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Population size in QTL detection 
using quantile regression 
in genome‑wide association studies
Gabriela França Oliveira 5*, Ana Carolina Campana Nascimento 5, Camila Ferreira Azevedo 5, 
Maurício de Oliveira Celeri 5, Laís Mayara Azevedo Barroso 1, Isabela de Castro Sant’Anna 2, 
José Marcelo Soriano Viana 3, Marcos Deon Vilela de Resende 4 & Moysés Nascimento 5

The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome‑Wide 
Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated 
with phenotypic traits of interest, considering different population sizes. For this, simulated data was 
used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. 
Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for 
each population. The power of detection of QTLs and the false positive rate were obtained by means of 
QR considering three different quantiles (0.10, 0.50 and 0.90)  and also by means of the General Linear 
Model (GLM). In general, it was observed that the QR models showed greater power of detection 
of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater 
number of individuals. The models with the highest detection power of true QTLs at the extreme 
quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, 
the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the 
evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, 
it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with 
traits of interest even in scenarios with few genotyped and phenotyped individuals.

The world’s population reached 7.7 billion inhabitants in 2019 and may reach 9.7 billion by  20501. To the increase 
in population is added the growing concern about environmental impacts and the limitations of arable areas, 
which culminates in the demand for increased productivity of agronomic  species2. In recent years, it is estimated 
that about 50% of the increase in productivity of several species was driven by genetic breeding, which has been 
seeking new strategies to obtain more adapted, resistant, and productive  cultivars3,4.

In this context, genome-wide association studies (GWAS) have been conducted in order to identify genetic 
variations that may be associated with phenotypic traits of  interest5–9. The potentials of GWAS have already 
been successfully explored in traits of economic interest and in different crops, such as  barley10,11,  maize12–14, 
 soybean15,16,  rice17–20,  wheat21–23 e arabica  coffea24–26.

In GWAS, a classic and widely used statistical method is single markers regression. This method estimates the 
individual effect of each marker on the phenotype of interest, and, subsequently, multiple hypothesis tests are per-
formed in order to detect which marker effects are statistically  significant27. When the correction for population 
structure is added to the single markers regression model, this model is called General Linear Model (GLM)28.
However, the estimation of parameters via single markers and GLM are based on conditional means, which may 
be inadequate when the errors do not follow a normal  distribution29 and in the presence of heteroscedastic-
ity. An alternative and still little explored methodology for GWAS studies is Quantile Regression (QR)30. This 
methodology, unlike methods based on means, allows adjusting regression models for different levels (quantiles) 
of the distribution of the phenotype of interest, does not require assumptions about the error distribution, and 
is robust to discrepant  points31. QR has already been successfully applied in GWAS studies on real data  by32 for 
traits related to the flowering time of common beans. These authors evaluated 80 common bean genotypes and 
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384 SNP markers (Single Nucleotide Polymorphism) in order to identify genomic regions for three phenological 
traits. As a result, the authors found no significant associations using the General Linear Model. In contrast, when 
using QR at the extreme quantile (τ = 0.10), it was possible to detect 7 significant associations between SNPs and 
the phenological traits studied. In this study, the number of available genotypes was relatively small for GWAS 
studies, but it was still possible to detect significant associations using QR in this setting.

Although QR has already been applied to real data sets and has obtained interesting and promising results, 
the effect of population size on the ability to detect QTLs (Quantitative Trait Locus) has not yet been evaluated. 
To this end, it is possible to use data simulation since this strategy aims to reproduce the conditions of a biologi-
cal system, facilitating the understanding of its real functioning and allowing prediction of the performance 
and recommendations before starting field  studies33,34. In addition, simulation studies are especially convenient 
for testing and comparing methodologies because they demand fewer resources, time, human efforts, and the 
possibility of replication, thus generating greater efficiency in  inferences34,35.

In view of the above, this study evaluated the use of QR in GWAS regarding the power of QTL detection 
through SNP markers for simulated data with different levels of heritabilities, trait loci, and population sizes. 
The results of QR were compared with those obtained by GLM.

Material and methods
Aiming to access the power of QTL detection and false positives rates in a genome-wide association study was 
performed a simulation study.

Genome and simulated populations. An advanced generation composite was obtained from two ran-
dom mating populations in linkage equilibrium, which were crossed to generate a population of 5,000 elements 
from 100 families using linkage disequilibrium (LD), subjected to five generations of random mating without 
mutation, selection, or migration.

From the advanced generation of the composite, 1000 individuals from the same generation and from 20 
families of full siblings, each consisting of 50 individuals, were simulated. The simulated genome was composed 
of ten chromosomes with a size of 200 centimorgans (cM) each and comprised 2000 bi-allelic single nucleotide 
polymorphisms (SNPs) separated by 0.1 cM across the ten chromosomes. The LD value in a composite popula-
tion is �ab =

(

1−2θab
4

)

(

p1a − p2a
)(

p1b − p2b
)

 , where a and b are two SNPs, two QTLs, or one SNP and one QTL, 
θ is the frequency of recombinant gametes, and p1 and p2 are the allele frequencies in the parental populations 
(1 and 2). The LD value depends on the allele frequencies in the parental populations. Thus, regardless of the 
distance between the SNPs and/or QTLs, if the allele frequencies are equal in the parental population, Δ = 0. The 
LD is maximized (|�| = 0.25) when θ = 0 and 

∣

∣p1 − p2
∣

∣ = 1 . In this case, the LD value is positive with coupling 
and negative with  repulsion36.

Simulation of traits and the phenotypic values. Two genetic architectures were simulated, represent-
ing different scenarios, with heritabilities of 0.30 and 0.50 and with 100 and 3 numbers of quantitative trait loci 
(QTLs), distributed randomly in the regions covered by the SNPs. The first scenario follows the infinitesimal 
model and the other (second scenario) with three major effects genes accounting for 50% of the genetic variabil-
ity. For the former, to each of 100 QTLs one additive effect of small magnitude on the phenotype was assigned 
(under the Normal Distribution setting). For the latter, small additive effects were assigned to the remaining 97 
loci. The effects were normally distributed with zero mean and variance, allowing the desired heritability level. 
The phenotypic value was obtained by adding to the genotypic value a random deviate from a normal distribu-
tion N

(

0, σ 2
e

)

 , where the variance σ 2
e  was defined according to two levels of broad-sense heritability, 0.30 and 

0.50.
The data set was simulated using the Real Breeding  program37. More information can be found detailed  in38.
Subsequently, in order to evaluate the effect of population size reduction, populations were defined with 

numbers of individuals ranging from 1,000 to 200 individuals. According  to39, 200 individuals are considered as 
being sufficient for the construction of reasonably accurate genetic maps. A random reduction of 100 individuals 
was defined in each scenario, respecting the proportionality of individuals removed from each family. Thus, in 
all, thirty-six distinct scenarios were evaluated. These scenarios correspond to the combination of two levels of 
heritability, two genetic architectures, and nine variations in population size.

Linkage disequilibrium. A linkage disequilibrium (LD) analysis was performed to determine the markers 
associated with QTLs. Specifically, the LD decay pattern between marker pairs across the genome was obtained 
using a figure in which the square values of the correlation coefficient  r2 were plotted against the genetic distance 
between markers (in cM). Subsequently, a local polynomial regression (LOESS)40–42 was fitted to the data and 
a horizontal straight line was plotted with a critical value of r2 = 0.2043,44. The window distance, defined as the 
intersection of the fitted LOESS curve and the horizontal straight line, will be used to determine which markers 
are associated with QTLs. Thus, all markers that distance the value of the window obtained (depending on the 
scenario evaluated) in relation to each QTL are considered as markers associated with the QTLs. The square of 
the correlation coefficient 

(

r2
)

 was estimated using the LD.decay function of the sommer  package45 and the fit of 
the polynomial regression model using the loess function, both from the R  software46.

Genome‑wide association study. To perform the genome-wide association analysis, first, the correction 
for population structure was performed through principal component analysis (PCA) of the genomic related-
ness matrix (G)20,47,48. The number of principal components adopted was obtained using STRU CTU RE 2.3.4 
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 software49, selecting 300 markers in linkage equilibrium, aiming to ensure that these markers are not associated. 
A cluster number (K) ranging from 1 to 21 was tested, with ten independent replicates for each K value. In 
order to identify the optimal number of K, 10,000 iterations were run, with 1,000 burn-in. Then, the ∆K  index50 
implemented in Structure Harvester  software51 was calculated to determine the choice of the most likely value of 
K. Subsequently, the K first principal components (CP) were used as fixed effect covariates in the GWAS model.

The GWAS model was defined by:

where Y is the vector of phenotypic information; μ is the population mean; αj is the effect of the j-th marker 
considered as fixed, j = 1, . . . , 2000 ; SNPj is the incidence vector of the j-th SNP marker; βk is the fixed effect of 
the k-th principal component, adjusted as a covariate; CPk is the vector of the k-th principal component; ε is the 
vector of random errors. The vector θ =

[

µ,αj ,β1, ...,βk
]′

 represents the unknown parameters, being estimated 
by means of QR and the GLM.

The methods estimate the individual effect of each marker on the phenotype of interest and then perform 
multiple hypothesis tests in order to detect which marker effects are statistically significant. The parameters were 
estimated via QR for different levels (quantiles) of the distribution of the phenotype of  interest30,32. This meth-
odology consists of estimating the parameters at the τ quantile by solving the following optimization problem:

where τ ∈ (0, 1) indicating the quantile of interest, N indicates the population size evaluated, and ρτ (·), denoted 
check function  by30, is defined by:

In this study, three quantiles (τ = 0.10, 0.50 and 0.90) were evaluated. For model fitting, the rq function 
from the quantreg  package52 of the R software was used. The individual coefficients (effects) of each marker are 
estimated by summing the weighted absolute errors. For estimation, it is necessary to use linear programming 
algorithms. One of the methods used is the Simplex  Method53.

The parameters were also estimated using GLM. This methodology consists of estimating the parameters in 
average terms and solving the following optimization problem:

For model fitting, the individual coefficients (effects) of each marker were estimated by minimizing the sum 
of squared errors by the ordinary least squares method using the GAPIT R  package54 of the R  software46.

Hypothesis testing. After estimating the effects of individual markers through QR and GLM, multiple 
t-student tests were performed according to the methodology used, in order to analyze the existence of signifi-
cant associations between the marker and the phenotype of interest. In the general linear model, the standard 
error estimate used was the usual, while in the quantile regression it was based on rank53,55,56. However, due to 
the high density of markers, performing multiple tests can lead to an increase in false positive  associations27. An 
alternative to controlling this rate is the False Discovery Rate (FDR)57,58. One way to consider the FDR in hypoth-
esis testing is through a correction in the p-value associated with the test, called the q-value59. In this study, a 
significance level of 0.01 ( α = 1% ) corrected by the FDR was used.

Comparison between methodologies. In order to evaluate the efficiency of the analyzed methodolo-
gies, the QTL detection power and the false positive rate were calculated and defined below: i) The power of 
QTL detection corresponds to the proportion of pre-established windows (intervals) (by means of LD analysis) 
that contain at least one marker considered significant by means of the statistical methods evaluated. ii) The false 
positive rate corresponds to the ratio between the number of markers that were significant by the evaluated sta-
tistical methods and are not associated with QTLs and the number of markers that are not associated with QTLs.

Results and discussion
Population structure. According to the method  of50, ∆K was plotted against the number of clusters (k). 
The maximum value of ∆K occurred at K = 19 and K = 18 for the scenarios of 3 QTLs and 100 QTLs, respectively 
(Fig. 1). Thus, 19 and 18 principal components were used as covariates in the GWAS analyses. According to the 
principal component analysis, 19 and 18 PCs accounted for explanation percentages of the variance present in 
the genotypic data between 85 and 96%, depending on the scenario evaluated. This result is in agreement with 
the simulated data of this study, where populations were simulated from 20 full sib families.

Linkage disequilibrium. The LD was calculated for all marker pairs in the same linkage group by means 
of  r2. Figures 2 and 3 graphically represent the decay of LD as a function of genetic distance according to the 

Y = µ+ αjSNPj +

K
∑

k=1

βkCPk + ε

θ̂τ = argmin
θ̂τ

[

N
∑

i=1

ρτ |εi|

]

,

ρτ (εi) =

{

τεi , if εi ≥ 0,
(τ − 1)εi , if εi < 0

.

θ̂ = argmin
θ̂

[

N
∑

i=1

ε2i

]
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number of QTLs evaluated. The critical value of r2 = 0.20 was adopted, which according  to43, it is expected that 
values of r2 < 0.20 , the LD is corrupted, that is, there is a tendency of linkage equilibrium between the mark-
ers. The intersection of the LOESS curve with the horizontal straight line 

(

r2 = 0.20
)

 for the scenarios (different 
population sizes) of 3 QTLs, with a reduction in the number of individuals from 1000 to 200, was 0.924 cM, 
0.994 cM, 1.085 cM, 1.161 cM, 1.302 cM, 1.444 cM, 1.617 cM, 1.830 cM and 2.158 cM, respectively (Fig. 2).

As for the scenario with 100 QTLs, the intersections obtained were: 0.943 cM, 1.019 cM, 1.101 cM, 1.196 cM, 
1.312 cM, 1.452 cM, 1.620 cM, 1.820 cM, and 2.150 cM (Fig. 3).

After obtaining these values, it was determined that all markers that are less than the distances mentioned 
above (depending on the scenario evaluated) from each QTL are considered as markers associated with the QTLs.

Genome‑wide association. The general linear model obtained a low power of detection of QTLs in all 
scenarios evaluated (Table 1). In the scenarios with 3 QTLs, regardless of heritability and population size, this 
methodology showed power values equal to or less than 0.03 (Table 1). In the scenarios with 100 QTLs with 
1000 individuals and a heritability of 0.30, the GLM obtained a power of detection on average of 0.21 ± 0.07 and 
with heritability 0.50, the power of detection was on average 0.56 ± 0.09. As the population size was reduced, the 
detection power was reduced until it reached zero in all scenarios evaluated (Table 1). This result was already 
expected and can be corroborated by several studies in the literature. For example, in the study  by60, in which the 
authors evaluated the effect of population size in GWAS, considering data from barley germplasm. In this study, 
the authors used a base population consisting of 766 individuals, and population size reduction was achieved 
by random resampling without replacement, forming populations with 96, 192, 288, 384, 480, 576, and 672 
individuals, and observed that the detection power of QTLs decreased according to population size  reduction61. 
Also evaluated the power of GWAS to identify true significant associations using simulated Arabidopsis data set 
with 200, 400, and 800 individuals. As a result, the authors observed that the power of identifying true associa-
tions decreased as the number of individuals decreased. In addition to these,62evaluated the influence of sample 
size in GWAS using simulated data from a Chinese soybean germplasm population consisting of 200, 400, 600, 
and 800 individuals randomly sampled from an ideal base population. As a result, the authors observed that the 
detection power of true significant associations decreased, and the false positive rate increased with decreasing 
sample size. Furthermore, according  to63  and64, the efficiency of GWAS requires large population sizes.

However, the pattern reported by the authors mentioned above and those observed here for the GLM was 
not observed when using the QR models. In general, the QR, in all scenarios evaluated, obtained high detec-
tion power (Table 1). Additionally, unlike the results obtained using GLM, the detection power of QTLs did not 
reduce with the decrease in population size (Table 1). This result may be related to the way in which the standard 
error is calculated by the two methodologies. In the GLM, the standard error estimate used was the usual one, 
while in the QR it was based on the rank statistic. The rank statistic is greatly influenced by the sample  size53,55. 
Thus, the statistic of the test used generally presents higher values and, therefore, a greater number of QTLs 
being considered significant.

In scenarios with 3 QTLs, at quantiles of 0.10 and 0.90, regardless of heritability and population size varia-
tion, QR detected almost all simulated QTLs (Table 1). As for the scenarios with 100 QTLs, QR at the extreme 
quantiles (τ = 0.10 and 0.90) obtained higher or equal QTL detection power when compared to QR (τ = 0.50) 
(Table 1). In terms of population size, independent of heritability and quantile evaluated, QR detected all QTLs 
of interest considering population sizes equal to that of 200 and 300 individuals to QR (Table 1).

In general, the use of QR obtained a high QTL detection power independent of the population size, and espe-
cially in the extreme quantiles. This result is reasonable since QR uses the same idea of sampling for  extremes65. 
Sampling extreme phenotypes samples individuals at the extremes in the hope that rare causal variants will be 
enriched among  them32. However, unlike the extreme phenotype sampling approach, the use of QR does not 
require any assumptions about the distributions of traits, is robust to outliers, and uses all individuals in the 

Figure 1.  Graph ∆K versus number of clusters K. (a) Scenario with 3 QTLs. (b) Scenario with 100 QTLs.
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estimation process, avoiding some problems related to extreme phenotype sampling, as an example, sampling 
bias and the assumption of  normality31,32.

Figure 2.  Decay of linkage disequilibrium  (r2) as a function of genetic distance in the 10 linkage groups in the 
scenario with 3 QTLs. (a) Scenario: 1000 individuals (b) Scenario: 900 individuals (c) Scenario: 800 individuals 
(d) Scenario: 700 individuals (e) Scenario: 600 individuals (f) Scenario: 500 individuals (g) Scenario: 400 
individuals (h) Scenario: 300 individuals (i) Scenario: 200 individuals.
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The detection of significant SNPs with a small population size and at the extreme quantile has already been 
observed  by32. The authors evaluated 80 genotypes and 384 SNP markers of common bean, aiming to identify 
genomic regions for three phenological traits (Days to first flowering-DPF; Days to flowering-DTF; and Days to 

Figure 3.  Decay of linkage disequilibrium  (r2) as a function of genetic distance in the 10 linkage groups in 
the scenario with 100 QTLs. (a) Scenario: 1000 individuals (b) Scenario: 900 individuals (c) Scenario: 800 
individuals (d) Scenario: 700 individuals (e) Scenario: 600 individuals (f) Scenario: 500 individuals (g) Scenario: 
400 individuals (h) Scenario: 300 individuals (i) Scenario: 200 individuals.
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end of flowering-DFF). As a result, the authors found no significant associations using GLM. On the other hand, 
when using QR at the 0.10 quantile, one and six significant SNPs were found for DPF and DTF, respectively. 
Although the work  of66  and67 was not conducted in the context of genome-wide association, the authors also 
evaluated the performance of QR on simulated data set with small population sizes and concluded that QR is 
a robust technique in these situations. This result is very promising in breeding programs that have a reduced 
number of available genotypes.

Regarding the rate of false positives, we have found that the GLM, in all scenarios evaluated, presented low 
values for this rate. This result may be related to the low detection power of QTls by this methodology (Table 2). 
The false positive rate obtained by the QR methodology is relatively low in the scenarios with a higher number 
of individuals. QR (τ = 0.50) was the methodology that presented lower false positive rates. In scenarios where 
the QR detection power in the three quantiles evaluated was equal, the QR (τ = 0.50) showed better results than 
in the extreme quantiles QR (τ = 0.10 and 0.90) since the false positive rate was lower (Table 2). Regarding the 
reduction in the number of individuals, the false positive rate increased substantially according to the reduc-
tion in population size, a result that may be related to the observed increase in the number of QTLs detected in 
these scenarios.

Finally, it was observed that the decrease in the heritability of the trait implies a lower power of detection of 
QTLs when using the GLM in all scenarios evaluated (Table 1). This result is similar to that found  by62, in which 
the authors compared the detection power of true significant associations using five GWAS methods. This was 
done using simulated data from a Chinese soybean germplasm population with different levels of heritability 
(h2 = 0.20, 0.50 and 0.90) and two genetic architectures with 10 and 100 QTls. As a result, the authors observed 
that the detection power was dramatically reduced for all methods and scenarios evaluated when the heritability 
of the trait was reduced. On the other hand, this behavior was not observed when using the QR methodology. 
The QR obtained greater or equal powers of detection of true significant associations in scenarios with lower 
heritability (h2 = 0.30) regardless of the number of QTLs and sample size (Table 1). This result is interesting 
since it indicates that QR is an interesting methodology for GWAS studies in both low and moderate heritability 
scenarios.

Overall, these results indicate that using quantile regression to perform GWAS in the identification of QTLs 
is an interesting approach. QR proved to be efficient both in scenarios with many individuals and in scenarios 
with a reduced population size. Additionally, this methodology also proved to be interesting for GWAS studies 
in which the traits have low and moderate heritabilities.

Conclusion
The use of Quantile Regression models in genomic association studies on simulated data proved to be effective. 
Since its use, it allows a high power of detection of QTLs in all the scenarios analyzed in relation to the GLM. In 
scenarios with larger population sizes, the QR in the extreme quantiles (τ = 0.1 and 0.9) were the most efficient 
models in the simulated conditions because they were the ones that obtained the highest QTL detection powers. 
In the scenario where the detection power of the QR in the three evaluated quantiles was equal, the QR (0.50) 
was more efficient, as the false positive rate was lower. In the low heritability scenarios, QR obtained a high 
detection power of QTLs. The false positive rate obtained by the QR methodology in the scenarios with many 
individuals is relatively low. QR proved to be efficient both in scenarios with many individuals and in scenarios 
with a small population size.

Table 1.  Means and standard errors (10 replicates) of QTL detection power against two methodologies. Nº 
QTL: number of loci controlling the trait, h2 : heritability, QR: quantile regression, GLM: general linear model.

No. QTL h2 Methods

Population size

1000 900 800 700 600 500 400 300 200

3

0.30

QR (0.10) 1.00 ± 0.00 0.97 ± 0.03 1.00 ± 0.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.50) 0.80 ± 0.07 0.90 ± 0.05 0.93 ± 0.04 0.96 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.90) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GLM 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.00 ± 0 .00 0.00 ± 0.00 0.00 ± 0.00 0 .00 ± 0.00 0.03 ± 0.03

0.50

QR (0.10) 0.87 ± 0.07 0.90 ± 0.05 0.93 ± 0.04 0.93 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.50) 0.70 ± 0.10 0.70 ± 0.10 0.50 ± 0.06 0.77 ± 0.05 0.90 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.90) 0.80 ± 0.09 0.97 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GLM 0.03 ± 0.07 0.23 ± 0.07 0.23 ± 0.07 0.23 ± 0.07 0.20 ± 0.07 0.07 ± 0.04 0.03 ± 0.03 0.03 ± 0.03 0.00 ± 0.00

100

0.30

QR (0.10) 0.92 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.50) 0.54 ± 0.09 0.72 ± 0.07 0.82 ± 0.05 0.92 ± 0.03 0.96 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.90) 0.95 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GLM 0.21 ± 0.07 0.00 ± 0. 00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.10 0.00 ± 0.00 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00

0.50

QR (0.10) 0.61 ± 0.06 0.77 ± 0.05 0.78 ± 0.07 0.93 ± 0.03 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

QR (0.50) 0.15 ± 0.06 0.23 ± 0.06 0.31 ± 0.08 0.57 ± 0.07 0.72 ± 0.06 0.85 ± 0.04 0.94 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

QR (0.90) 0.55 ± 0.06 0.64 ± 0.07 0.66 ± 0.07 0.85 ± 0.04 0.93 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

GLM 0.56 ± 0.09 0.07 ± 0.02 0.03 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00
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