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Detecting common coccinellids 
found in sorghum using deep 
learning models
Chaoxin Wang 1, Ivan Grijalva 2, Doina Caragea 1* & Brian McCornack 2

Increased global production of sorghum has the potential to meet many of the demands of a growing 
human population. Developing automation technologies for field scouting is crucial for long-term and 
low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become 
an important economic pest causing significant yield loss across the sorghum production region in 
the United States. Adequate management of SCA depends on costly field scouting to determine pest 
presence and economic threshold levels to spray insecticides. However, with the impact of insecticides 
on natural enemies, there is an urgent need to develop automated-detection technologies for their 
conservation. Natural enemies play a crucial role in the management of SCA populations. These 
insects, primary coccinellids, prey on SCA and help to reduce unnecessary insecticide applications. 
Although these insects help regulate SCA populations, the detection and classification of these insects 
is time-consuming and inefficient in lower value crops like sorghum during field scouting. Advanced 
deep learning software provides a means to perform laborious automatic agricultural tasks, including 
detection and classification of insects. However, deep learning models for coccinellids in sorghum have 
not been developed. Therefore, our objective was to develop and train machine learning models to 
detect coccinellids commonly found in sorghum and classify them according to their genera, species, 
and subfamily level. We trained a two-stage object detection model, specifically, Faster Region-based 
Convolutional Neural Network (Faster R-CNN) with the Feature Pyramid Network (FPN) and also one-
stage detection models in the YOLO (You Only Look Once) family (YOLOv5 and YOLOv7) to detect and 
classify seven coccinellids commonly found in sorghum (i.e., Coccinella septempunctata, Coleomegilla 
maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla v-nigrum, 
Scymninae). We used images extracted from the iNaturalist project to perform training and evaluation 
of the Faster R-CNN-FPN and YOLOv5 and YOLOv7 models. iNaturalist is an imagery web server used 
to publish citizen’s observations of images pertaining to living organisms. Experimental evaluation 
using standard object detection metrics, such as average precision (AP), AP@0.50, etc., has shown 
that the YOLOv7 model performs the best on the coccinellid images with an AP@0.50 as high as 97.3, 
and AP as high as 74.6. Our research contributes automated deep learning software to the area of 
integrated pest management, making it easier to detect natural enemies in sorghum.

Pest management is a strategy used to control any living organism that poses a risk to our food, fiber, and health 
security. It has played an essential role in achieving the current food supply, and its role will continue to be critical 
in any agricultural production  system1. Since the beginning of agricultural development, growers have had to 
compete with harmful insects, collectively called ‘pests’2. These organisms can reduce crop yields and fruit quality, 
damage plants, serve as disease vectors, and contaminate food crops. Different strategies have been developed 
to control arthropod pests in agriculture, including chemical, cultural, biological (e.g., plant resistance, natural 
enemies, etc.), and mechanical  methods3. There is much concern about the use of chemicals for pest control 
due to their cumulative non-sustainable adverse effects on the  environment4–6, particularly non-target effects on 
beneficial organisms, including natural enemies (e.g., predators, parasitoids, microorganisms) and  pollinators7,8, 
and the potential for the development of pesticide  resistance9,10.

A valuable tool for addressing this threat is integrated pest management (IPM). IPM was developed in the 
early 1970s as a pest control strategy that promotes sustainable agriculture with a strong ecological  basis11. IPM 
is an approach that incorporates various tactics to control all classes of pests (e.g., insects, pathogens, weeds, ver-
tebrates) to create an ecologically and economically efficient production  system11. These tactics include biological 
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control, cultural practices, host-plant resistance, genetic manipulation, and  pesticides3,12,13. IPM tactics have been 
applied in different crops, including sorghum production. Sorghum [Sorghum bicolor (L.) Moench] is the fifth 
most valuable cereal crop  globally14. In the U.S., this crop had a value of more than $1 billion and was planted 
on 5.26 million acres in  201915. Sorghum production in the world is used mainly for human consumption and 
animal feed; in the U.S., it is used as livestock feed and turned into ethanol. However, the current production of 
sorghum faces significant pest management challenges. Since 2013, with the outbreak of Melanaphis sacchari 
(Zehntner) (Hemiptera: Aphididae), commonly named sugarcane aphid (SCA), different tactics have been devel-
oped, including scouting protocols, pesticides treatment guides, and host plant resistance programs to prevent 
yield losses in  sorghum16.

Proper identification and classification of insect pests at an early stage are important tasks in crops because 
pest management strategies (i.e., pesticides and cultural control methods) can be costly and overused when 
misidentification happens. However, insect pests are not the only factor that affects our understanding of pest 
management in agriculture. Sorghum farmers encounter other beneficial insects that need to be identified and 
classified automatically to better understand the pest and beneficial insects interactions (i.e., predation) dur-
ing pest scouting in fields. One of the major communities feeding on SCA are lady beetles (Coleoptera, Coc-
cinellidae). Common genera, species, and subfamily levels of coccinellids that we can find on sorghum plants 
include Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia 
convergens, Olla v-nigrum, and the subfamily  Scymninae17. Technological advances in artificial intelligence and 
machine learning related to how living organisms can be most efficiently identified and classified with the small-
est use of labor and time to increase precision agriculture represent a major focal point of modern agricultural 
production and research.

Machine learning is a sub-field of artificial intelligence, in which labeled data can be used to train a model, and 
the trained model can be subsequently used to make inferences and predictions on new incoming data without 
additional programmatic  effort18. Convolutional neural networks (CNN)19 represent a type of machine learning 
model, more specifically, a deep learning model, which can be used to analyze visual imagery. CNNs excel at a 
variety of computer vision tasks, such as image classification, object detection and localization, among others. 
Object detection refers to the task of identifying and classifying instances of objects of interest in images or video 
 frames20. CNN-based approaches for object detection extract features from the input image and use the features 
to perform two main tasks: 1) detect regions of interest (ROI) as bounding boxes that contain instances of objects 
in the image (a.k.a., object identification); and 2) classify ROIs into an arbitrary number of classes (a.k.a., object 
classification). Depending on how these two tasks are performed, object detection approaches can be classified 
as one-stage detectors and two-stage  detectors21. One-stage detectors perform both tasks simultaneously in one 
stage, and include models in the YOLO  family22–28, among others. Two-stage detectors identify ROIs in a first 
stage, and subsequently classify the ROIs and refine their bounding boxes in a second stage. Two-stage detectors 
include models such as Faster R-CNN29, Cascade R-CNN30 and  FPN31. Traditionally, two-stage detectors have 
been more accurate than one-stage detectors, while the one-stage detectors have been faster and more suitable 
for use in practical applications that require real-time object  detection32. Remarkably, combinations of the Faster 
R-CNN29 and  FPN31 networks have achieved competitive results on popular benchmark  datasets21,33. However, 
some of the recent YOLO  models27,28,34 have produced state-of-the-art performance both in terms of accuracy and 
speed on benchmark datasets, with YOLOv7 being known to produce the best results at the end of year  202228.

Deep learning software for object detection can be designed in a user-friendly manner and allows for the 
training of models that can be applied to solve agricultural  challenges18. Recent studies using deep learning 
neural networks for object detection have shown that it is possible to develop models for automated disease 
identification and insect  recognition35–37. Some studies have focused on the use of object detection approaches to 
identify and classify pests based on images of yellow sticky traps and other types of insect  traps38–47. For example, 
Salamut et al.40 focused on detecting cherry fruit flies based on yellow sticky trap images. Several one-stage and 
two-stage object detection approaches were compared, including Faster R-CNN and  YOLOv526 using a dataset 
that contains 1,600 annotated images. The best results overall were obtained using a Faster R-CNN model with 
lightweight  MobileNet48 as the backbone network. Specifically, the Faster R-CNN model had average precision 
AP@.50 of 0.88% as compared to the best YOLOv5 model, which had an AP@0.50 of 0.76%. Wang et al.42 pub-
lished a dataset (called Pest24) of approximately 25,000 pest trap images that contain 24 field pests. They trained 
several object detection models on this dataset, including Faster R-CNN (with VGG-16 as the backbone network), 
Cascade R-CNN (with ResNet-50-FPN) and  YOLOv324 (whose backbone is called Darknet-53). Experimental 
results showed that YOLOv3 had the best performance on this dataset, with an overall mean average precision 
(mAP@0.50) of 59.79% as compared to an mAP@0.50 of 57.23% for Cascade R-CNN and an mAP@0.50 of 
51.10% for Faster R-CNN. Li et al.38 used the Faster R-CNN model pre-trained on the COCO  dataset49 to detect 
small pests (whitefly and thrips) using a dataset of approximately 1,500 sticky trap images and showed that the 
model transferred from COCO is more accurate than the corresponding model trained directly on pest images.

Wang et al.50 adapted the Faster R-CNN model to make it easier to find small pests in light-trap images. The 
improved model used the attention  mechanism51 to focus on more predictive features, together with a sampling 
strategy for the region proposal network to address class imbalance and also an adaptive RoI selection to select 
best features from different levels of a pyramid network. Experimental results on a dataset (called AgriPest21) 
of approximately 25,000 images with 21 types of pests showed that the adapted model achieved a mAP of 78.7%, 
which was significantly better than the mAP of the baseline models included in the comparison study (both 
one-stage, e.g.  SSD52 and two-stage models, e.g., Cascade R-CNN30). Jiao et al.53 also used an adaptive feature 
fusion pyramid network to identify richer features for pest detection together with Faster R-CNN network (with 
ResNet50 as backbone) and obtained a competitive mAP value of 77.4% on the AgriPest21  dataset50. Zhang et al.44 
used strategies similar to those  in50,53 (i.e., attention mechanism to obtained better features, fusing features from 
a pyramid network) to adapt YOLO models to small pest detection tasks. Experimental results on the Pest24 
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 dataset42 showed that the adapted YOLO model (called AgriPest-YOLO) had better performance than Faster 
R-CNN, Cascade R-CNN and several  YOLOv425 and  YOLOv526 variants, producing an overall mAP@0.50 of 
71.3% and mAP@0.50 : 0.5 : 0.95 of 46.9%.

As opposed to the abovementioned studies that focused on images of trapped pests, other studies have focused 
on pest detection in the  wild54–59. Sava et al.60 experimented with Faster R-CNN and YOLO models for detecting 
the brown marmorated stink bug (i.e., Halyomorpha halys) in tree images. Experimental results on a dataset of 
images assembled from the the Maryland Biodiversity  Project61 showed that the YOLOv5m variant produced the 
best results, with an mAP of 99.2%, as compared to the Faster R-CNN which had an mAP of 89.1%. In contrast 
to that, Takimoto et al.54 showed that Faster R-CNN was better than YOLOv4 for detecting herbivorous beetles, 
specifically, striped flea beetle (i.e., Phyllotreta striolata) and the turnip flea beetle (i.e., Phyllotreta atra) in a set 
of images collected from the web and through fieldwork. Similarly, Ozdemir and  Kunduraci57 also found the 
Faster R-CNN network (with Inception-v362 backbone) to be better than YOLOv4 when used to detect and clas-
sify insects according to order level (using a dataset consisting of 25,820 training images and 1,500 test images). 
Butera et al.63 also showed that Faster R-CNN (with MobileNet-v348 backbone) represents an effective model for 
detecting beetle-type pests (specifically, Popillia japonica) and also for distinguishing them from other types of 
non-harmful but similar looking beetles (Cetonia aurata and Phyllopertha horticola), giving an overall mAP of 
92.66%. The dataset used contained 36,000 images collected from the web and photo sharing sites. Ahmad et al.64 
also used the web to assemble a dataset of 7,046 images which contain 23 types of pests. They experimented 
with a set of YOLO models and showed that YOLOv5-X gave the best results overall, with an mAP@0.5 value of 
98.3%, and an mAP@.50 : 0.05 : .95 value of 79.8%.

In addition to work on deep learning for automated pest identification, recent studies have also focused 
on identification of beneficial insects such as pollinators and natural  predators65–69, including Coccinellidae 
 beetles70,71. Ratnayake et al.66 used a hybrid approach that combines an object detection model (specifically, 
 YOLOv223) with a background subtraction technique to identify and track honeybees in wildflower clusters. The 
proposed approach (called HyDaT), which can track one insect at a time, was tested on a dataset consisting of 
22,260 video frames (with 17,544 bees visible) and it had a detection rate of 86.6%, as compared to a detection 
rate of 60.7% for YOLOv2. Ratnayake et al.72 extended the HyDaT  approach66 to make it is suitable for tracking 
multiple insects simultaneously. Their proposed approach (called Polytrack) uses YOLOv4 together with both 
foreground and background segmentation to identify and track honeybees. Experimental results on 39,909 
video frames, including 5,291 frames with honeybees, showed that Polytrack achieved values of 0.975 and 0.972 
for precision and recall, respectively, being superior to both HyDaT and YOLOv4 models used by themselves. 
Bjerge et al.69 assembled a dataset consisting of 29,960 beneficial insects in nine taxa (such as bees, hoverflies, 
butterflies and beetles) and used the dataset to study the usability of YOLO models to accurately detect and 
classify such insects. Experimental results showed that the YOLOv5 model had the best performance with an 
mAP@0.50 : 0.05 : 0.95 of 0.592, and a best F1-score of 0.932. Similarly,  Spanier68 assembled a dataset of approxi-
mately 17,000 imaged of pollinator insects of eight types (including bees and wasps, butterflies and moths, beetles, 
etc.) retrieved from the iNaturalist (inaturalist.org) and Observation.org databases. The best performing model, 
a variant of YOLOv5, achieved an overall accuracy of 0.9294 and F1-score of 0.9294. Bjerge et al.59 constructed 
a dataset of 100,000 annotated images containing small insects. The authors experimented with Faster R-CNN 
models and YOLOv5 models. To enhance the detection, they proposed a motion-informed-enhancement of 
the images. Experimental results showed that YOLOv5 achieved an mAP@0.50 value of 0.924, while the Faster 
R-CNN model achieved an mAP@0.50 value of 0.900.

In terms of coccinellid beetle detection, Venegas et al.71 used traditional image processing techniques (based 
on saliency maps, linear iterative clustering and active contour) to identify RoIs (bounding boxes) that can 
potentially contain coccinellids, and subsequently used a deep CNN to classify the RoIs as coccinellids or not-
coccinellids. The approach was evaluated on a dataset of 2,300 coccinellid beetle images assembled from the 
iNaturalist project in Ecuador and Colombia. The RoI detection approach had an accuracy of 92%, while the 
CNN model had an area under the curve (AUC) of 0.977. Similarly, Vega et al.70 used a CNN together with the 
weighted Hausdorff distance as a loss function to detect beetles in a dataset of 2,633 images similar to the ones 
used by Venegas et al.71, and reported a mean accuracy of 94.30%. While these works represent important first 
steps towards automated identification of coccinellid beetles (considered to be natural pest controllers), the 
realm of deep learning for object detection to automatically detect and classify coccinellids found in sorghum 
is largely unexplored.

The conventional manual identification of coccinellids requires expert skills and identification keys based on 
coloration and morphological characteristics. In contrast, existing automated tools based on digital technologies 
and imagery data do not employ state-of-the-art deep learning architectures and may not be very  accurate73. 
Thus, a vision-based automated system for image processing using deep neural networks needs to be researched 
for precise classification and identification of coccinellids to advance the integrated pest management area in 
sorghum. Towards this goal, we first assembled a dataset consisting of approximately 5,000 images retrieved from 
iNaturalist. The dataset assembled was used to study automated deep learning approaches to enable the detection 
and classification of coccinellids. We trained variants of the popular two-stage Faster R-CNN model, enhanced 
with FPN, a model referred to as Faster R-CNN-FPN. We also trained variants of the YOLOv5 and YOLOv7 
models. We choose to focus on the Faster R-CNN-FPN model, given that this model has shown best performance 
in some prior related  works40,54,57. As backbone CNN, we explored ResNet-50 and ResNet-101 given that these 
networks commonly lead to a good trade-off between accuracy and  speed74. Similarly, we selected YOLOv5 as 
another strong model to experiment with given its best performance in several prior  works59,64,69. Finally, we 
also choose to include YOLOv7 in our study, as it gives best performance on several benchmark  datasets28 and it 
has not been explored for insect detection (neither pests nor beneficial insects) in the IPM area. To summarize, 
our research contributes a dataset and effective deep learning models trained to detect and classify coccinellids, 
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including Faster R-CNN-FPN, YOLOv5 and YOLOv7 models. To the best of our knowledge, this is the first 
study to explore YOLOv7 for insect detection and classification. Our best models can potentially be installed 
and used on unmanned vehicles to automate the detection and classification of coccinellids in sorghum fields 
during field scouting. The models can be further customized to other natural enemies encountered in different 
crops during automated field scouting.

Methods
Deep learning approaches for object detection. The generic architecture of deep neural networks for 
object detection consists of two main components: a backbone, which is commonly a pre-trained CNN network 
used to generate feature maps, and a head, which is used to detect objects as bounding boxes defined by their 
coordinates (bounding box prediction) and to classify objects into one of several categories of  interest25, in our 
case, different types of coccinellids. One-stage detectors, including the YOLO family of detectors, have a dense 
prediction head that achieves the object detection and classification tasks simultaneously. Two-stage detectors, 
including the popular Faster R-CNN detector, decouple the object detection and classification tasks and achieve 
them in two stages. In the first stage, they use a dense prediction head to generate RoIs that may contain objects. 
In the second stage, a sparse detection head is used to classify the RoIs according to different object categories 
and to refine their bounding boxes. In recent years, it has become standard practice to insert a neck in between 
the backbone and the head of the network, to collect and mix features from different layers. The FPN  network31 
is one example of a neck that is commonly used in object detection networks. FPN uses a top-down path with 
lateral connections to extract semantic feature maps at different  scales25. The resulting feature maps enable the 
model to find objects at different scales. Path aggregation network (PANet)75 is another example of a neck used in 
object detectors. It enhances FPN with a bottom-up path which helps propagate the low-level features. Equipped 
also with an adaptive feature pooling, PANet has been shown to improve object  localization25. The generic archi-
tecture of the one-stage and two-stage detectors is shown in Fig. 1. We study the popular Faster R-CNN as a 
representative two-stage approach and two YOLO variants, YOLOv5 and YOLOv7, on the task of detecting and 
classifying common coccinellid found in sorghum. All models studied were trained and evaluated using images 
annotated with the Labelbox tool (https:// label box. com).

Faster R-CNN-FPN.  Modern Faster R-CNN models use a pre-trained CNN as a backbone for feature extrac-
tion combined with an FPN network as a neck to obtain semantic feature maps at different scales. Extracted 
feature maps are provided as input to a region proposal network (RPN) which can be seen as the dense predic-
tion head of the network. The RPN identifies Regions of Interest or RoIs (i.e., regions that may contain objects of 
interest - in our case, coccinellids) and their corresponding locations (i.e., rectangular bounding boxes param-
eterized using the box’s center coordinates, and its height and width). More precisely, the RPN uses a sliding win-
dow to generate three anchors with different aspect ratios (1:2, 1:1 and 2:1, respectively) at each grid cell in each 
input feature map. The anchors are labeled (as object/positive or background/negative) based on their overlap with 
ground truth bounding boxes and used to train the RPN network to identify RoIs and their locations. Highly 
overlapping regions, potentially corresponding to the same object, can be filtered using a non-maximum sup-
pression (NMS) threshold. Subsequently, the resulting RoIs together with the feature maps are provided as input 

Figure 1.  Generic architecture for object detection approaches. A modern object detection network consists of 
three main components: (1) a backbone network that performs feature extraction for a given input image; (2) a 
neck that collects and combines features from different layers; and (3) a head which is used to detect and classify 
objects of interest. One-stage detectors use a dense prediction head to simultaneously address the detection 
(bounding box regression) and classification tasks, while two-stage detectors decouple the two tasks and use a 
sparse prediction head to classify previously identified RoIs.

https://labelbox.com
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to a sparse prediction head which is trained to classify RoIs into several categories of interest (e.g., different coc-
cinellid types) and refines their locations. All parameters of the network are trained together using a multi-task 
loss, which combines the cross-entropy classification loss with a linear regression L2  loss76. We experiment with 
two CNN networks pre-trained on  ImageNet77 as the CNN backbone, specifically, ResNet-50 and ResNet-101 
networks, given that they provide a good trade-off between accuracy and  speed74. The FPN produces features 
maps at 5 different scales, and consequently 5x3 anchors are generated at each location. Rezatofighi et al.78 sug-
gested that the standard L2 loss used to regress the parameters of the bounding box corresponding to an object is 
not strongly correlated with the IoU (Intersection over Union) metric generally used to evaluate object detection 
approaches. Instead of the L2 loss, they proposed to use a loss based on the IoU metric. Specifically, they experi-
mented with a IoU loss and a loss based on a generalized IoU (GIoU), and showed that optimizing the GIoU loss 
helps improve the performance measured either using the GIoU itself or the standard IoU. Given this result, we 
experiment with the IoU and GIoU as the regression loss for the bounding box regression task in Faster R-CNN.

YOLOv5. As described above, two-stage detectors, such as Faster R-CNN-FPN network, re-purpose image 
classification to perform object detection by using the RPN to identify anchors that contain objects of interest as 
RoIs, and subsequently classifying the RoIs into specific categories. As opposed to that, one-stage detectors use 
directly the input image and to identify bounding box coordinates and class probabilities for objects of interest. 
YOLOv5 was released in 2020 by a company called  Ultralytics26 and has evolved over time. We used the latest 
YOLOv5 (v6.0/v6.1)  architecture79. The backbone for YOLOv5 is a New CSP-Darknet53 which combines the 
original Darknet53 network used in  YOLOv324 with the CSPNet  network80. Darknet53 was inspired by the 
ResNet architecture and it was specifically designed for object detection. CSPNet addresses the issue of duplicate 
gradient information in large backbone networks by truncating the gradient flow to speed up computation. The 
current neck used in the YOLOv5 architecture consists of two components, SPPF and New CSP-PAN. SPPF is 
a variant of the Spatial Pyramid Pooling (SPP)81, which helps identify small objects and also objects at different 
scales. SPPF was designed to improve the computation speed of SPP. Similar to the Darknet53 backbone, the 
PAN network (PANet)75 is also combined with CSP to improve computation speed. YOLOv5 uses a dense pre-
diction head which is inherited from  YOLOv324.

In addition to components that improve efficiency, YOLOv5 makes use of a variety of augmentation tech-
niques on the input image. Among others, mosaic  augmentation25 is used to stitch together four images with 
the goal of training the model to find objects in places other than the center of the image, where a large majority 
of objects are generally located. Furthermore, YOLOv5 uses automatically generated anchors (with different 
scales and aspect ratios) to predict bounding boxes (and confidence scores) for each cell in a grid directly from 
the input image. The anchors are generated using k-means clustering based on the bounding boxes in the train-
ing  set23 and a genetic evolution algorithm that optimizes the initial k-means centroids based on the complete 
IoU (CIoU)  loss82. The CIoU loss aggregates the overlap area, distance between center points, and aspect ratio 
consistency of two bounding boxes. The YOLOv5 head has 3 detection layers corresponding to three different 
scales and predicts bounding boxes with 3 different aspect ratios for each scale, resulting in a total of 9 anchors. 
The bounding boxes are predicted as deviations from the anchor dimensions. As in Faster R-CNN-FPN, the NMS 
technique is used to filter bounding boxes representing the same object. The whole network is trained using a 
multi-task loss, which combines classification loss (binary cross-entropy), objectness loss (binary cross-entropy) 
and location loss (CIoU). YOLOv5 uses an exponential moving average (EMA) of the model checkpoints as final 
detector. YOLOv5 itself represents a series of object detection models (compound-scaled variants of the same 
architecture) that have been pre-trained on the MS COCO  dataset49. Models in the YOLOv5 series have different 
sizes as applications have different needs in terms of the trade-off between accuracy and speed. In this study, we 
experiment with five YOLOv5 variants that vary in size from nano (YOLOv5n) to small (YOLOv5s), medium 
(YOLOv5m), large (YOLOv5l) and extra-large (YOLOv5x), whose specific architectures are available from the 
official GitHub  repository26 as .yaml files in the models directory.

YOLOv7.  The YOLOv7 architecture has been designed based on the “bag-of-freebies” idea introduced by 
Bochkovskiy et al.25, which refers to the fact that while it’s important for a detector to be fast at inference time, 
the training can be more expensive if it helps to improve the overall accuracy of the model (this is acceptable as 
the training is done offline). With this idea in mind, YOLOv7 introduced several innovations in network archi-
tecture and training strategies. One important innovation, the main component of YOLOv7’s architecture (used 
both in the backbone and neck/head networks), is a block called extended efficient layer aggregation network 
(E-ELAN).  ELAN83 uses a “stack in computational block” structure combined with CSP to optimize the shortest 
gradient path and ensure that scaling up the network does not result in deterioration of performance. In addi-
tion, E-ELAN uses “expand, shuffle, merge cardinality” which enables the model to learn more diverse features.

The neck of the network is structured based on a PAFPN network (a combination of PAN and FPN) which 
uses E-ELAN for feature extraction and fusion. In addition to the “lead head”, YOLOv7 introduces an “auxiliary 
head”, somewhere in the middle of the network, meant to assist the “lead head” (which may be too far down the 
network). Soft labels are assigned to the auxiliary and lead heads in a coarse-to-fine manner based on the predic-
tions of the lead head and the ground truth. The coarse soft labels used by the auxiliary head represent a relaxed 
version of the fine soft labels used by the lead head, as it is expected that the auxiliary head is less precise. In 
terms of anchors, YOLOv7 leverages the automated anchor selection approach proposed in  YOLOv526 and uses 
3 aspect ratios for each of the 3 features maps representing three different scales (for a total of 9 anchors). Fur-
thermore, data augmentation techniques similar to those used in YOLOv5 are also used in YOLOv7 (including 
mosaic augmentation), and the commonly-used NMS technique is employed to filter out the predicted bound-
ing boxes. To achieve robustness through module-level re-parameterization (i.e., aggregating the weights of a 
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multi-branch module during inference), YOLOv7 uses gradient flow propagation paths to “plan” what modules 
can benefit from re-parameterization.

YOLOv7 is trained from scratch on the COCO dataset using a multi-task learning loss consisting of the clas-
sification loss (binary cross-entropy), objectness loss (binary cross-entropy) and location loss (CIoU). If both 
the lead and the auxiliary heads are used, the loss includes similar components corresponding to the two heads, 
with different weights. The final model used for inference is based on an EMA of the model parameters at differ-
ent checkpoints during training. Together, the innovations introduced in YOLOv7 and the components reused 
from prior works have led to state-of-the-art results on standard benchmark datasets for object  detection28, and 
at the same time, smaller inference time as compared with other YOLO models. YOLOv7 also consist of a series 
of pre-trained models of various sizes. In this study, we experiment with four YOLOv7 variants: 1) the standard 
YOLOv7 model designed for standard GPUs and 2) its compound scaling variant, YOLOv7-x; 3) the smallest 
model, YOLOv7-tiny deigned for edge GPU; and 4) a larger model, YOLOv7-d6, a cloud GPU architecture.

Dataset. Coccinellid imagery downloaded from the iNaturalist web portal was used (inaturalist.org). iNatu-
ralist is a citizen science project that allows naturalists to upload and share observations (i.e., images) of biodi-
versity worldwide through a web platform and mobile app for free. Submission by observers include the actual 
images, their locations, observed time, and group identifications. Agreements on the taxa in the observations 
create a “research-grade” label that is assigned to the observation. iNaturalist makes an archive of research-grade 
observation data available to the environmental science community via the Global Biodiversity Information 
Facility (GBIF)84. We used GBIF to assemble a dataset for training and testing deep learning models for the 
detection, localization and classification of coccinellids. Only research-grade labels at family, genus, and spe-
cies level were considered in the dataset that we assembled. The dataset includes seven distinct categories of 
coccinellids corresponding to the most important coccinellids found in sorghum plants, specifically: Coccinella 
septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippodamia convergens, Olla 
v-nigrum and the subfamily  Scymninae17. Three sample images in each of these seven categories are shown in 
Fig. 2 (where each row corresponds to one coccinellid type).

We aimed to select approximately 700 images per category, and assembled a dataset with a total number of 
4,865 images. Each image contains one or more instances of coccinellids of the same type (i.e., corresponding to 
a particular category). The dataset was split into train (3,053 images), development or dev (1,113) and test (699) 
subsets. Table 1 shows the distribution of the images/coccinellid instances over the seven categories in each of 
the train/dev/test subsets and also in the whole dataset. Supplementary Table S1 shows the distribution of the 
images with respect to the number of instances per image (1, 2, 3, 4, 5, 6, 7, or 8) for each category and for each of 
the the train/dev/test subsets. As can be seen, most images have only one or two coccinellid instances, although 
there are some images that have up to 8 coccinellid instances.

We also classified the instances in our dataset according to their size, as this information is frequently used 
when evaluating object detection  approaches85. Specifically, instances are classified based on the area that they 
occupy in an image as small ( area ≤ 322 ), medium ( 322 < area ≤ 962 ) or large ( area > 962)85. Supplementary 
Table S2 shows the distribution of the small, medium and large instances in the train/dev/test subsets and in the 
whole dataset. As can be seen, the number of small instances is just 5 in the total dataset and they are all included 
in the training subset. The number of medium instance is 142, with 18 of those instances being in the test sub-
set. The remaining 4995 instances are large and represent the majority in our dataset. Given this observation, 
our evaluation metrics will be generic (representing mostly the large category) as opposed to being specifically 
focused on small, medium and large categories, respectively.

Implementation details. We trained and evaluated Faster R-CNN-FPN, YOLOv5 and YOLOv7 models. 
The data flow diagram for our whole process is depicted in Fig. 3. Training images are used to train the model, 
while the development images are used to evaluate and select hyperparameters. The performance of the final 
models is estimated on the test data.

Faster R-CNN-FPN.  We used the Detectron2 library for object detection and  segmentation85 (developed by 
Facebook Research) to train and evaluate our Faster R-CNN-FPN models for coccinellids detection. Detectron2 
uses PyTorch as a deep learning framework and is the successor of  Detectron86, originally “designed to be flex-
ible in order to support rapid implementation and evaluation of novel research.” The default configuration of the 
Base-R-CNN-FPN is defined in the “Base-R-CNN-FPN.yaml” file at https:// github. com/ faceb ookre search/ detec 
tron2/ blob/ main/ confi gs/ Base- RCNN- FPN. yaml. Hyper-parameters for Detectron2 are available at: https:// 
github. com/ faceb ookre search/ detec tron2/ blob/ main/ detec tron2/ config/ defau lts. py. The train/test files that we 
adapted are available https:// github. com/ cwang 16/ Detec ting- Cocci nelli ds. When training the models, we used 
the default values for most of the hyper-parameters of Detectron2’s Faster R-CNN-FPN object detection models 
and experimented with ResNet50/ResNet101 as backbone CNNs and IoU/GIoU as the regression losses, respec-
tively. In terms of number of iterations, we started by training the Faster R-CNN-FPN model with the default 
40,000 iterations. However, the learning curves shown in Supplementary Fig. S1

suggested that both training and development losses were still decreasing, while the AP was still increasing 
after 40,000 iterations. Thus, to enable the network to learn further and give better performance, we ran all experi-
ments for 400,000 iterations, and identified the best iteration for each model based on learning curves as shown 
in Supplementary Fig. S2. Specifically, the best iteration is identified as the point where the validation loss starts 
increasing while the training loss is still decreasing. Using this criterion, for Faster R-CNN-FPN with ResNet-50 
the best validation/training point was observed around iteration 80,000 for both IoU and GIoU losses, while 
for Faster R-CNN-FPN with ResNet-101 the best point was observed around iteration 220,000 for both losses.

https://github.com/facebookresearch/detectron2/blob/main/configs/Base-RCNN-FPN.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/Base-RCNN-FPN.yaml
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py
https://github.com/cwang16/Detecting-Coccinellids


7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9748  | https://doi.org/10.1038/s41598-023-36738-5

www.nature.com/scientificreports/

YOLOv5.  We used the official PyTorch YOLOv5 implementation provided by  Ultralytics26, which is available at 
https:// github. com/ ultra lytics/ yolov5, to train and evaluate the YOLOv5 models. We used the pre-defined model 
configurations for the YOLOv5 variants used in the experiments, where the number of classes was changed to 7. 
The pre-defined configurations are available at https:// github. com/ ultra lytics/ yolov5/ tree/ master/ models, where 
the files “yolov5n.yaml”, “yolov5s.yaml”, “yolov5m.yaml”, “yolov5l.yaml”, “yolov5x.yaml”, correspond to the five 
YOLOv5 variants used in our study, respectively. In terms of hyper-parameters, YOLOv5 provides three different 
hyper-parameter settings, specifically, “hyp.scratch-low.yaml”, “hyp.scratch-med.yaml” “hyp.scratch-high.yaml”, 
to train smaller, medium and larger size models, respectively. These three hyper-parameter settings can be found 
at https:// github. com/ ultra lytics/ yolov5/ tree/ master/ data/ hyps. When training the models for YOLOv5, we used 

Figure 2.  Samples of 3 coccinellid images in each of the 7 categories included in the study.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5/tree/master/models
https://github.com/ultralytics/yolov5/tree/master/data/hyps
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the default values for most of the hyperparameters, except for using 500 epochs and a batch size of 4. The best 
model identified by the YOLOv5 framework using the validation data was used for evaluation. As an example, 
the specific command line used to train the YOLOv5s model is shown below:

 where the modified files and non-default hyper-parameters are highlighted in red font. Similarly, the command 
lined used to evaluate the YOLOv5s model is:

YOLOv7. We also used the official YOLOv7 PyTorch  implementation28 at https:// github. com/ WongK inYiu/ 
yolov7 to train and evaluate the YOLOv7 models. As for YOLOv5, we used the pre-defined model configura-
tions for the YOLOv7 variants used in the experiments, where the number of classes was changed to 7. The pre-
defined configurations are available at https:// github. com/ WongK inYiu/ yolov7/ tree/ main/ cfg/ train ing, where 
the files “yolov7.yaml”, “yolov7-tiny.yaml”, “yolov7x.yaml”, “yolov7-d6.yaml”, correspond to the four YOLOv7 
variants used in our study, respectively. In terms of hyper-parameters, YOLOv7 provides three different hyper-
parameter settings for: 1) edge GPU architectures (YOLOv7-tiny); 2) standard GPU architectures (YOLOv7 and 
YOLOv7-x); and 3) cloud GPU architectures (including YOLOv7-d6). These three hyper-parameter settings can 
be found at https:// github. com/ WongK inYiu/ yolov7/ tree/ main/ data, where “hyp.scratch.tiny.yaml” is the setting 
for YOLOv7-tiny, “hyp.scratch.p5.yaml” is the setting for YOLOv7 and YOLOv7-x, and “hyp.scratch.p6.yaml” 
is the setting for YOLOv7-d6.

Table 1.  Dataset statistics. Distribution of the images and coccinellid instances over the seven categories in 
each of the train/dev/test subsets and also in the whole dataset.

Data Category Cocc. sept. Col. mac. Cycl. sang. Har. axyr. Hipp. conv. Olla nigr. Scym. Total

Train
Images 439 436 423 443 436 436 440 3053

Instances 461 485 435 475 482 448 446 3232

Dev
Images 160 164 155 157 153 164 160 1113

Instances 165 182 160 163 172 167 167 1176

Test
Images 99 100 100 100 100 100 100 699

Instances 102 101 107 100 119 103 102 734

Total
Images 698 700 678 700 698 700 700 4865

Instances 728 766 702 738 773 718 715 5142

Figure 3.  Data flow diagram. Coccinellid images are collected from iNaturalist and labeled using Labelbox. 
The set of images is split between train, dev and test subsets. YOLO and Faster R-CNN-FPN models trained and 
fine-tuned on the train and dev subsets, respectively. The performance of each model is estimated on the test 
subset in terms of average precision (AP) metrics.

https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7/tree/main/cfg/training
https://github.com/WongKinYiu/yolov7/tree/main/data
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When training the models for YOLOv7, we used the default values for most of the hyperparameters, except 
for using 500 epochs and a batch size of 2. The best model identified by the YOLOv7 framework using the 
validation data was used for evaluation. As an example, the specific command line used to train the YOLOv7 
model is shown below:

where the modified files and non-default hyper-parameters are highlighted in red font. Similarly, the com-
mand lined used to evaluate the YOLOv7 model is:

To ensure reproducibility, we make available our train/test/dev data (in the form of iNaturalist image IDs), 
annotation, model configurations, and best trained models at https:// github. com/ cwang 16/ Detec ting- Cocci nelli 
ds.

All the models were trained on Amazon Web Services (AWS) p2.xlarge instances. According to AWS, the 
configuration of the p2.xlarge instance is as follows: 1 GPU, 4 vCPUs, 61 GiB of memory, and high network 
bandwidth. Training of the models for the specified number of iterations/epochs took between 8 and 14 days.

Evaluation metrics. We used three standard average precision  metrics87 to evaluate the results of our mod-
els. The three metrics are defined using the Intersection-over-Union (IoU) measure, which captures the overlap 
between the predicted bounding box of an instance and the ground truth bounding box of that instance. Specifi-
cally, the IoU is defined as the area of overlap (i.e., intersection) divided by the area represented by the union. 
The metrics used to evaluate the ability of the models to correctly identify the type of coccinellid are: 1) average 
precision at IoU = 0.50 , denoted by AP@0.50; 2) average precision at IoU = 0.75 , denoted by AP@0.75; and 
3) average precision at IoU = .50 : .05 : .95 , which represents the average precision across ten IoU thresholds 
varying from 0.5 to 0.95 with a step size of 0.05, denoted by AP@.50 : 0.05 : .95 or simply AP. AP@n considers 
a prediction to be correct if the IoU between the detected instance and the ground truth instance annotation is 
greater or equal than n. For example, AP@0.50 considers a prediction to be correct correct if the corresponding 
IoU is greater or equal to 0.50.

In addition to comparing the models in terms of average precision metrics, we also compared the models 
in terms of number of layers that the specific model architecture used includes, number of parameters of the 
network, size of the model (MB) and inference time per image (ms). These characteristics can be used to identify 
small models that are accurate and fast and can be embedded in mobile devices for automated field scouting.

Ethics statement. The results presented are based solely on experiments with image data. The experiments 
do not involve live vertebrates and/or higher invertebrates. All experiments were carried out in accordance with 
relevant guidelines and regulations.

Results and discussion
The results of the models used in this study, Faster R-CNN-FPN, YOLOv5 and YOLOv7 on the whole test subset 
are shown in Table 2. Specifically, for each family of models, we report AP, AP@0.50 and AP@0.75 for the model 
variants considered. The best result in terms of AP (with averages values obtained for a range of 10 IoU thresholds 
from 0.50 to 0.95 with a step of 0.05) is 74.605 and is obtained with the YOLOv7 model. The best AP value for 
a YOLOv5 model is 73.3 and is obtained with the YOLOv5x variant, while the best value for a Faster R-CNN-
FPN model is 65.6 and is obtained with Faster-R101-GIoU. These are all significant results given that the best 
AP value for the popular object detection benchmark Microsoft COCO  dataset49 (which considers AP to be its 
primary metric) is currently 65.4 (as of February 4th,  202388). In terms of AP@0.50 (the primary metric for the 
PASCAL VOC benchmark  dataset89), the best value is 97.3 and is also obtained using the YOLOv7 model, while 
the best AP@0.50 value obtained with a YOLOv5 variant (specifically, YOLOv5m) is 96.0, and the best value 
obtained with a Faster R-CNN-FPN variant (Faster-R50-GIoU) is 94.3. Finally, when using the stricter AP@0.75, 
which requires at least 0.75% IoU overlap when comparing the predicted bounding box with the ground truth 
bounding box of an object instance, the best result is 82.6 and it is obtained with the YOLOv7 model as well, with 
the YOLOv5x variant following closely. These results are very competitive in terms of numbers reported in the 
literature for similar problems and show that the models considered in this study, and in particular the YOLOv7 
models, have the ability to detect and localize coccinellids in real world images posted on iNaturalist. Overall, on 
our test data, the standard YOLOv7 model has the best performance among the models in the YOLOv7 family, 
followed closely by the YOLOv5x model in the YOLOv5 family. Both these models are significantly better than 
the best Faster R-CNN-FPN model (specifically, Faster-R101-GIoU).

To evaluate the performance of the models in relation to the their size and inference time, Table 2 also 
shows the number of layers, number of parameters, inference time (ms) and size (MB) for each model. While 
the Faster R-CNN-FPN models have an average number of parameters (42 and 60 millions with ResNet50 and 

https://github.com/cwang16/Detecting-Coccinellids
https://github.com/cwang16/Detecting-Coccinellids
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ResNet101, respectively) as compared to the other models, they have relatively large sizes (165.8 MB and 242.1 
MB, for ResNet50 and ResNet101, respectively) and high inference time (approximately, 130 to 140 ms per 
image). Thus, despite the fact that these are two-stage detectors, with large sizes and high inference times, the 
Faster R-CNN-FPN models are not very accurate by comparison with the YOLOv5 and YOLOv7 models on 
the coccinellid images. The YOLOv5 models have the smallest size and inference time overall, but it can be seen 
that the performance increases with the size of the model, with YOLOv5x (the largest model) having the best 
performance at an inference time of 28 ms per image. The size of the YOLOv7 variants is overall larger than the 
size of the YOLOv5 variants. However, the best YOLOv7 model, the standard YOLOv7, has a size of 74.8 MB 
and an inference time of 19.2 ms per image, which is lower than the inference time of the best YOLOv5x model. 
It is also worth noting that the standard YOLOv7 model has a large number of layers (specifically, 314 layes) 
and accordingly a large number of parameters (comparable to the number of parameters in Faster R-CNN-FPN 
with ResNet50), but it still has very fast inference time, a proof that the “bag-of-freebies” idea used in YOLOv7 
gives the intended results.

To gain insights into how the models perform for each type of coccinellids in our dataset, Table 3 shows 
results in terms of AP (averaged over 10 IoU thresholds) for each of the seven types of coccinellids included in 
the dataset. As can be seen, the standard YOLOv7 model gives the best results for four coccinellid types, specifi-
cally Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea and Hippodamia convergens, and 
highly competitive results for the other three types. The YOLOv5x model gives the best results for the Harmonia 
axyridis, Olla v-nigrum and the subfamily Scymninae. Thus, based on these results, we can also conclude that 
the standard YOLOv7 model is a good choice for identifying coccinellids of the types included in our study, 
closely followed by the YOLOv5x model. The YOLOv7 model performs the best on coccinellids of type Coccinella 
septempunctata with AP = 780.4 , followed by Coleomegilla maculata, Harmonia axyridis and Olla v-nigrum 
with AP = 76.4 , AP = 76.2 , and AP = 75.5 , respectively. The AP of the model is lower for Cycloneda sanguinea, 
subfamily Scymninae and Hippodamia convergens, with AP values of 72.2, 71.0 and 70.5, respectively.

FasterR-CNN\\
FPN-R101-GIoU YOLOv7 YOLOv5x

Max Iteration 400000 400000 400000

learning rate 0.0002 0.01 0.01

momentum 0.9 0.937 0.937

weight_decay 0.0001 0.0005 0.0005

warmup_epochs 1.0 3.0 3.0

warmup_momentum unused 0.8 0.8

warmup_bias_lr unused 0.1 0.1

iou_training_threshould 0.3 0.2 0.2

anchors (p3/8) unused 12,16, 19,36, 40,28 10,13, 16,30, 33,23

anchor(p4/16) unused 36,75, 76,55, 72,146 30,61, 156,198, 373,326

anchors(p5/32) unused 142,110, 192,243, 459,401 116,90, 156,198, 
373,326

Table 2.  Faster R-CNN-FPN, YOLOv5 and YOLOv7 results. The networks are evaluated on the test subset 
using the best model according to the development subset. The results are reported in terms of AP, AP@0.50, 
AP@0.75. The Faster R-CNN-FPN (Faster) models are using ResNet-50 (R50) and ResNet-101 (R101) as base 
models, with IoU and GIoU as the loss, respectively. The best results for models within a family are highlighted 
with bold, while the best result overall is also shown in italic. For each model, the number of layers, number of 
parameters, inference time and size are also shown.

Model AP AP@0.50 AP@0.75 Number layers Number parameters Inference time (ms) Size (MB)

Faster-R50-IoU 62.9 94.1 74.2 50 42,000,000 130.2 165.8

Faster-R101-IoU 64.7 93.4 74.5 101 60,000,000 141.6 242.1

Faster-R50-GIoU 63.5 94.3 73.9 50 42,000,000 127.4 165.8

Faster-R101-GIoU 65.6 93.7 75.6 101 60,000,000 138.5 242.1

YOLOv5n 67.6 93.1 79.9 157 1,768,636 4.8 3.8

YOLOv5s 70.8 94.5 83.2 191 7,468,160 3.3 14.4

YOLOv5m 73.0 96.0 85.1 212 20,877,180 11.6 44.2

YOLOv5l 73.2 95.3 84.7 267 46,140,588 17.7 92.8

YOLOv5x 73.8 95.9 85.6 322 86,213,788 28.0 173.1

YOLOv7 74.6 97.3 86.2 314 36,514,136 19.2 74.8

YOLOv7-tiny 68.3 94.7 81.1 208 6,023,832 5.7 12.3

YOLOv7-x 68.3 94.1 79.7 362 70,822,872 28.3 142.1

YOLOv7-d6 65.3 90.6 75.2 566 152,967,984 41.8 1200
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A confusion matrix constructed by comparing the type predicted by the YOLOv7 model with the manually 
annotated type is shown in Fig. 4. Generally, the type predicted is correct, with accuracy higher than 92% in all 
cases. As expected, some detected instances have the type incorrectly predicted. Furthermore, some instances 
are missed (background FN) or coccinellid instances are detected where there is not a coccinellid in the input 
image (background FP). Overall, the model makes a small number of false negative mistakes (i.e., it rarely misses 
a coccinellid), while the largest number of FP mistakes is in the Scymninae subfamily. As can be seen from the 
confusion matrix, the Scymninae subfamily also has the highest percentage of miss-classified instances overall 
(8%), while the Coccinella septempunctata type has the highest detection accuracy (98%).

Figure 5 shows examples of correct predictions made for different coccinellid types appearing in somewhat 
challenging settings. For example, in images (a), (c), (g) and (h), the coccinellids are very small, and sometimes 
hard to see, and they appear in various environments. However, the model correctly identifies them. In images 
(b), (d), (f) and (i), there are multiple coccinellids in one image but the model correctly identifies all of them 
and their right type, even when they are overlapping. In image (e), there is a coccinellid inside the stem. Sup-
plementary Fig. S3 shows similar examples of correct predictions made by the Faster R-CNN-FPN model with 
ResMet101 backbone and GIoU loss.

Error analysis
While the YOLOv7 models work very well, they do have two types of errors: detection errors and localization 
errors. The detection errors can be grouped into several classes: (1) Errors where a coccinellid is identified but 
the detected type is wrong, as shown in Fig. 6 (similar errors can be seen for the best Faster R-CNN-FPN model 
in Supplementary Fig. S4); (2) Errors where a different object in a picture is identified as a coccinellid, as shown 
in Fig. 7a,–c ; (3) Errors where a coccinellid should be identified but the model completely misses it, as shown in 
Fig. 7b, e, f; and (4) Errors where a coccinellid has its wings spread out and the model detects two coccinellids 
instead of one, and conversely, errors where two coccinellids overlap in the image and the model fails to detect 
two instances, as shown in Fig. 7g, h, and i. It is interesting to see that the YOLOv7 model can identify some coc-
cinellids that overlap as shown in Fig. 5b, d and i but it fails to detect others, as shown in Fig. 7h. When comparing 
YOLOv7 predictions with Faster R-CNN-RPN predictions, we found that the YOLOv7 model can “fix” some of 
the errors made by the Faster R-CNN-FPN model, as can be seen in Supplementary Fig. S5.

In addition to detection errors, the models also make localization errors. In particular, a localization error 
happens when the IoU overlap between the predicted bounding box and the manually annotated bounding box 
does not satisfy the desired threshold (e.g., 50% or 75%). However, to some extent, differences in bounding boxes 
could stem from differences in the way the manual annotation is performed, as humans are prone to error and 
inconsistencies when performing annotations, as Fig. 8 shows. Our models learn from the human annotations 
and will also produce bounding boxes that are enclosing the object of interest more closely or more loosely, thus 
leading to difference in terms of object localization.

YOLOv2 model as a tool for coccinellid detection
To enable the use of our best model by the research community, we make available the pre-trained YOLOv7 
model as a web-based application at https:// cocci nelli ds. cs. ksu. edu, shown in Supplementary Fig. S6. The web-
based application is user-friendly and allows the user to explore the model predictions using sample images 
available on the front page. Alternatively, a new image can be uploaded to the site and submitted for analy-
sis. Underneath, the built-in model is used to detect and classify coccinelids in the image, and the results are 

Table 3.  Faster R-CNN-FPN, YOLOv5 and YOLOv7 results for each coccinellids type in the test subset. 
Results are reported in terms of AP obtained with the best model according to the development subset. The 
Faster R-CNN-FPN (Faster) models are using ResNet-50 (R50) and ResNet-101 (R101) as base models, with 
IoU and GIoU as the loss, respectively. The best results for a coccinellid type using models within a family are 
highlighted with bold, while the best result overall is also shown in italics.

Model
Coccinella 
septempunctata Coleomegilla maculata Cycloneda sanguinea Harmonia axyridis

Hippodamia 
convergens Olla v-nigrum Scymninae

Faster-R50-IoU 67.1 62.7 60.3 65.2 55.1 67.0 63.0

Faster-R101-IoU 70.0 63.9 58.8 70.7 54.5 69.8 65.1

Faster-R50-GIoU 66.2 64.5 59.6 68.0 55.6 67.4 63.2

Faster-R101-GIoU 70.1 66.6 59.7 68.8 58.3 69.0 67.0

YOLOv5n 72.1 70.5 64.0 71.0 60.9 68.8 67.2

YOLOv5s 76.3 71.8 68.8 72.7 63.9 73.1 69.3

YOLOv5m 77.2 72.8 69.0 73.1 68.4 77.0 72.3

YOLOv5l 77.1 73.3 70.1 74.2 69.2 75.3 72.0

YOLOv5x 76.8 74.9 70.3 76.8 69.1 77.6 72.8

YOLOv7 80.4 76.4 72.2 76.2 70.5 75.5 71.0

YOLOv7-tiny 75.5 68.8 63.7 72.7 65.3 70.3 61.4

YOLOv7-x 74.8 69.8 65.4 73.1 62.8 69.4 63.1

YOLOv7-d6 74.2 66.4 61.1 72.4 62.8 69.8 50.4

https://coccinellids.cs.ksu.edu
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displayed on the site using an annotated bounding box. It takes approximately 4-5 seconds for a prediction to 
be made, given the interaction with the server. In addition to the web-based application, which does not require 
any programming skills, we will also make the pre-trained models and source code available on GitHub for more 
experienced users who may need to further train and adapt our models to other species or datasets.

Limitations of the study
We have shown that deep learning models can be used to identify seven types of common coccinellids in sor-
ghum. While the methodology proposed in this study can provide tremendous benefits to IPM in sorghum, we 
would also like to point out its limitations:

• As emphasized by our error analysis, some coccinellids are not identified, especially when they cover most 
of the area of the image, and sometimes when two coccinellids overlap in an image. More images of those 
types need to be included in the dataset to improve the performance of the models on such images.

• Similarly, the models can make mistakes in terms of the type of the coccinellid identified and also in terms 
of the precise location (bounding box of the coccinellid).

• While our dataset covers seven types of coccinellids, and includes images with several coccinellids, all coc-
cinellids in an image are of the same type. It is not clear how the models would perform on images with 
coccinellids of different types.

• Our dataset includes only a small set of images with coccinellids that are considered “small” objects based 
on their size (see Supplementary Table S2). More data is needed to estimate the performance of the models 
in detecting “small” coccinellids, which have a high chance to appear in images taken with an autonomous 
device in the wild.

• While a big variety of images were used to train and test our models, the images may not be fully representa-
tive of images that would potentially be taken with an autonomous device such as a drone. Additional data 
captured with such devices can be added to the training set to improve the robustness of the models in such 
scenarios.

Figure 4.  Confusion matrix constructed by comparing the type predicted by YOLOv7 with the manually 
annotated type. The label background FN corresponds to coccinellid instances that were not at all identified by 
the model, while background FP corresponds to predictions of coccinelids when there is not a coccinellid in the 
original input image.
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Conclusions
In this study, we focus on the application of high throughput deep learning models to detect and classify coc-
cinellids that are commonly found in sorghum. Specifically, we compared two-stage (Faster R-CNN-FPN) and 
one-stage detectors (YOLOv5 and YOLOv7) on the task of detecting and classifying seven types of coccinellids, 
including Coccinella septempunctata, Coleomegilla maculata, Cycloneda sanguinea, Harmonia axyridis, Hippo-
damia convergens, Olla v-nigrum, Scymninae. To do this, we first assembled and annotated a dataset of 4,865 
images based on the iNaturalist imagery web server, which publishes citizen’s observations regarding living 

Figure 5.  Examples of accurate YOLOv7 predictions on different coccinellid types.
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organisms. Images in the dataset contain between one and eight instances of coccinelids manually annotated 
with bounding boxes using the LabelBox tool. Using the assembled dataset, split into training, development and 
test subsets, we experimented with several variants of the Faster R-CNN-FPN network where the base CNN was 
either ResNet-50 or ResNet-101, and the loss optimized was either the standard IoU or the generalized GIoU. 
We also experimented with several variants of the YOLOv5 and YOLOv7 models. Experimental results showed 
that the standard YOLOv7 model gives the best results overall for our test data, with AP@0.50 as high as 97.31 
and AP as high as 74.5 for this specific variant. These competitive results in relation to results for other similar 
problems in prior works suggest that our models have the potential to make the task of detecting natural enemies 
in sorghum easier, if integrated in systems for automated pest management. To enable the community to make 

Figure 6.  Examples of images where the YOLOv7 model correctly identifies a coccinellids, but the type 
identified is different from the manually annotated type. Each row shows a ground truth type, specifically, 
Scymninae, Harmonia axyridis, Hippodamia convergent. The predicted label for each image is shown below the 
image.
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use of our models, we have made available the models as part of a web-based application that allows end-users 
to identify coccinellids in their own images.

Figure 7.  Examples of YOLOv7 errors. Images (a), (b) and (c) show cases where YOLOv7 is mistakenly 
detecting an object as a coccinellid. Images (d), (e) and (f) show cases where YOLOv7 fails to detect a 
coccinellid. Images (g), (h) and (i) show cases when YOLOv7 detects two coccinellids instead of one, or 
alternatively one coccinellid instead of two.
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Data availability
The image ids and annotations in the train, dev and test subsets used in this study are made available on GitHub 
at https:// github. com/ cwang 16/ Detec ting- Cocci nelli ds.
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