9 − y10
�

+ z10(z9 − z10)
y10 or x10

l210,13 − x210 − y210 − z210



 ,

(2)PLORG =
[

x3, y3, z3
]

.

(3)
w
L
R =

[

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

]

,

Table 1.  Definition of actual spatial points. Note that point 8 defines the motion of the humerus.

Actual spatial point Location Follow the motion

3 SC Fixed point

4 AC Clavicle

8 GH Humerus

9 EL Humerus

10 WR Forearm

13 End of third metacarpal Palm
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As shown in Fig. 3a and b, the coordinates of spatial point 4 are known in the local coordinate system, as 
shown in Eq. (4),

where l3,4 denotes the length of the vector −→L 3,4.
The transformation relationship for coordinate point 4 is given by Eq. (5), where WP4 are the coordinates of 

point 4 in the world coordinate system and acquired by motion capture system.

Substituting Eqs. (2), (3) and (4) into Eq. (5), and a function of α, β, and γ can be determined. As shown in 
Fig. 6c and d, for the known world coordinate system β = 0°and γ = 90°. The value of α = 88.82° was determined 
using the Trust-Region-Dogleg algorithm.

Given the values of α, β, and γ, the local coordinates of all spatial points can be evaluated using Eq. (6).

The Euclidean space. The triangular transformation relationship of the simplified upper limb model is 
presented in Table 2. The triangles can be selected according to the DOFs required to estimate the motion angles 
and describe the motion of the upper limb, which reflects the generality of the model. If the required DOFs are 
equal to i, there exist Ci

8 choices.
The motion angles of the upper limb were estimated using Eqs. (7), (8), (9), (10) and (11).

(4)LP4 =
[

−sin20◦l3,4, 0, cos20
◦l3,4

]T

(5)WP4 =
W
L RLP4 + PLORG

(6)LP =
W
L R−1

(

WP − PLORG
)

(7)θ1 =
π
2 − arccos

(

y4
y1

)

,

Figure 3.  The definition of upper-limb modular motion model and the relationships between geometric 
features. Black points indicate virtual spatial points (calculated from actual spatial points), points 1, 2, and 
3 are fixed points, and the remaining points are all moving points. Spatial point 3 is the origin of the local 
coordinate system. (a,b) Figures define the two spatial isosceles triangles of the clavicle and show the initial state 
of the natural dropping of the arms. (c,d) Figures define the three spatial isosceles triangles of the humerus, 
l5,8⊥l6,8⊥l7,8 . (e,f) Figures define the spatial triangles of the forearm and two spatial isosceles triangles of the 
metacarpal, l9,10⊥l10,11⊥l10,12 . The motion information represented by the spatial triangles is shown in Table 2.
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As shown in Fig. 3c and d, −→L 5,8,
−→
L 6,8 , and −→L 8,7 are the normal vectors of the X–Z, X–Y, and Y–Z planes, 

respectively.
The normal vectors of planes ∆5,8,9, ∆6,8,9, and ∆7,8,9 can be expressed using Eq. (12).

Substituting the normal vectors �A, �B , and �C  into Eq. (13) to estimate θ3–5:

The calculation of Eqs. (7) to (13) involves only trigonometric functions, which improve the speed of com-
puter response and increase the robustness of P-BTBS.

The upper limb was divided into four segments: clavicle, humerus, forearm, and metacarpal, the lengths 
and numbers of which are denoted as L1, L2, L3, and L4, respectively. One body segment BS-h (h = 1, 2, 3, 4) is 
described by k spatial triangles, and the spatial triangle number k ranges from 1 to 3. One spatial triangle, ST(h,k), 
can be characterized using three spatial points (i.e. points A, B, and C). These three points were selected in a 
clockwise order. As shown in Fig. 2b, the area of ST(h,k) is denoted as S(h,k), and the projected areas in the X–Y, 
X–Z, and Y–Z planes are Sm, Sn, and Su, respectively, and can be calculated using Eq. (14),

where det(STx) denotes the determinant of matrix STx.
Area S(h,k) can be estimated using the projected areas in Eq. (14), as shown in Eq. (15),

where �m , �n , and �u are the unit normal vectors of the X–Y–Z coordinate system.
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Table 2.  BS characterization information. 2-X/Y denotes two DOFs for rotation about the X- and Y-axes, 
∆1,3,4-X-θ1 denotes ∆1,3,4 description of BS rotation about the X-axis, denoted by θ1 . Other expressions were 
similar.

The BS The DOF Actual spatial point Virtual spatial point The BS’s triangle

BS-1-scapula 2-X/Y 3 and 4 1 and 2 ∆1,3,4–X–θ1 , ∆2,3,4–Y–θ2
BS-2-humerus 3-X/Y/Z 8 and 9 5, 6 and 7 ∆5,8,9–Y–θ3 , ∆6,8,9–Z–θ4 , ∆7,8,9–X–θ5
BS-3-forearm 1-EL 8, 9 and 10 – ∆8,9,10–EL–θ6
BS-4-metacarpal 2-X/Z 10 and 13 11 and 12 ∆10,11,13–X–θ7 , ∆10,12,13–Z–θ8
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The area of the h-th BS can be defined as SBS-h, as shown in Eq. (16).

The area of each BS can be estimated using the matrix sum of squares, according to Eq. (16), and matrix Eh 
was utilized to characterize the BS, as shown in Eq. (17),

where �Px = xx + yx + zx. Pi and Pj are the actual spatial points of BS-h, Pd, …, Pf are virtual spatial points of BS-h, 
and fi j are functions of x, y, and z.

Vector EPh denotes the third column of matrix Eh, as shown in Eq. (18).

The body segment matrix EO in Euclidean space can be determined using Eq. (19),

where Lh denotes the length of the h-th BS.

Triangular primitive space (TPS). As shown in Fig. 2b, the basic physical quantities in the coordinate 
system M–N–U in the TPS are the projected areas of the spatial triangle in the X–Y, X–Z, and Y–Z planes, 
respectively, as shown in Eq. (20). Therefore, a point PTPS in the TPS is equivalent to a spatial triangle in Euclid-
ean space.

The metric distance between point PTPS (Mi, Ni, Ui) and origin point OM- N-U can be estimated using Eqs. (14) 
and (20), as shown in Eq. (21). Thus, according to Eqs. (20) and (21) and the physical significance of the point 
in the TPS, there is no singularity issue.

In TPS, a BS is expressed as three points, which has four cases, as shown in Fig. 4. Each case has three points, 
(Mi, Ni, Ui), (Mj, Nj, Uj), and (Mk, Nk, Uk), where case 4 can be considered as three coincident points located at 
the origin of the coordinates.

A plane STPS in TPS can be represented as a matrix ShTPS using three points, as shown in Eq. (22), and det(ShTPS
) = 0 is the equation for this plane.

where h = 1, 2, 3, 4.

(16)
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The body segment matrix ET in the TPS can be determined using the planes of the four body segments, as 
shown in Eq. (23).

Action representation and inverse solving. The matrices representing the holistic motion of the upper 
limb, named the upper-limb body segment matrices, are obtained from the Euclidean space and TPS, respec-
tively, as shown in Eqs. (19) and (23), respectively.

In scientific research and engineering applications, attention has been paid to investigating the upper-limb 
motion of different bones with diverse rotational DOFs according to various research scenarios and engineering 
needs. P-BTBS was used to build spatial triangles to estimate the rotation DOFs of bones of interest. A spatial 
triangle represents the spatial state of the corresponding bone, as shown in Fig. 5.

The coordinates of the points in Fig. 4 were first determined by solving matrices ET and ShTPS , then substituted 
into Eq. (21) to estimate the area, |S(h,k)|, of the corresponding spatial triangle. Obtaining Lh using the matrix EO 
is straightforward.

(23)E
T
=

[

S
1

TPS
S
2

TPS

S
3

TPS
S
4

TPS

]

,

Figure 4.  Four upper-limb modeling cases in TPS. The coordinates of the three points in case 4 are (0, 0, 0). 
The plane of case 3 consists of a point, a vertical point on the M-axis, and origin. The plane of case 2 consists of 
two points and the origin. The plane of case 1 consists of three points.

Figure 5.  Diagram of various motions of upper limb and the corresponding spatial triangles. Arbitrary 
selection of spatial triangles according to the required DOFs. (a) Attention to just one DOF of motion of the 
hand. (b) Attention to one DOF of clavicle and humerus each. (c) Attention to one DOF of the clavicle and two 
DOFs of the humerus. (d) Focus on two DOFs of the clavicle, one DOF of the forearm, and one DOF of the 
palm.
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Substituting Lh and |S(h,k)| into Eq. (24) to estimate the motion angle of the BS-1-Scapula, BS-3-Forearm, and 
BS-4-Metacarpal.

θ3-5 for BS-2-Humerus can be estimated by solving Eq. (25), which was optimized using Eq. (13),

where ψ1 = x8–x9, ψ2 = y8–y9, ψ3 = z8–z9.
The coordinates of BS-2-Humerus in the TPS can be calculated using ET with h = 2, i = 3, j = 4, and k = 5 by 

solving Eq. (22). Substituting the coordinates of BS-2-Humerus and L2 into Eq. (26) to estimate ψ1–3.

The motion angles θ3–5 can finally be estimated by substituting Eq. (26) into Eq. (25).

Simplified model of humeral motion. Humeral motions can be divided into two categories when the 
initial posture of the arms is in a natural downward state. One category is the combined motion of the X and Y 
axes, where the X–Y plane is parallel to the sagittal plane, as shown in Fig. 6h. When the initial motion of the 
humerus tends to move away from the sagittal plane, humerus posture can be decomposed using rotational 
DOFs around the X and Y axes. This decomposition results from the fact that two DOFs in the X and Y axes can 
determine any position of the humeral end in front of the sagittal plane.

The other is the combined motion of the Y and Z axes, and the Y–Z plane is parallel to the frontal plane, as 
shown in Fig. 6i. When the initial motion of the humerus moves away from the frontal plane, humerus posture 
can be decomposed using rotational DOFs around the Y and Z axes. This decomposition results from the fact 
that two DOFs in the Y and Z axes can determine any position of the humeral end in front of the coronal plane.

Determining the motion tendency of the humerus during the initial stages is important. Moving from the 
initial state, the motion category can be determined by comparing the magnitudes of θ4 and θ5. For θ4 < θ5, the 
motion belongs to the first category. Otherwise, motion belongs to the second category.

Joint angle estimation during continuous motion. For healthy individuals, continuous motion is 
one of the most important motions in daily life. Continuous motion is a crucial rehabilitation aim for people 
undergoing upper-limb motion recovery.

To verify the performance of P-BTBS in solving joint angles during continuous upper-limb motion, motion 
capture experiments for seven DOFs upper limbs were performed. The experimental setup is illustrated in 
Fig. 6a and b, in which eight motion capture cameras were evenly distributed around the circumference. The 
circumference, height, and frame rate were approximately 3.8 m, 2 m, and 60 Hz, respectively. The participants 
stood at the center of the circumference. And the experimental procedure is shown in Supplementary Video 1.

The participants were in a good physical condition, without upper-limb injuries suffered within a month, 
and without strenuous exercise performed within a week. The skin near the marker point was first washed 
with medicinal alcohol before the experiment. The black bandages were then wrapped around key positions to 
minimize the effect of skin motion, as shown in Fig. 6e–g. Moreover, the black bandage was wrapped around 
the abdominal area to reduce the influence of the vertical motion of abdominal fat. The inclination angle was 
approximately 30°. The motion of a rigid body can be captured using a motion capture system with the highest 
accuracy. To obtain the exact values of the joint angles, several triangular rules were pasted onto the body as 
rigid bodies.

The P-BTBS is a general method for eight DOFs. To demonstrate the generality and advantage of handling 
highly redundant upper-limb motions, seven DOFs of the upper limb were chosen as the experimental target. 
Six upper-limb spatial points (M3, M4, M8, M9, M10, and M13) were selected, as shown in Fig. 6e–g. Seven 
spatial triangles were built, as shown in Fig. 5. The experimental motions are shown in Fig. 7a, where the initial 
state was not in naturally downward. The initial state was set up to avoid obscuring the side-marker points of 
the abdomen. The simplified model of humeral motion evidently shows that the experimental motions belong 
to the second category.

(24)
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The experimental motions first started with the initial state and were lifted forward on the humerus to perform 
motion 1. The elbow joint was bent to perform motion 2, the humerus was rotated around the Y-axis to perform 
motion 3, and the wrist joint was inwardly bent to perform motion 4. Finally, experimental motion returned to 
its initial state and repeated the next set of cycles. Two sets of identical experimental motions were used.

The coordinates of the six marker points were obtained from the motion capture system, and the raw data 
were smoothed using the sliding average filtering algorithm. The calculated values were estimated using P-BTBS. 
The exact values were acquired from the motion capture system and smoothed using a sliding average filtering 
algorithm. The motion capture system and P-BTBS differently defined rotation and the values could be oppo-
site; therefore, the exact values were taken as the opposite. In accordance with the simplified model of humeral 
motion, the θ5 of humerus was not significant in the second category, which does not help determine humeral 
posture. The angular variation of the remaining six DOFs is shown in Fig. 7b–g.

Root Mean Square Error (RMSE) was used as the error evaluation method in this study, which is widely used 
in engineering measurements. In practical applications, RMSE is sensitive to the data and measures the devia-
tion between the measured value and the true value, thus reflecting the precision of the measurement method.

The experimental motions were executed twice, and all data had two cycles. The shoulder complex was moved 
passively throughout the experiment; therefore, the two rotation angles of the clavicle changed minimally. The 
motion angle θ1 of the clavicle ranged from 0.8733° to 8.9923° with a RMSE of 1.3877°. A forward arm exten-
sion was included in the experimental motions, and the θ2 of clavicle varied more than θ1. The motion angle θ2 
of the clavicle ranged from − 12.5627° to 1.4329° with an RMSE of 1.0119°. The motion angle θ3 of the humerus 
ranged from 1.9542° to 38.7424° with an RMSE of 2.0933°. In its initial state, the humerus was lifted forward; 
therefore, the motion angle θ4 of the humerus ranged from 36.2078° to 85.1273° with an RMSE of 2.2824°. The 
motion angle θ6 of the forearm ranged from 2.5508° to 89.7897° with an RMSE of 0.9814°. The motion angle θ7 
of the hand ranged from − 51.3814° to 7.6649° with an RMSE of 1.8875°.

The exact values obtained from the motion capture system were the gold standard compared with the P-BTBS 
results and the mean value of RMSE was 1.6074°. Moreover, compared with the traditional vector method, 
P-BTBS estimated three to eight motion angles with one coordinate transformation, which can reduce the errors 
caused by multiple transformations.

More importantly, a maximum of six spatial points was required to estimate the eight motion angles of 
the upper limb. The locations of the six spatial points coincided with those of Kinect’s human skeleton 

Figure 6.  Experimental overview and humerus-motion simplified model. Motion capture lens (a) height and 
(b) layout. (c) Position and (d) posture of the world coordinate system. The red, green, and blue axes are the X, 
Y, and Z axes, respectively. The X–Y plane is parallel to the ground, and the local coordinate system is rotated 
0° and 90° around the Y and X axes of the world coordinate system, respectively. (e–g) The six points labelled 
in the diagram are required for the P-BTBS, the remaining points are necessary for the motion capture system 
to calculate the exact values. The red triangle symbols show the placement of the triangular rulers. (h) and (i) 
The sagittal plane is parallel to the X–Y plane. The frontal plane is parallel to the Y–Z plane. The origin of the 
coordinate system is located at spatial point 3.
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recognition  technology33, which encourages the application of P-BTBS to most scenarios for estimating the 
spatial coordinates.

Description of upper‑limb motions. Upper-limb motions are complex, unordered, and subconscious. 
Explaining the subconscious actuation of brain such as picking up objects from a table is challenging. P-BTBS 
implements the function of describing upper-limb motions through mathematical methods, which provides a 
way to observe upper-limb motions. P-BTBS constructs a mathematical framework for multi-space fusion and 
derives models (Eqs. (19) and (23)) for describing upper limb motions in Euclidean space (EO) and TPS (ET), 
respectively. This mathematical framework not only enriches the motion information mathematically, but more 
importantly reflects the real upper limb motions, which makes it possible to accurately describe these complex 
motions of the upper limb.

In the motion description experiments, the participants and experimental field layout were the same as those 
in the joint angle-estimation experiments. Four motions with the same wiggling amplitude were performed, as 
shown in Fig. 8a and b. The experimental procedure is shown in Supplementary Video 2. Fixed motions were not 
chosen because the high contingencies were not sufficient to demonstrate the ability of the P-BTBS to describe 
upper limb motions. Dynamic wiggling motions are more in line with real-world upper limb motions because 
of the dynamic nature of the motions in the real world. The four sets of experimental motions were designed 
because they encompassed the range of upper limb motions (front and side of the body) in everyday life.

Figure 7.  The experiment of upper-limb motion information extraction during continuous motion. The 
calculated and exact values are the results of the P-BTBS and motion capture system, respectively. The positive 
and negative results of subtracting the calculated value from the exact value are filled in the graph in light 
blue and light orange, respectively. The total error for each group of results is expressed as Root Mean Squared 
Error (RMSE). (a) Five consecutive upper-limb motions, repeated twice. The initial state is not in the natural 
downward state to avoid the upper limb obscuring the marker point during the initial. Action 1: a forward lift 
of the humerus. Action 2: a bend of the elbow. Action 3: a turn of the humerus around the Y axis. Action 4: an 
internal wrist snap, finishing with a return to the initial position and proceeding to the next motion. (b,c) Two 
angles of rotational motion of the clavicle. (d,e). The two angles of rotational motion of the humerus. As shown 
in the simplified model of humeral motion, the angle θ5 has no contribution to the action before the frontal 
plane, so is not calculated and measured. (f,g). The angle of rotation motion of the forearm and palm.
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The EO and ET of each frame were calculated in Euclidean space and TPS, respectively, whereas the features 
were analyzed only in Euclidean space. The independent variables in ET (i.e. M, N, and U) have physical sig-
nificance only in TPS. Thus, EO and ET are numerical matrices of dimensions 4 × 4 and 6 × 6 in Euclidean space, 
respectively.

When the one-dimensional feature of P-BTBS was utilized to describe the motions, the 2-Norm of ET was 
calculated. The variation with 2-Norm characteristics of the four motions is shown in Fig. 8c. The 2-Norm of ET 
for each motion has a cyclical variation around its mean value.

When the two-dimensional feature of P-BTBS was utilized to describe the motions, the 2-Norm and eigen-
value mean of EO values were calculated. Each EO has four eigenvalues, which can be complex numbers and exist 
in pairs. Thus, the mean value of the four eigenvalues remains a real number. The mean values of the eigenvalues 
of EO and 2-Norm were utilized as the X and Y axes, respectively, as shown in Fig. 8d. A wiggling motion can 
be clustered in a region.

To verify the accuracy of EO and ET in describing upper-limb motions, a three-dimensional (3D) dimension 
reduction analysis was performed. The 2-Norm of EO, mean of eigenvalues of EO, and 2-Norm of ET construct a 
3D feature for each frame. Principal components (PC) 1 and PC 2 are shown in the X and Y axes of the principal 
component analysis (PCA) diagram, respectively, with PC1 at 93% and PC2 at 5.3%, as shown in Fig. 8e.

One point in the PCA diagram corresponds to the motion frame. The four sets of wiggling motions corre-
sponded to the four 95% confidence ellipses. The confidence ellipses of motions 3 and 4 were close but did not 
intersect. This is because motions 3 and 4 are similar, but fundamentally different (fixed relative posture of the 
humerus and forearm, only humerus rotates around the Y-axis), reflecting both the differences and similarities 
in upper-limb motions.

In conclusion, P-BTBS can classify and cluster upper-limb motions utilizing one-dimensional features 
(Fig. 8c), two-dimensional features (Fig. 8d), and 3D dimension reduction features (Fig. 8e), which demon-
strates its effectiveness.

Figure 8.  The experiment of upper-limb motions description. (a,b) The four groups of motions are described. 
Each set of motions is performed with the same waggle amplitude. (c) The 2-Norm of ET matrices obtained in 
TPS is calculated for each frame, with each group of values having a cyclical variation around its mean value, 
and having a visible difference in the mean values. Just one point per ten data points is displayed, the rest are 
skipped. (d) The 2-Norm and eigenvalues’ mean value of EO matrix in Euclidean space are calculated for each 
frame to form a 2D planar map. The points representing the different motions appear in different regions of 
the 2D plane. Just one point per twenty data points is displayed, the rest are skipped. (e) Principal component 
analysis (PCA) and data downscaling are performed on the three-dimensional features of each frame, with the 
three-dimensional features being the 2-Norm of EO, the eigenvalues’ mean value of EO and the 2-Norm of ET, 
respectively. Just one point per twenty data points is displayed, the rest are skipped.
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Discussion
The above modeling process and experimental results demonstrate that the proposed P-BTBS conforms to the 
 physiology66 of human upper limbs, possesses high accuracy of motion angles (mean value of RMSE is 1.6074°), 
and describes upper-limb motions with high accuracy. Defining generic upper-limb spatial points extends the 
application scenario of P-BTBS, which satisfies the generic nature of equipment and technology. Modular motion 
of the upper limb by constructing multi-space-fusion, which satisfies the generic nature of study targets (1–8 
DOFs) in accordance with research topics. Moreover, the upper limb is not a continuous kinematics chain due 
to the presence of the scapula, and P-BTBScan handle this type of issue. In practical applications, the P-BTBS 
primary coordinate system transformation eliminates the step of defining multiple coordinate systems (compared 
to the Denavit-Hartenberg model), reduces the impact of cumulative errors on results (compared to the spatial 
vector method), simplifies the application process, and extends the range of applicability.

P-BTBS provides a new perspective and tool for understanding and exploring upper-limb motions, which 
can be utilized in a wide range of fields. Specifically, in the following three fields:

1. Upper-limb  rehabilitation8–10. P-BTBS can provide rehabilitation robots with information on patients’ 
motions (for example, mirror rehabilitation)21,54 and physician guidance (such as passive intervention reha-
bilitation). The information organically integrates the upper-limb rehabilitation robot with the patient’s 
autonomous consciousness, which can improve rehabilitation efficacy and alleviate the conflict between 
patients and medical rehabilitation. Among existing methods, motion capture systems cannot be widely 
promoted; multi-camera data fusion, inertial sensors, and wearable devices offer limited DOFs of the upper 
limb (less than 6 DOFs).

2. Assessment of upper-limb motor  function55,56. The P-BTBS can extract upper-limb motion angles and ana-
lyze the accuracy of reaching motions, which can be utilized to assess upper-limb motor function. Timely 
identification of the rehabilitation stage is essential for patients with upper-limb motion disorders due to 
 stroke67. Physicians can accurately grasp patients’ rehabilitation stages using P-BTBS and then develop timely 
rehabilitation strategies. Among existing methods, the assessment of upper limb motor function lacks diver-
sity (only upper limb motion angles can be assessed, or only motion-reaching ability can be assessed).

3. Motion recognition and classification. Motion recognition and classification have been important research 
 directions68,69. Making the computer “see” or “sense” upper-limb motions is an important part of program 
execution or function implementation. P-BTBS provides a new mathematical tool for computers to observe 
human upper-limb motions without training redundant neural networks that utilize abundant samples. 
Existing methods typically use various neural network models to train images, depth images, biosignals, 
etc., which is a complicated process with many interfering factors and requires abundant samples.

Upper-limb motions involve both rotation of the joints and a small sliding motion of the plane joints (such 
as the acromioclavicular joint). The scapula maintains biomechanical stability and provides the drive. However, 
the small sliding motion and scapula were not considered in P-BTBS. The sliding motion was not considered 
because even sliding motion can improve upper-limb flexibility to some  extent66; there is no clear evidence that 
sliding motion has an absolute effect on upper-limb motions. The scapula is enveloped by skin and muscle tis-
sue, making its observation with non-invasive methods difficult. Thus, the scapula was simplified as a passively 
moving bone in P-BTBS. In addition, the P-BTBS analyses a maximum of 8 DOFs, which is a potential limitation 
in some application scenarios where high DOFs (greater than 8 DOFs) are required.

P-BTBS provides an ingenious and convenient solution for analyzing and extracting human upper-limb 
motion information, which can be used by most equipment for estimating spatial coordinates. The extraction 
and description of upper-limb motion information can provide theoretical references for practical engineer-
ing applications. Moreover, combined with Internet of Things technology, P-BTBS has promising potential for 
applications, such as upper-limb rehabilitation, motor function assessment, computerized recognition and clas-
sification, behavioral monitoring, senior care, human–robot interaction, and robot control strategies.

In the future, P-BTBS will be committed to promoting engineering applications and experimental explora-
tions. P-BTBS can be integrated into upper-limb rehabilitation robots to conduct upper-limb rehabilitation 
after stroke, which can improve human–machine interaction, enrich rehabilitation modalities, and increase 
rehabilitation efficacy (Supplementary Video 1).

Methods
Data acquisition and analytics. Eight optical motion capture cameras were used to cover the entire 
experimental field, and the frame rate was set to 60 Hz. The data were collected and processed offline using a 
host computer. All raw data were filtered using a sliding average filter algorithm with filter type of moving aver-
age and a filter coefficient of 25.

The virtual spatial points P11 and P12 held singular positions when line segment l9,10 was vertically horizontal 
(ground), resulting in multiple sets of solutions of Eq. (1). In the singular position, the following equation holds, 
and the coordinates of P11 and P12 are selected as (x10, y10, z10 + L10,13) and (x10 + L10,13, y10, z10), respectively:

Ethics approval and informed consent. All experimental protocols and methods were approved by the 
Medical Ethics Committee of Harbin Institute of Technology with Ethics No: HIT-2022032 and carried out in 
accordance with relevant guidelines and regulations. This study confirms that informed consent was obtained 

y9 − y10 = L9,10
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from all subjects and/or their legal guardian(s). This study obtained informed consent from all subjects and/or 
their legal guardian(s) for the publication of identifying information/images in an online open-access publica-
tion.

Data availability
The data supporting the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
Codes that support the findings of this study are available from the corresponding author upon reasonable 
request.
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