
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9525  | https://doi.org/10.1038/s41598-023-36750-9

www.nature.com/scientificreports

The effect of carbon price on low 
carbon innovation
Bernardo Cantone 1*, David Evans 1 & Andrew Reeson 2

Whilst many governments have implemented carbon pricing to provide firms with a greater financial 
incentive to develop low carbon technologies, the effect of the carbon price on the level of low carbon 
innovation remains unclear. In this study we develop an empirically grounded model of firms’ carbon 
price expectations and innovation processes. We use this model to show that a 1 USD increase in the 
expected future carbon price is associated with a 1.4% increase in the level of patenting in low carbon 
technologies, based on data for countries participating in the EU emissions trading system. We also 
find that firms gradually update their expectations of the future carbon price in response to recent 
price changes. Our findings indicate that higher carbon prices provide an effective incentive for low 
carbon innovation.

The transition towards a lower carbon economy requires the development and adoption of low emission tech-
nological  innovations1–5. This process is already underway, with the unit costs of several low emission technolo-
gies such as photovoltaics, onshore and offshore wind, and EV batteries having fallen continuously over recent 
 years6. Despite the technological advancements in these areas, further technological innovation is required to 
curb rising global  emissions7. In recognition of this requirement, governments have implemented a range of 
policies, regulations, and R&D investments to promote the development of new low emission  technologies1–3,8.

Carbon pricing is one of the primary mechanisms through which governments provide a financial incen-
tive for firms to invest in developing low emission  technologies9. Carbon pricing creates this incentive by 
increasing firms’ demand for low emission technologies to reduce the costs of their carbon  emissions10,11. This 
increased demand for low emission technologies provides a greater potential reward for innovators who suc-
cessfully develop these technologies, which in theory induces a higher level of research and development in the 
 technologies12.

In recent years several countries and regions around the world have adopted carbon pricing mechanisms such 
as emissions trading systems (ETS) and carbon  taxes5. One of the largest schemes in terms of coverage is the EU 
ETS, which has been in operation since 2005 and covers around 40% of the EU’s greenhouse gas  emissions13. The 
EU ETS operates in all 27 EU countries along with Iceland, Liechtenstein, and Norway (EEA-EFTA states) and 
covers the energy, manufacturing, and aviation sectors, with participation mandatory for most firms operating 
in these sectors.

Despite the theoretical prediction that higher carbon prices lead to greater investment in the development of 
low emission  technologies14, there is only limited empirical evidence of the relationship between carbon prices 
and low carbon innovation. Econometric analysis shows that the EU ETS increased low-carbon innovation (i.e., 
patenting) in regulated firms versus unregulated firms by up to 10%12; however, low carbon prices might weaken 
this  effect15. Other studies of the EU ETS find only partial evidence of the carbon price having an effect on low 
carbon  innovation12,16–18; these studies focus on only a handful of firms and sectors during the two initial ETS 
phases (2005–2012), in which grandfathering tended to hamper low carbon  investments19. Similarly, studies of 
the Chinese ETS show mixed findings, with some demonstrating that the ETS inhibited the development of low 
carbon technologies in the short-term20, whilst others show a positive  impact21,22. Despite the widespread and 
increasing adoption of carbon pricing, studies are yet to establish the link between changes in the carbon price 
and the level of low carbon innovation over time.

This study tests the theoretical prediction that higher carbon prices cause firms to increase their levels of low 
carbon innovation in the short-to-medium run. To test this prediction, we use the rate of patenting in low carbon 
technologies as a proxy indicator of the level of innovation in these technologies. We also assume that each firm 
expects the future carbon price to be a moving average of recent carbon prices, as observed in studies of agents’ 
expectation formation processes in asset  markets23–25. We then estimate the relationship between firms’ carbon 
price expectations in period t  and the low carbon technology patenting rate two years later, using data on all 

OPEN

1Commonwealth Scientific Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, 
Australia. 2Commonwealth Scientific Industrial Research Organisation (CSIRO), 101 Clunies Ross St, Black 
Mountain Site, Canberra, ACT  2601, Australia. *email: Bernardo.cantone@csiro.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36750-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9525  | https://doi.org/10.1038/s41598-023-36750-9

www.nature.com/scientificreports/

patents lodged in EU ETS member countries. Here, in line with prior research we assume a two-year lag between 
firms’ decisions to invest in low carbon technologies and the lodging of patent applications for these technologies 
(if the investment is successful)21,22. We use this model to infer whether higher carbon prices, through their effect 
on firms’ price expectations, lead to higher levels of low carbon innovation. Measuring these short-to-medium 
run dynamics between the carbon price, price expectations, and low emission technology development is an 
important step in understanding the extent to which carbon pricing can drive the technological shift required 
for the transition to a low carbon economy.

The rest of this article is structured as follows. The Results section presents our model of firms’ price expec-
tations, decision-making and innovation processes which we use to link the carbon price to firms’ low carbon 
patenting activity. This section then applies this model to European carbon price and patenting data to estimate 
the relationship between the carbon price and the level of patenting in low carbon technologies. The Discus-
sion section summarizes our main findings and their implications and provides suggestions for further related 
research. Finally, the Methods section details the data and modelling methods we have used in the analysis.

Results
A model of firms’ decision‑making and innovation processes. We develop an empirically grounded 
model of firms’ decision-making and innovation processes to represent the mechanism through which the car-
bon price affects the level of patenting in low carbon technologies. This model comprises a three-step process. 
First, recent carbon prices influence firms’ expectations of the future carbon price. Second, these expectations of 
the future carbon price influence firms’ decisions about whether to invest in developing low carbon technologies. 
Third, if these investments are successful, firms register patents for the new technologies they have developed. 
Each step of this process is detailed below.

Step 1: carbon price expectations. In step 1 of our model, firms update their expectation of the future carbon 
price in response to the latest carbon price. In month t  firms’ expectation of the future carbon price p̃t is an 
exponentially weighted moving average of their prior price expectation p̃t−1 and the current price pt:

The weight 0 ≤ α ≤ 1 determines the size of the firms’ update to their price expectations in response to pt . 
Under this process, each firm has an existing price expectation p̃t−1 , observes the new price pt , and then updates 
its price expectation in the direction of pt.

Prior research has shown that people rely on this type of anchoring and adjustment process to update their 
estimates of unknown quantities in a range of  contexts26. Experimental studies have found that agents in asset 
markets and repeated auctions typically anchor their price expectations at a certain level and then update these 
expectations in the direction of the latest price  change23–25,27, and that the above model accurately captures this 
 process23,27. Further, computational studies of dynamic markets have used this model to represent agent behav-
iour and shown that it produces empirically accurate aggregate  outcomes28,29.

Implementing this model requires setting a value for α . Whilst to our knowledge there are no studies on the 
process through which firms update their expectations of the longer-term carbon price over time, research on 
investors’ price expectations in similar contexts can inform the choice of α . Experimental studies have shown 
that the above model with α = 0.65 provides a good fit for investors’ expectations of an asset’s price two years 
into the future when investors update their price expectations  annually23,27. Since the firms in our model update 
their price expectations monthly, we set α as the monthly equivalent of this value. One simple way of doing this 
is to set α to make the weight assigned to the latest month’s price one-twelfth of the weight assigned to the latest 
year’s price in the annual updating process: α = 0.65/12 ≈ 0.05 . Another approach is to set α to make the sum 
of the weights for the latest 12 months as at the current month equal to 0.65, which gives α ≈ 0.08 (see Methods 
section for details). Based on these calculations, we use α = 0.05 for our baseline model and α = 0.1 for our 
secondary model. Further, due to our uncertainty about how the experimental findings on price expectations 
translate to our study’s setting, we also test models with α ∈ {0.02, 0.2, 0.5}.

Step 2: investment decision. Empirical and theoretical studies of firm decision-making indicate that financial 
return is the central consideration in firms’ decisions about whether to invest in developing new low carbon 
 technologies30,31. According to a prior model of firms’ low carbon innovation decisions, a firm invests in develop-
ing a new low carbon technology if the expected payoff exceeds the cost of the  investment30. This expected payoff 
is a function of the expected carbon price and the probability of a successful  investment30. If this probability of 
success and the cost of the investment remain constant, then increases in carbon price expectations lead to firms 
increasing their investments in new low carbon technologies.

Under our model, in each month t  each firm decides whether to invest in developing new low carbon tech-
nologies. Based on the above decision-making process, higher expectations of the future carbon price p̃t lead to 
firms in our model increasing their investments in developing new low carbon technologies.

Step 3: patent application. There is a time lag between a firm’s decision to invest in developing a new technol-
ogy and the firm’s patent application for that technology (if the investment was successful). Prior research has 
found an average lag of 1–3 years between investment and patent  application32–35. Based on this finding, our 
model assumes that if the firm’s investment in the new low carbon technology in month t  is successful, then the 
firm lodges a patent application for the new technology 2 years later (in month t + 24).

Carbon prices and patenting in low carbon technologies. Figure 1 shows the mean monthly EU ETS 
carbon price from its inception in 2005 to 2019. The figure shows that the carbon price has fluctuated signifi-
cantly over this period. The figure also shows the patenting rate in low carbon technologies for EU ETS countries 
from 1990 to 2019. We define this patenting rate as the count of patents for low carbon technologies as a pro-

p̃t = p̃t−1 + α
(

pt − p̃t−1

)
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portion of all patents lodged in EU ETS countries. Here, we use the technology classes in the European patent 
classification (ECLA) to define low carbon technologies (see Methods section). The figure shows that in EU ETS 
countries low carbon technology patents accounted for about 5% of all patents in the 1990s before increasing to 
over 11% in 2011 and then declining to 9% in 2018.

To test the prediction that higher carbon prices cause firms to increase their levels of innovation in low 
carbon technologies, we analyse the relationship between the carbon price and the patenting rate in low carbon 
technologies between 2005 and 2018. This is the period for which we have access to EU ETS carbon price data 
(available from 2005 onwards) and reliable patents data (the patents database is updated over time and the data 
from 2019 onwards are currently incomplete).

The effect of carbon prices on low carbon innovation. We use negative binomial regression models 
(1) to estimate the effect of firms’ expectation of the carbon price in month t  ( ̃pt ) on the rate of patenting in low 
carbon technologies in month t + 24 (rt+24) under different assumptions about price expectations (values of α ). 
Here, we use negative binomial regression models (with an offset term) because the response variable is a rate, 
and the data indicate that the rate’s variance exceeds its expectation (i.e., there is overdispersion), such that it 
can be well-approximated by the negative binomial distribution. Negative binomial regression models are the 
standard approach to modelling this type of  data36. Table 1 shows the regression estimates. The estimates show 
that in each model p̃t has a positive and statistically significant effect on rt+24 , supporting the hypothesis that 
higher carbon prices lead to increased innovation in low carbon technologies.

The regression estimates also indicate that model 2 with α = 0.05 has a smaller Akaike information criterion 
(AIC) value than the other models and therefore provides the best fit for the data. Figure 2 shows that this model 
explains much of the variation in the rate of low carbon technology patenting in EU ETS countries between 2007 
and 2018. According to this model, a 1 USD increase in the expected carbon price in month t  is associated with 
a 1.4% increase in the rate of low carbon patents in month t + 24 . The 95% confidence interval of this estimate is 

Figure 1.  The patenting rate (%) in low carbon technologies for the 31 EU ETS countries (solid black line) and 
four individual EU ETS countries, along with the mean monthly EU ETS carbon price (red dashed line).

Table 1.  Estimates of the negative binomial regression of rt+24 on p̃t for under different assumptions about 
price expectations (values of α).

Model 1 ( α = 0.02) Model 2 ( α = 0.05) Model 3 ( α = 0.1) Model 4 ( α = 0.20) Model 5 ( α = 0.50)

Intercept ( β̂0)
 − 2.571***  − 2.508***  − 2.446***  − 2.403*** -2.375***

(0.031) (0.019) (0.0017) (0.017) (0.016)

Price expectations p̃t ( β̂1) 0.020*** (0.002) 0.014*** (0.001) 0.010*** (0.001) 0.007*** (0.001) 0.005*** (0.001)

Observations 144 144 144 144 144

AIC 1793.2 1764.9 1790.7 1816.5 1830.9
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1.1–1.7%. We have applied the Bonferroni correction to this confidence interval to account for our simultaneous 
testing of five hypotheses (one for each  model37).

Figure 3 shows model 2’s fitted (line) and the actual (points) low carbon patenting rates in month t + 24 across 
different expected carbon prices in month t  . The figure shows that carbon price expectations vary from 7.2 USD 
to 22.9 USD across the years in our sample. Lower expected carbon prices of 7.2 USD are associated with low 
carbon technology patenting rates of 9.0% two years later, whilst higher expected carbon prices of 22.9 USD are 
associated with low carbon technology patenting rates of 11.2% two years later. Since the mean monthly number 
of patents lodged by EU ETS countries is 17,453 for the years in our sample, model 2 indicates that in an average 
year an expected carbon price of 7.2 USD is associated with 1,572 patents for low carbon technologies two years 
later, whilst an expected carbon price of 22.9 USD is associated with 1,957 low carbon patents two years later. 

Figure 2.  Model 2’s fitted and the actual low carbon technology patenting rates between 2007 and 2018.

Figure 3.  The expected and actual low carbon technology patenting rates in month t + 24 across different 
expected carbon prices in month t  under model 2.
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These estimates indicate that moderate increases in carbon price expectations are associated with substantial 
increases in the number of patents for low carbon technologies.

As noted above, model 2 with α = 0.05 provides the best fit for the data (lowest AIC) out of the five models. 
This value of α aligns with the values observed in experimental studies of investor behaviour in asset  markets23,27. 
At α = 0.05 firms only gradually update their expectations of the longer-term carbon price in response to the 
latest month’s price. That is, firms’ price expectations are sticky and depend on the carbon prices they have 
observed across several preceding months. Given the volatility of the monthly carbon price (see Fig. 1), this 
type of behaviour seems reasonable: firms have likely learned that rapidly updating their price expectations in 
response to the latest price fluctuation yields inaccurate expectations of the longer-term price.

Excluding low‑quality patents. In several industries firms develop large patent portfolios for very minor 
inventions to pursue licence fees (via litigation) from other firms who might be using or selling the claimed 
 inventions38,39. Other firms have responded to these activities by developing their own portfolios of minor inven-
tions to deter litigation from other firms through the threat of a reciprocal  suit40. As such, changes in the rate 
of patenting in low carbon technologies over time might reflect this strategic behaviour by firms, rather than 
genuine changes in low carbon innovation.

To address this concern, we perform further analysis where we exclude low-quality patents (patents with 
zero citations within three years of registration) from the data set on the assumption that they potentially reflect 
the above strategic behaviour by firms. We then repeat the modelling and analysis on this reduced data set. This 
process produces similar estimates and the same conclusions as our analysis of the full data set (see supplemen-
tary information for the results).

Discussion
We use an empirically grounded model of firm behaviour to show that higher carbon prices increase firms’ 
expectations of the future carbon price, leading to higher levels of patenting in low carbon technologies. Based 
on this model, a 1 USD increase in firms’ carbon price expectations is associated with a 1.4% increase in the 
number of patents for low carbon technologies two years later in EU ETS countries. This finding suggests that 
carbon pricing provides an effective incentive for low carbon innovation, and that significant changes in the 
carbon price have a substantial effect on the level of low carbon innovation.

Our analysis adds to the growing empirical research on the carbon price’s impact on innovation and in par-
ticular to those studies looking at patents as form of  innovation12,41. Prior research found that regulated firms 
under the EU ETS increased their levels of patenting in low carbon technologies relative to unregulated firms, 
indicating that the scheme’s coverage is an important driver of low carbon innovation 12. We show that changes 
in the carbon price over time have a significant effect on the aggregate level of low carbon patenting across all 
firms in EU ETS countries, indicating that the price level is also a key driver of low carbon innovation.

Our model suggests that firms consider the carbon prices in the current and prior months in forming their 
expectations of the future price. As such, increases in the carbon price gradually affect firms’ price expectations 
and their decisions to invest in low carbon technologies over time. An implication of this finding is that the level 
of innovation in low carbon technologies is robust to short-run fluctuations in the carbon price. A further impli-
cation is that longer-run troughs or peaks in the carbon price, such as the trough in the EU ETS price between 
2012 and 2017 (see Fig. 1), take time to filter through to firms’ price expectations and investment decisions.

The aggregate patents data only allow us to infer the average rate at which firms update their price expecta-
tions. We expect this rate to vary significantly across firms, with some firms rapidly updating their expectations 
in response to the latest carbon price and others updating their expectations far more gradually. As a result, it is 
likely that the trough in the EU ETS carbon price between 2012 and 2017 (see Fig. 1) caused many of the rapidly 
adapting firms (and/or their financiers) to revise their price expectations to very low levels and significantly 
reduce or cease investing in the development of low carbon technologies. Meanwhile, the gradually adapting 
firms likely had less disruption to their investment decisions. The average rate at which firms update their price 
expectations that we infer from the aggregate data masks this heterogeneity in behaviour across firms.

We identify four important areas for further research. First, we require a deeper understanding of the types 
of low carbon innovation that firms undertake when the carbon price rises. An analysis of patent abstracts and 
citations could reveal whether higher carbon prices induce greater incremental innovation in existing tech-
nologies, increased exploration of emerging technology areas, or both. This information could improve our 
understanding of whether higher carbon prices can induce the large technological shift required to support the 
transition to a low carbon economy.

Second, the analysis in this study could be expanded to explore the link between the carbon price and other 
forms of low carbon innovation or knowledge. Patents represent only one form of knowledge about new low 
carbon technologies. Academic studies represent another form of this knowledge. Estimating the relationship 
between the carbon price and the number of research articles about new low carbon technologies would reveal 
whether the carbon price has a broader effect on low carbon technology development beyond that observed in 
patents data.

Third, our model is limited to estimating the link between the carbon price and firms’ level of low carbon 
innovation at the aggregate level. Expanding our model to capture the range of firm characteristics that affect 
decisions to invest in developing low carbon technologies, such as the firm’s size and financial status, would 
provide a richer understanding of the effect of the carbon price on low carbon innovation and how this effect 
varies across different firms. This type of analysis would require linking patents data to other sources of data 
about the firms.
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Fourth, research exploring how firms engaged in low carbon innovation update their carbon price expec-
tations over time could be used to improve the model of firms’ decision-making used in this study. Based on 
experimental and observational studies of asset markets, we assume that firms update their expectations via 
an exponentially weighted moving average process. Whilst we show that this assumption explains much of the 
variation in the rate of low carbon technology patenting in EU ETS countries between 2007 and 2018, studying 
firms’ actual decision-making processes in this market could validate our assumption, reveal that firms follow a 
different process, or show that firms follow a variety of processes. These findings could then be used to develop 
a decision-making model tailored to this market.

Methods
Data. We obtain patents data from the European Patents Office’s (EPO) worldwide patents database PAT-
STAT 42. We assign each patent in the database to a country based on the country of residence of the first appli-
cant, which is available for 47% of the database’s patents. We then base our analysis on data for the 31 EU ETS 
member countries.

All patents filed at the EPO are categorized using the European patent classification (ECLA). This classifica-
tion includes a technological class ‘Y02’ pertaining to “technologies or applications for mitigation or adaptation 
against climate change”. This class provides the most accurate tagging of climate change mitigation patents avail-
able today, represents the international standard for low-carbon  innovation43, and has been used to analyse trends 
in low carbon  patenting15. Table 2 provides codes and descriptions of the 8 technological subclasses within Y02. 
We define a low carbon technology patent as any patent tagged with at least one Y02  subclass12,43.

The patents database provides each patent’s citations (by other patents) along with the dates of these citations. 
We define any patent with zero citations within three years of registration as potentially being a low-quality pat-
ent. We then exclude these patents in our analysis in the supplementary information. The descriptive statistics 
of our data can be seen in Table 3.

We use ETS price data for the period 2007–2018 in our analysis. We obtain ETS allowance price (tCO2-eq) 
data for 2008–2018 from the International Carbon Action  Partnership44. For the period 2005–2007 (phase 1 of 
the ETS) we use the price data from the European Environmental  Agency45.

The ETS did not allow firms to carry over allowances from phase 1 (2005–2007) to phase 2 (2008–2012). 
As a result of this inability to carry over allowances along with an oversupply of allowances to emit in 2007, 
the price of an allowance to emit in 2007 decreased to low levels. At the same time, the price of an allowance 
to emit in 2008 onwards remained higher (both types of allowances were traded throughout 2007). Since our 
analysis focuses on price expectations, we use the price of future allowances (for 2008 onwards) as the carbon 
price throughout 2007. Note that this type of divergence between prices for allowances in different years does 
not arise at other points in the time series as the ETS has enabled firms to carry over allowances from one year 
to the next in subsequent phases.

Table 2.  Low-carbon technology patents classes (Y02) and subclasses.

Class Description

Y02 Technologies or applications for mitigation or adaptation against climate change

Y02A Technologies for adaptation to climate change

Y02B Climate change mitigation technologies related to buildings, e.g., Housing, house appliances or related end-user applications

Y02C Capture, storage, sequestration, or disposal of greenhouse gases [GHG]

Y02D Climate change mitigation technologies in information and communication technologies [ICT], i.e., information and communica-
tion technologies aiming at the reduction of their own energy use

Y02E Reduction of greenhouse gas [GHG] emissions, related to energy generation, transmission, or distribution

Y02P Climate change mitigation technologies in the production or processing of goods

Y02T Climate change mitigation technologies related to transportation

Y02W Climate change mitigation technologies related to wastewater treatment or waste management

Table 3.  Descriptive statistics of the patents data (for 2007–2018) and carbon price data (for 2005–2018).

Variable Obs Mean Std. Dev Min Max

Total low carbon patents ( t + 24) 144 1,772 772 328 3,539

Total patents ( t + 24) 144 17,453 7,082 3,883 32,911

Low carbon patents rate ( t + 24) 144 10.00% 0.96% 7.86% 13.00%

Total high quality low carbon patents ( t + 24) 144 280 189 1 743

Total high quality patents ( t + 24) 144 2,437 1,543 29 5,737

High quality low carbon patents rate ( t + 24) 144 10.80% 2.03% 1.96% 15.20%

ETS price (USD) ( t ) 168 14.50 7.97 4.59 41.80
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Regression model, statistical inference, and model selection. We use a negative binomial regres-
sion model to test the prediction that higher expected carbon prices p̃t lead to higher rates of patenting in low 
carbon technologies two years later rt+24 . We fit the model:

where E
[

yt+24

]

 is the expected count of patents for low carbon technologies in month t + 24 for EU ETS coun-
tries and zt+24 is the total count of patents in month t + 24 for EU ETS countries. Here, we include the term 
log (zt+24) in the model as an offset variable to transform the (log of the) response variable into the rate of low 
carbon patents rt+24

If our prediction that higher (lower) p̃t lead to higher (lower) rt+24 =
E[yt+24]
zt+24

 is correct, then we expect our 
estimates to show β̂1 > 0.

In our analysis we fit five regression models with different assumptions about price expectations: 
α ∈ {0.02, 0.05, 0.10, 0.20, 0.50} . In each model we test the null hypothesis that β1 ≤ 0 (i.e., p̃t does not have 
a positive effect on rt+24 ) against the alternative hypothesis that β1 > 0 (i.e., p̃t has a positive effect on rt+24 ). 
Simultaneously testing five hypotheses increases the probability of making a false discovery (or type I error). 
To control this probability, we apply the Bonferroni correction such that we only reject each null hypothesis if 
p ≤ θ

5 , where θ is the desired overall significance level. This process ensures that the family-wise error rate (the 
probability of making one or more false discoveries) does not exceed θ . Similarly, we adjust the confidence level 
for each estimate of β1 to the level of 1− θ

5 to satisfy the overall desired confidence level of 1− θ.
We use the AIC to select the best fitting model of the five models. Each model’s AIC is given by:

where k is the number of estimated parameters in the model and L̂ is the maximized value of the model’s likeli-
hood function. Since all five models have k = 2 , our procedure of selecting the model that minimizes the AIC 
is equivalent to selecting the model that maximizes the model’s likelihood function.

Carbon price expectations. The expected future carbon price p̃t is the predictor variable in our regression 
model. Each firm’s p̃t is given by:

where p̃t−1 is the firm’s expectation of the future carbon price in month t − 1 and pt is the carbon price in month 
t  . We initialize price expectations at p̃1 = p1 in the first month of the EU ETS’s operation (January 2005) and 
then use the above equation to update expectations in each subsequent month.

The weight 0 ≤ α ≤ 1 determines the responsiveness of the firm’s price expectations to the current price. We 
found that the model with α = 0.05 provided the best fit for the data (lowest AIC). We further explored the effect 
of α on the model’s fit by computing the AIC for models with α ∈ {0.001, 0.002, . . . , 0.500} . Figure 4 shows that 
α = 0.041 provides the lowest AIC, with values between 0.025 and 0.070 providing similarly low AIC values. 
These results indicate that firms consider both the current and prior carbon prices in forming their expectations 
about the future carbon price, gradually adapting their price expectations to price changes over time.

In our model of price expectations, we use the value α = 0.65 from experimental studies where investors 
update their expectations annually to derive an equivalent monthly value. As noted earlier, one approach we 
use to do this is to set α to make the sum of the weights for the latest 12 months as at the current month equal to 
0.65. To derive this value for α , we first note that as at month T the firm’s expectation of the future carbon price 
under our model can be expressed  as46

As such, the sum of the weights for the latest 12 months as at month T is given by 
11
∑

j=0
α(1− α)jThen setting 

11
∑

j=0
α(1− α)j = 0.65 and solving for α yields our equivalent monthly value of α = 0.08.

log
(

E
[

yt+24

])

= β0 + β1p̃t + log (zt+24)

(1)log

(

E
[

yt+24

]

zt+24

)

= β0 + β1p̃t

AIC = 2k − 2 log
(

L̂
)

p̃t = p̃t−1 + α
(

pt − p̃t−1

)

p̃t+1 =

T−1
∑

j=0

α(1− α)jpT−j + (1− α)Tp0
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Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository [https:// 
github. com/ Bernaz/ ETS].
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