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From MEG to clinical EEG: 
evaluating a promising 
non‑invasive estimator 
of defense‑related muscle 
sympathetic nerve inhibition
John J. Eskelin 1*, Linda C. Lundblad 1,2, B. Gunnar Wallin 1, Tomas Karlsson 1, Bushra Riaz 1, 
Daniel Lundqvist 3, Justin F. Schneiderman 1,2,4 & Mikael Elam 1,2,4

Sudden, unexpected stimuli can induce a transient inhibition of sympathetic vasoconstriction to 
skeletal muscle, indicating a link to defense reactions. This phenomenon is relatively stable within, 
but differs between, individuals. It correlates with blood pressure reactivity which is associated with 
cardiovascular risk. Inhibition of muscle sympathetic nerve activity (MSNA) is currently characterized 
through invasive microneurography in peripheral nerves. We recently reported that brain neural 
oscillatory power in the beta spectrum (beta rebound) recorded with magnetoencephalography 
(MEG) correlated closely with stimulus‑induced MSNA inhibition. Aiming for a clinically more available 
surrogate variable reflecting MSNA inhibition, we investigated whether a similar approach with 
electroencephalography (EEG) can accurately gauge stimulus‑induced beta rebound. We found that 
beta rebound shows similar tendencies to correlate with MSNA inhibition, but these EEG data lack 
the robustness of previous MEG results, although a correlation in the low beta band (13–20 Hz) to 
MSNA inhibition was found (p = 0.021). The predictive power is summarized in a receiver‑operating‑
characteristics curve. The optimum threshold yielded sensitivity and false‑positive rate of 0.74 and 
0.33 respectively. A plausible confounder is myogenic noise. A more complicated experimental and/or 
analysis approach is required for differentiating MSNA‑inhibitors from non‑inhibitors based on EEG, as 
compared to MEG.

Transient inhibition of sympathetic nerve activity to blood vessels in human skeletal muscle tissue (muscle 
sympathetic nerve activity—MSNA) can be induced by introducing short-lasting and surprising  stimuli1. This 
reaction has also been shown to correlate with blood pressure  reactivity2–4, which is a risk factor for cardiovas-
cular  disease5. The central neural basis for this reaction has not been established, but several pieces of evidence 
suggest a link to cortical brain regions. For example, the inhibitory reaction is exaggerated in patients with 
phobia-induced vasovagal syncope, yet normal in comparable non-phobic  fainters6. Furthermore, there is a 
negative correlation between the degree of sudden stimulus-induced MSNA inhibition and the amount of MSNA 
increase during longer lasting cognitive  load3.

Recently it was shown that the inhibitory sympathetic response was in fact reflected in the cerebral cortex, 
namely the anterior cingulate cortex, a region implicated in autonomic regulation and the concepts of threat and 
defense  reactions7–10. Both cortical thickness, as a measure of long-term plasticity, and a functional response in 
the form of neural oscillations in this region were correlated to  inhibition4. Interestingly, a functional correla-
tion was also discovered in the central sulcus region, i.e. sensorimotor cortex. Individuals with a high degree of 
MSNA-inhibition, as measured in a peripheral nerve, had increased event related synchronization in the beta 
band (13–25 Hz) in the contralateral sensorimotor  cortex4. Such resynchronization is a well-known phenomenon 
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found in the sensorimotor region following movement or stimulus presentation and is often referred to as 
rebound11,12. The physiological role of beta rebound is still a matter of debate and inquiry, but it has been sug-
gested that beta oscillations reflect an increase in GABA  signaling13–15, and that it serves to maintain the status 
quo of a cognitive  set12,16.

The sympathetic inhibition elicited by transient stressors is believed to be an expression of the defense 
 cascade4. The first phase of this can be called arousal as a state of heightened  vigilance17. MSNA-inhibition can 
then be viewed as part of a primitive startup response before threat evaluation and a course of action has been 
determined. The inhibition of sympathetic activity to muscle makes sense as a way to decrease vascular resistance 
and increase blood flow in preparation for the later stages of the cascade such as fight-or-flight, but could also 
lead to fainting (play dead response) if sympathetic inhibition runs  rampant6. The sympathetic nervous system 
is important in many areas of human pathology, and is likely to play a part in the increased risk for hypertension 
caused by an urban lifestyle which often includes small but recurrent threats to our physical, social, and economic 
 wellbeing18–20. Our functional findings revealed a new and interesting link between traditionally dichotomized 
autonomic and voluntary branches of the nervous system.

The characterization of an individuals’ MSNA reactivity currently depends on microneurography, an inva-
sive and cumbersome method of recording action potentials in vivo. The functional results in Riaz et al. were 
detected with magnetoencephalography (MEG). While being non-invasive, this is also a technique with limited 
availability, especially in clinical settings. Electroencephalography (EEG), on the other hand, is a widely utilized 
method in many clinics, most hospitals, and neuroscience research centers. Our principal aim with the present 
study was to explore whether sympathetic inhibition could be reliably characterized also with EEG using the 
same analysis approach. This could enable longitudinal high-powered clinical studies important for establishing 
a direct relationship to cardiovascular endpoints and risk for hypertension.

Methods
Participants. The study participants consisted of 49 young healthy males recruited from university notice 
boards; a summary of the analyzed participants’ characteristics is presented in Table 1. Exclusion criteria were 
set to any current medical condition or medication that might affect the nervous system or circulation. The study 
was approved by the regional ethics committee (Regionala Etikprövningsnämnden Göteborg, dnr 488-12, add 
T067-16, add T617-18) in accordance with the Declaration of Helsinki. All participants were informed in person 
and in writing of the nature and risks of the experiment and gave their written informed consent. All methods 
were performed in accordance with the relevant guidelines and regulations.

Experiment setup. The study material consisted of two cohorts that were examined with microneurogra-
phy of sympathetic nerve activity and electroencephalography while experiencing somatosensory stimulation of 
the left index finger. The purpose of the microneurography was to characterize the level of sympathetic inhibi-
tion, induced by transient stimulation designed to be surprising and uncomfortable. Electroencephalography 
was performed to capture relevant induced cortical activity.

In the main cohort (29 out of 49 participants), EEG and MSNA recordings were done simultaneously. The 
stimulation protocol was identical to the one used in the MEG-sessions in Riaz et al. and consisted of 72 trials, 
with an inter-trial interval of 30, 45, 60 s in a pseudo-randomized order. Each trial contained three electrical 
stimulations (p1, p2, p3) locked to the R-wave of the preceding cardiac interval with a delay of 200 ms (cf below). 
Analysis required 1.5 s of uninterrupted data allowing one stimulus every other heartbeat (3 × 72 = 216 stims in 
total), and the multiple pulses allowed investigation of possible adaptation to repeated stimulation. Thus, the 
full analysis period encompassed six heartbeat intervals plus baseline (cf “Data analysis”). The stimulus strength 
of the transient pulses (0.2–0.8 ms) was tuned to a scale of 0–10 based on the subjective level of discomfort for 
the participant (0 no pain, 10 intolerable pain) aiming for a level of 7–8. The main cohort was supplemented 
by a second auxiliary cohort of 20 participants (from Riaz et al.) to obtain sufficient statistical power to enable 

Table 1.  Participants from both cohorts grouped by degree of MSNA-inhibition. StD standard deviation of the 
mean, Min minimum value, Max maximum value, BMI body mass index, SBP resting systolic blood pressure, 
MAP resting mean arterial pressure, DBP resting diastolic blood pressure, HR resting heart rate, BI resting 
MSNA burst incidence (per 100 heart beats), BF resting MSNA burst frequency (per minute). There were no 
significant differences between groups.

Non-inhibitors (N = 19) Inhibitors (N = 18) All (N = 37)

Mean StD Min Max Mean StD Min Max Mean StD

Age 26.3 5.8 21 41 29.2 8.0 19 45 27.7 7.0

BMI 25.2 3.6 19.8 34.1 23.4 4.0 18.0 34.4 24.3 3.8

SBP 119.7 10.5 97 136 116.0 8.8 103 135 117.9 9.8

MAP 81.9 6.7 67 92 83.2 8.3 67 97 82.6 7.5

DBP 63.8 7.2 50 77 68.0 10.6 43 93 65.8 9.1

HR 56.3 8.1 46 81 57.0 7.5 45 71 56.6 7.7

BI 41.5 13.6 11.7 66.9 46,0 14.7 21.7 72,4 43.7 14.1

BF 25.0 8.2 11.2 39.2 26.5 8.3 13.6 40.3 25.7 8.1
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reliable evaluation of a classification model of MSNA-inhibition. The main difference to the main cohort lay in 
the separate sessions for MSNA characterization and EEG-recordings. EEG data acquisition is described below; 
other details of this cohort and the experimental setup can be found in Riaz et al.

Data acquisition. The following information concerns the main cohort. MSNA was acquired with 
microneurography from the left peroneal nerve using an insulated tungsten microelectrode with a tip of ~ 2 µm 
(1 or 5 MOhm; FHC, Bowdoin, USA), a subcutaneous reference and surface ground electrode. The signal was 
amplified by a factor of 40,000 and bandpass-filtered 0.7–2  kHz (Neuro Amp EX front-end and head stage; 
ADInstruments, Australia). Participants were comfortably resting in a seated semi-upright position. A 3-lead 
electrocardiogram (ECG) was monitored together with respiratory movements using a strain-gauge belt. For 
establishing the recording site, bursts of MSNA were identified by a set of predefined  criteria21 and a 10 min 
period of resting activity was followed by instructions and initiation of the stimulation protocol, which lasted for 
about 1 h. MSNA-inhibition was calculated by comparing the average amplitude of post-stimulus bursts 0 and 
1 to the baseline average amplitude measured from 8 cardiac intervals preceding stimulation 22. All electrical 
stimulations were locked and timed to 200 ms after the R-wave in the preceding heartbeat in order to optimize 
the induced  inhibition1. Based on previous analyses of normal variability assessed from control/dummy trials, 
a significant degree of MSNA-inhibition has been determined as ≥ 30% reduction in average post-stimulus 
 amplitude22. In accordance with previous studies, we found that approx. 50% of cases (main cohort: 9 inhibitors 
vs 11 non-inhibitors; auxiliary cohort: 10 vs 10) display a significant degree of  inhibition4,22.

EEG was recorded with 19 channels according to the international 10–20 system, with a ground reference elec-
trode in the left parieto-occipital region and one electrocardiogram lead and digitized at 256 Hz (Refa 32, Twente 
Medical Systems International, Netherlands). Electrodes were manually positioned with electrode gel (Elefix) 
after scrubbing the scalp with a peeling paste (abrasive gel, Everi). Participants were instructed to remain still 
and keep their eyes focused on a stationary cross to avoid ocular movement artefacts. The EEG in the auxiliary 
cohort was recorded with a MEG-compatible EEG cap (EasyCap, Brain Products GmbH) fitted with the same 19 
channel array with the addition of Fpz and Oz for a total of 21 channels and digitized at 1000 Hz, during a joint 
session with MEG (Elekta Neuromag® TRIUX), during which an electro-oculogram and ECG was also obtained.

Data analysis. Despite the fact that our two cohorts differed in terms of data acquisition and MSNA-char-
acterization, they were merged in order to take advantage of the increased statistical power so the classifica-
tion problem could be reliably addressed. All EEGs were re-referenced to a common average, bandpass filtered 
(Butterworth filter, 0.6–40 Hz) and resampled to 200 Hz. Analysis of the EEG focused on the Cz channel. The 
choice of electrode was based on the results of the previous study using MEG, which showed a strong correlation 
between MSNA inhibition and activations in the central sulcus area, and on its distance to cranial muscles, given 
that muscle artefacts may confound analysis of beta  oscillations23. Eye-blinks and ECG artefacts were removed 
by employing the fast Independent Component Analysis algorithm found in MNE Python v0.20.824,25. The num-
ber of components was determined by a fixed rank (i.e. no. of channels) and artefactual components were manu-
ally selected for removal after visual inspection. Typically, 4–6 components were rejected and filtered out.

The data was cropped into 1.5 s epochs locked to the time of the stimulus. Similarly, a control condition was 
created beginning at two heartbeats before the first stimulus and the data was baselined to the control condi-
tion, thus displaying change in frequency power from the baseline, expressed in dB. The 1.5 s epochs (baseline, 
p1, p2, p3) were visually inspected for artefacts. Artefacts were defined as being of technical origin, remaining 
eye-blinks, or a result of participant movement (e.g. electrode malfunctions, line noise, saccadic spike potentials, 
large amplitude deviations), or may have consisted of strong but transient myogenic noise in several channels 
(e.g. swallowing, coughing, speaking).

Because wakefulness dropped in some participants during longer sessions, all the EEGs were also screened 
for instances of sleep. Sleep-stage  one26 is notoriously difficult to define and the time between stimulus trials 
was always 1 min or less making judgements of stage one in individual trials difficult. Therefore, reliable signs 
of sleep, i.e. (a) vertex sharp waves (b) K-complexes and (c) sleep-spindles, were marked in the raw data. As a 
safety measure, all stimulus trials within one minute before and one minute after such events were rejected in 
the EEG (and in concurrent nerve recordings in the main cohort). If the number of remaining trials in the EEG 
after cleaning both artefacts and sleep was less than 30, then the subject was excluded altogether. In total, 12 
out of 49 participants were excluded from the statistical analysis: 2 due to low quality nerve registrations, either 
because the recording site was lost, or because of suspected involvement of sympathetic efferents to skin; 2 due 
to either a recurrent respiratory- or stimulation artefact in the EEG, which interfered with the frequency decom-
position. The remainder were excluded due to insufficient remaining trials in the EEG. A total of 37 participants 
(cf Table 1) were included in the analysis and the average number of trial epochs rejected due to artefacts or 
sleep in EEG was 10.11 (SD 11.57), resulting in 5 participants with no trials excluded and the median number 
of included trials was 66 out of the maximum 72. Finally the EEG data was decomposed into power estimates 
in the frequency domain, in the range of 5–40 Hz with FieldTrip, revision 2020-06-0727. Sympathetic nerve 
recordings were also inspected visually for quality and an average of 2.73 (SD 7.38) trials were rejected due to 
artefacts and 2.22 (SD 6.14) due to sleep.

Statistical analysis. Prior studies have shown that the upper beta band (20–30 Hz) and lower beta band 
(13–20 Hz) are susceptible to myogenic noise to different  extents23,28. The frequency band was therefore divided 
(13–20 Hz: low beta; 20–30 Hz: high beta) and treated separately. Continuous time series of post-stimulus change 
in power in the low and high beta band, respectively, were computed for inhibitors and non-inhibitors. In order 
to test for statistically significant differences in the mean change in oscillatory power, we used a non-parametric 
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cluster-based permutation  test29. An independent two-sample T test (2-sided alpha = 0.05) in each time-point 
constituted the underlying cluster-forming test statistic. Clusters are then compared to a Monte-Carlo permuta-
tion (2-sided alpha = 0.05; 1000 permutations) for significance testing of the clusters based on the maximum size 
of the one-dimensional clusters. The non-parametric cluster-based permutation test was also used to test for the 
relationship between MSNA inhibition and the individual spectrograms of baseline corrected power. Spearman 
correlations were used as the underlying cluster-forming test statistic (2-sided alpha = 0.05; 1000 permutations). 
In this case, each cluster was evaluated for statistical significance against a Monte-Carlo permutation distribu-
tion based on the maximum size of the two-dimensional clusters.

We also employed a time–frequency window of interest. Inhibition was correlated to the average change in 
beta power from the baseline in a window encompassing 0.5–1.2 s post-stimulus and the beta frequency range 
(high or low) using Spearman’s correlation coefficient. In order to evaluate the prospects of using said window 
for non-invasive prediction of MSNA inhibition, we designed a simple binary classification model based on 
the significant correlations obtained wherein the two prediction categories were inhibitors and non-inhibitors. 
Non-inhibitors were defined as the positive category. The performance of this prediction model is summarized 
in a receiver-operating-characteristics (ROC)-curve of sensitivity vs 1 minus specificity and the area under the 
curve (AUC) and accuracy was computed.

Results
Responses to stimulation are shown as analyzed in the frequency domain, revealing a decrease in oscillatory 
power, indicative of desynchronization of neural oscillations, followed by resynchronization and subsequent over-
shoot in power predominantly in the beta frequency range 13–30 Hz (Fig. 1A) i.e. beta rebound. The cluster-based 
permutation test returned no significant clusters correlated with MSNA-inhibition when applied to the baseline 
corrected spectrograms. The time-series of upper and lower beta bands (Fig. 1B) suggest a modest tendency for 
increased beta rebound in inhibitors compared to non-inhibitors. However, the clusters of primarily significant 
T tests on the time-series data did not survive correction for multiple comparisons.

A significant correlation between the individual level of MSNA inhibition and average lower beta oscillatory 
power (13–20 Hz, 0.5–1.2 s) was found in p3 (Fig. 2A, Spearman, r = 0.38; p = 0.021). To attempt to answer the 
question of whether this surrogate measure is a reliable substitute for invasive measurements using microneu-
rography, a binary classifier was constructed based on the correlation in p3. The performance of the binary clas-
sification is summarized in a receiver-operating-characteristic curve in Fig. 2B. The performance curve shows 
that the threshold for optimal trade-off between sensitivity and specificity achieves a sensitivity of 0.74 at the 
cost of a 0.33 false-positive rate when non-inhibitors are defined as cases (Accuracy = 0.70; AUC = 0.70). This 
threshold corresponded to a change in power of 1.07 dB in the lower beta band 13–20 Hz.

Discussion
Here we explored the feasibility of using EEG as a surrogate method for characterization of defense-related sym-
pathetic inhibition. While a correlation between the stimulus-induced beta rebound response recorded with EEG 
and the microneurographically determined MSNA inhibition was found, this relationship was weak using EEG 
compared to our previous study using MEG. Thus, using a similar analysis approach, the group differences and 
the results of a simple binary classifier based on previous MEG findings were not convincing. Our interpretation 
is that EEG data in the beta-activity range is compromised by cranial muscle activity, highlighting the benefit of 
MEG in stress-related studies of higher frequency cortical oscillations.

First it should be noted that the time–frequency window of interest used herein was an approximation and 
interpretation of the likely extent of an effect indicated by the clusters found with MEG. The reasons for this 
approach are that (1) it is not possible to exactly determine the extent of an effect using the cluster-based per-
mutation test as it is dependent on arbitrary factors like signal-to-noise ratio and mainly serves to test the null 
hypothesis. And we now use a different modality so (2) it follows that a soft interpretation avoids overfitting the 
model to the data it was first based on, which would otherwise risk decreased external validity and sensitivity. 
Here we attempted to avoid the well-known problem of contamination from muscle activity by separating the 
beta band into higher and lower frequencies; typically, 20 Hz defines this  boundary30. Indeed, the lower beta band 
did reveal a significant relationship with MSNA-inhibition, whereas the higher beta band did not.

The cluster-based permutation test provides an unbiased data-driven way to detect focal effects without the 
need for a predefined window of interest and should thus increase sensitivity. However, testing for significant 
clusters in the baseline corrected power spectrograms, as done in Riaz et al. did not yield any significant results 
post correction (see Supplementary material: Fig. S1, for time–frequency diagrams showing the raw test statis-
tics). The same principle can be applied to one-dimensional data as in the time series of beta power, but likewise 
no robust statistical differences were detected in the average beta power over time.

The binary classification derived from the significant correlation between average power of the low beta 
time–frequency window of interest and MSNA-inhibition achieved an AUC score of 0.70 (> 0.50 denotes posi-
tive skill). The mathematically optimal threshold, based on a trade-off between sensitivity and specificity, also 
gives an accuracy of 0.70, but is not necessarily the best one for any given purpose. We hypothesize that the non-
inhibitors would be at greater cardiovascular risk due to their tendency for blood pressure increases, and so it 
is more important to focus on this group in a clinical setting. But inspection of the ROC-curve shows that even 
a threshold that stays below a FPR of 20% only reaches about 45% sensitivity. As it currently stands, the perfor-
mance curve suggests that the prospects for models of EEG-based sensorimotor beta rebound may be limited, and 
this particular model is far from being useful in smaller studies like this one. The model would thus likely require 
very large sample sizes for clinical research, in order to connect MSNA-inhibition to cardiovascular end-points.
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It is likely that myogenic noise interfered with signals of neural origin, especially in higher frequencies. It 
has been shown that even in a relaxed state, residual muscle activity exerts a significant influence on frequencies 
mainly from ~ 20 Hz and above, but can be visible around the vertex on frequencies as low as 12 or 8  Hz23,28. 
Additionally, single motor unit potentials originating from the temporalis muscle have been shown to travel 
across the entire scalp, reaching the contralateral side of an EEG  recording31, and the temporalis muscle dis-
plays a peak at about 20 Hz, which is in the center of the beta  band28. Yilmaz et al. further argue that low-pass 
filtering should be set as high as 1500 Hz, far from the common 70 Hz cut-off, in order to avoid single motor 
units being smoothened into “beta-like” activity. Indeed, due to the phenomenon of volume conduction, EEG 
is more susceptible than MEG to activity generated by muscle  tissue30, which serves to explain the discrepancy 
compared to Riaz et al. Volume conduction also results in lower spatial specificity for neural sources. Thus, the 
oscillatory response may mix with other nearby sources including more frontal and parietal areas of the cortex, 
which is not the case for source-localized MEG. The source localization in MEG makes powerful use of spatial 
filtering and information from individual MRIs. While source localization can, in principle, be done with EEG, 
it is not as precise, relies on more assumptions (e.g. regarding tissue conductivities) and is preferably done with 
a larger number of  channels32,33. Here we wanted to work towards an easily accessible instrument that could 
be incorporated into clinical routine, hence a common 19 channel montage. The streaky appearance of short 

Figure 1.  (A) Baseline corrected spectrograms of control (Baseline) period and post-stimulus (Pulses 1–3) 
neural oscillatory responses for all participants, divided into inhibitors (n = 18, top row) and non-inhibitors 
(n = 19). (B) Time-series evolution of average upper (20–30 Hz, top row) and lower (13–20 Hz, bottom row) 
beta oscillatory power for inhibitors (red) and non-inhibitors (blue). Saturated lines show group mean ± SEM, 
faded traces show individual means. The green colored bars on top show clusters (before correction for multiple 
comparisons) of significant differences between groups: multiple independent 2-sample T tests, p < 0.05.
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intermittent, highly variable shifts in power found in the upper beta and gamma range seem consistent with 
sporadic muscle potentials. Furthermore, during data analysis and inspection of individual spectrograms of the 
response to stimulation, a notable interindividual variability was observed for peak responses. Thus, targeting 
of the lower beta spectrum may increase specificity in EEG, but will possibly also reduce sensitivity.

It is not beyond reason that the very long and demanding sessions of simultaneous recordings may have 
contributed with undesirable variability due to diminished wakefulness. Because cortical activity is influenced by 
wakefulness and it has previously been shown that K-complexes in sleep stage 2 can give rise to MSNA  bursts34,35, 
we searched for and excluded trials that indicated light sleep. The conventional clinical characterization of sleep 
stage 1 is based on judging levels of alpha (8–12 Hz) activity during 20–30 s  periods26. It is notoriously difficult 
to reliably classify and more importantly, participants were instructed to keep their eyes open while alpha is 
normally mainly visible with eyes closed. We would also have required more time between trials for this approach 
to work well. Instead, we opted for more reliable indices combined with a safety margin around each marked 
trial (cf Methods). Seven of the included participants had some indication of sleep and the number of rejected 
trials, including margins, ranged from 3 to 32 with a median of 10 (the most extreme case was of good quality 
during the first half while the second half was dropped) and the average number of rejected trials due to sleep 
was 2.2 (SD 6.1), when measured across all participants.

Limitations. While this study is limited by the exclusion of female participants, it is important to recognize 
the different hemodynamic and sympathetic activity profiles of men and  women36. We have chosen to focus first 
on men because they are at higher risk earlier in life. However, several female cohorts have been examined with 
the same protocol in our lab and results are being prepared for publication.

The fact that a slightly different stimulus protocol was used during nerve recording in our auxiliary cohort 
may be seen as a limitation, but since we calculate MSNA-inhibition based on the first stimulus in stimulus trains, 
we assume this issue has little or no impact. The stimulus regime for eliciting cortical responses was identical in 
both cohorts, and the circumstances during recording in a MEG-chamber and our microneurography lab are 
similar. The main difference was the longer duration of the simultaneous registrations used in our main cohort, 
which turned out to be taxing for some individuals as it resulted in diminished wakefulness.

Our limited EEG analysis exploration could be regarded as a limitation. However, the primary aim of this 
work was to explore the possibility of transferring the MEG-derived classification model for non-invasively 
characterizing sympathetic response profiles to the more clinically-accessible EEG. The analysis we performed 
herein was thus purposefully limited in scope to match that which we utilized successfully on our previous MEG 
data. It is also worth mention that we have attempted a variety of more complicated AI-based methods (includ-
ing data augmentation, long short term memory, convolutional, and feedforward neural networks) to classify 
our previous MEG data related to MSNA, but to no avail. Because the EEG data obtained herein showed weaker 
correlations to MSNA than we have previously reported with MEG data, we elected not to pursue the develop-
ment of AI-based classification methods on this EEG data.

Conclusions
The tendency for a relationship between increased spectral power in the beta band and significant MSNA-
inhibition can be observed in EEG. While the analysis performed herein is not exhaustive, it was based on 
promising MEG-results. Because EEG-detected beta oscillations are relatively more vulnerable to myogenic 

Figure 2.  (A) Spearman correlation between individual MSNA-inhibition and average oscillatory power within 
the lower beta band (13–20 Hz) and 0.5–1.2 s post stimulus in pulse 3 (r = 0.38, p = 0.021); dashed vertical line 
shows cutoff between inhibitors and non-inhibitors; horizontal line shows optimal threshold for binary classifier. 
(B) Receiver-operating-characteristic (ROC) performance curve of the binary classifier. Each step represents 
a different meaningful threshold and the threshold with the optimum trade-off between sensitivity and FPR is 
marked. THR optimum threshold (dB), AUC  area under the curve, SEN sensitivity, FPR false positive rate.
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noise (as compared to MEG), a more complicated experimental and/or analysis approach is therefore required 
if EEG-based measurements are to be utilized as a reliable and robust non-invasive surrogate method reflecting 
defense-related sympathetic inhibition in clinical routine. MEG thus remains as a more straightforward method 
for further research in the field due to its good spatial precision and excellent temporal resolution. Although the 
availability of MEG is somewhat limited at present, there are projects racing towards engineering a more accessi-
ble next generation  system37,38. Our long-term aim with studying these defense-related MSNA responses is, for us 
and others, to explore the relationship between sympathetic defense reactions to external stimuli and circulatory 
homeostasis on a grander scale. The fact that these sympathetic responses have been shown to not be genetically 
 determined22 suggests that there is potential to influence them in a homeostatically favorable direction.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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