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LKC‑Net: large kernel convolution 
object detection network
Weina Wang 1*, Shuangyong Li 1, Jiapeng Shao 1 & Huxidan Jumahong 2

Deep learning‑based object detection methods have achieved great performance improvement. 
However, since small kernel convolution has been widely used, the semantic feature is difficult to 
obtain due to the small receptive fields, and the key information cannot be highlighted, resulting in a 
series of problems such as wrong detection, missing detection, and repeated detection. To overcome 
these problems, we propose a large kernel convolution object detection network based on feature 
capture enhancement and vast receptive field attention, called LKC‑Net. Firstly, a feature capture 
enhancement block based on large kernel convolution is proposed to improve the semantic feature 
capturing ability, and depth convolution is used to reduce the number of parameters. Then, the 
vast receptive filed attention mechanism is constructed to enhance channel direction information 
extraction ability, and it is more compatible with the proposed backbone than other existing attention 
mechanisms. Finally, the loss function is improved by introducing the SIoU, which can overcome the 
angle mismatch problem between the ground truth and prediction box. Experiments are conducted on 
Pascal VOC and MS COCO datasets for demonstrating the performance of LKC‑Net.

Object detection is an important task in the field of computer vision, and it is also essential to be employed in 
other advanced visual tasks, such as behavior  recognition1, attitude  estimation2, and video  segmentation3. The 
task of object detection is to use RGB images as input and realize location annotation, classification of interest 
targets, and display the confidence of their categories. Object detection has been widely used in many fields, 
including traffic  detection4,5, medical  detection6,7, industrial  detection8,9, and many others.

The receptive field is an important design element for object detection. To expand the receptive field, 
researchers usually used a relatively large convolution kernel in the network model, so that the model could 
obtain more comprehensive features of the input image, such as LeNet(5*5)10 and AlexNet(5*5, 11*11)11. A 
large number of object detection networks based on large kernel convolution, including effective receptive field 
(ERF)12,  RepLKNet13, and  ViT14, have been proposed. Nevertheless, the incorporation of large kernel convolutions 
can bring some associated challenges. First, the inappropriate position of large kernel convolution may degrade 
the performance of the network. Second, it is difficult to determine the size of large kernel convolution that can 
achieve the best performance. Third, the introduction of large kernel convolution will result in a significant 
increase in the number of parameters and computation costs in the network. Therefore, this paper aims to 
determine the optimal position and size of large kernel convolution and reduce the number of parameters while 
maintaining the prediction performance.

To address the above consideration, the ultimate goal of this paper is to propose an object detection network 
with a large kernel convolution block (LKC-Net). Firstly, a feature capture enhancement block based on large 
kernel convolution is proposed. The 1*1 convolution blocks in the neck’s bottom-up fusion feature convolution 
modules are replaced with 17*17 and 5*5 convolution blocks, respectively. The standard convolution is replaced 
with depthwise convolution to reduce network parameters and improve network efficiency. Then, the attention 
mechanism with a large receptive field is fused in the backbone to make the whole model more suitable for the 
large convolution kernel structure. Finally, the loss function is improved by introducing SIoU. The distance loss 
is modified, and angle loss is added to further improve the performance of network detection. The overview of 
the proposed network LKC-Net is shown in Fig. 1.

The contributions can be summarized as follows: (a) The feature capture enhancement block is designed 
to improve the feature capturing ability of the neck. The kernel size of the convolution blocks in the neck is 
enlarged to obtain a larger receptive field, and the depth convolution is used to reduce the number of parameters. 
Compared with the existing models, the proposed network has higher accuracy with the same number of 
parameters. (b) The vast receptive field attention is constructed to enhance the channel direction information 
extraction ability. The model integrates the attention mechanism with a large receptive field more compatible with 
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the proposed backbone. Therefore, the detection accuracy can be further improved under the combined action of 
the large convolution neck and the large receptive field attention mechanism. (c) The loss function is improved by 
introducing the SIoU, which can overcome the angle mismatch problem between the ground truth and prediction 
box. This can effectively enhance the computational performance of the detection model. (d) The object detection 
model with a large kernel convolution block is proposed. The large kernel convolution neck structure integrates 
high-level and low-level features, which can improve the ability to extract semantic information features of image 
context. Therefore, the performance of network detection is enhanced. (e) Extensive experiments have been 
carried out on the Pascal VOC and MS COCO datasets, proving the advantages of LKC-Net over the existing 
methods by quantitative and qualitative evaluation.

The main structure of this paper is as follows: “Related works” introduces the related works to large kernel 
convolution and attention mechanism. In “Proposed method”, the objection detection model is proposed, and the 
main components are described in detail. A series of experiments and visualization is performed in “Experiment”. 
Conclusions are presented in “Conclusion”.

Related works
Overview of object detection. In recent years, object detection models have been mainly divided into 
two categories: two-stage detection model and one-stage detection model. The process of the two-stage object 
detection model is divided into two steps. In the first step, the candidate region is extracted from the input image. 
In the second step, the candidate region is send to the CNN network for detection. Classical two-stage object 
detection models include R-CNN15, Faster R-CNN16, etc. The two-stage model has been the leader in the field of 
object detection for a long period, but the fatal disadvantage of this kind model is that the detection speed is not 
efficient enough. Although some two-stage models have improved the detection speed, they still cannot meet 
the requirements of real-time detection. The one-stage model breaks the dominance of the two-stage model in 
terms of detection speed. With the advent of  YOLO17 in 2015, the one-stage object detection model began to 
boom. Its basic idea is to divide the input image into S ∗ S grids, and each grid predicts B bounding boxes. Then, 
the input image is send into the neural network to extract features. Finally, the network directly predicts and 
outputs the detection result. There are other one-stage object detection networks such as  SSD18 and  RetinaNet19. 
However, these models did not evolve as well as YOLO in subsequent versions, and YOLOV5 model is chosen 
as our baseline.

Large kernel convolution. The receptive field is an important element for object detection neural network 
models. The receptive field of a convolutional neural network unit corresponds to the fixed region in the image 
of the previous layer, and the image outside the corresponding region of the receptive field cannot affect the 
unit. The larger the receptive field the neural network unit owned, the more context information of the image 
received by the convolutional neural network unit. Therefore, enabling the network to extract features from 
images on a larger vision can be more sensitive to input images. There are many methods that use large kernel 
convolution to improve the receptive field of networks, such as LeNet(5*5)10, AlexNet(11*11)11, Inception(1*7, 
7*1)20, GoogLeNet(7*7, 5*5)21. Chen. et al22also find that the large kernel convolution has excellent performance 
not only in 2D CNNs model but also in 3D CNNs.

Although large kernel convolution can better obtain contextual information on detection targets, some 
researchers have found that the size of the convolution kernel is not that the larger convolution kernel size leads 
to better model performance. Sheng et al.23 proposed that only local features can be observed if the receptive field 
is too small, and the relationship between features can be ignored. If the receptive field is too large, too much 
invalid information will be retrieved, decreasing the representation ability of the network. Han et al.24 tried the 
convolution kernel size of 7*7 and 9*9 in the segmentation task, and found that the 7*7 convolution kernel would 

Figure 1.  The overview of LKC-Net.
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improve the network. However, the 9*9 convolution kernel would cause performance degradation. Therefore, 
large kernel convolution of different sizes may affect downstream tasks differently.

This paper verifies the influence of convolution kernels with different sizes. On this basis, a context 
enhancement block is proposed, which can effectively enlarge the receptive field of the detection model, and it 
is combined with the YOLOV5 object detection model to improve the detection precision.

Attention mechanism. The attention mechanism originates from the study of the human visual system. 
When humans observe things with their eyes, they do not focus on everything in their visual field but selectively 
look at the part of their visual field that they want to get information from. Inspired by this observation, 
researchers have designed different attention mechanisms for various tasks to enhance the network’s attention 
to the target of interest. At present, the existing attention mechanisms include Squeeze-and-Excitation (SE)25, 
Convolutional Block Attention Module (CBAM)26, and Channel Attention (CA)26, etc. There are also some 
attention mechanism used for distill detection model to fusion different modality, such as modality attention-
based fusion (MAF)27.

However, the experimental verification shows that the use of some attention mechanisms can not improve 
the network’s detection effect but reduces the network’s accuracy. This indicates that some existing attention 
mechanisms are not in harmony with large kernel convolution and even hinder the improvement of detection 
performance.

In this paper, the attention mechanism with a large receptive field is introduced to fit the detection network 
model of large kernel convolution. Under the combined action of the large convolution neck and the large 
receptive field attention mechanism, the network model can enhance the ability to extract context information 
from an image, thereby improving the detection accuracy of the network.

Loss function. The loss function of the YOLO series is composed of three kinds of losses, namely, box 
location loss, classification loss, and confidence loss. For box location loss, YOLO usually adopts IoU series losses, 
which have experienced from IoU loss to Generalized-IoU loss (GIoU)26, Distence-IoU loss (DIoU)28, Conplete-
IoU loss (CIoU)28. In version 6.0 of YOLOV5, CIoU is used for IoU loss of positioning frame. Compared with 
DIoU, CIoU added the influence factor of the size of the detection frame and further considered the aspect ratio 
between the bounding box and the ground truth, making the prediction frame closer to the ground truth.

However, CIoU loss does not consider the angle problem between ground truth and the bounding box. The 
angle mismatch may cause the restriction for the prediction box in the training process and eventually lead to the 
training model with poor performance. Therefore, the SIoU is introduced into the proposed network to increase 
the angle matching between the bounding box and ground truth for improvement performance.

Proposed method
In this section, the object detection model with large kernel convolution based on feature capture enhancement 
and vast receptive field attention (LKC-Net) is proposed. Firstly, the feature context enhancement (FCE) block 
based on large kernel convolution is proposed. It is integrated into the neck network to enlarge the receptive 
field of the neck and enhance the neck’s ability to extract high-level feature context information in the bottom-up 
process. Then, the vast receptive field (VRF) attention mechanism is constructed to strengthen the network’s 
attention to extracting features in a larger receptive field. Finally, the loss function is improved by introducing 
the SIoU, which can overcome the angle mismatch problem between the ground truth and prediction box. 
The general structure of LKC-Net is illustrated in Fig. 2. The main components of the proposed model will be 
presented in what follows.

Baseline. The baseline adopts the basic architecture of the  YOLOV5s29 model. YOLOV5 is an end-to-end 
object detection model with different parameter sizes: S, M, and L, for different purposes. The network has been 
updated from version 1.0 to version 6.0. The whole network consists of three parts: the backbone, neck, and 
head. The backbone is used to extract the features of input images. The neck is used to integrate the high-level 
and low-level features extracted from the backbone network and thus strengthen the ability of the whole network 
to extract image features. The head is used to predict and output the result of the detection. The loss function 
used by YOLOV5 in version 6.0 is CIoU. Compared with  DIoU28, CIoU considers the consistency of the aspect 
ratio of the three regression elements in the bounding box, which further improves the detection accuracy of the 
network. The CIoU loss function is defined as follows:

where IOU is the intersection ratio between the ground truth and the bounding box, ρ(·) is the Euclidean 
distance, and c is the diagonal line containing the smallest box. α is the weight function and is used to measure 
the consistency of the aspect ratio. It can be seen from the definition of α that the CIoU loss tends to be optimized 
in the direction of increasing the overlap area.
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Feature capture enhancement block. The high-level and low-level features extracted from the 
backbone network have different characteristics. The low-level feature contains less semantic information, but 
the information provided by the low-level feature is significant for predicting the object’s location. Compared 
with the low-level features, the high-level features contain richer semantic information. The prediction based on 
high-level semantic information can better identify the object’s content, but it is difficult to accurately predict 
the object’s location. In the neck network of the original YOLOV5 model, the strong semantic features extracted 
from the backbone are conveyed to the bottom-up structure, and the high-level semantics are integrated with 
the low-level semantics. Then, convolution is used to extract the fused features in the top-down path. Finally, the 
head outputs the result of the detection. In the neck of the original YOLOV5, the size of the bottom-up structure 
convolution kernel is 1*1. This part is mainly used to fuse the feature map extracted from the backbone network, 
and the 1*1 convolution is utilized to extract the spatial features in high latitudes.

However, the small kernel convolution results in the loss of contextual semantic information. To overcome 
this shortage, the convolution kernel size of bottom-up feature extraction is enlarged to improve the network’s 
ability to extract high-level features and strengthen the network’s common recognition of background and object 
information. Based on the above-mentioned consideration, the feature capture enhancement block (FCE) is 
proposed. FCE enlarges the size of the convolution kernel for extracting high-level semantic information in 
the neck network, i.e. the 1*1 convolutions are replaced by the 17*17 and 5*5 convolutions, respectively. FCE 
can enhance the feature capture ability of the original PANet bottom-up module. Furthermore, the original 
convolution mode is modified to the depth convolution. This not only increases the receptive field of the network 
but also reduces the parameters of the network. The feature capture enhancement block is shown in Fig. 3.

The number of parameters is reduced by utilized of the depth convolution. The analysis of the number of 
parameters in depthwise convolution and standard convolution is performed as follows. Let DK be the size of the 
convolution kernel, M be the number of the feature map’s channels at the input end, N be the number of feature 
map channels at the output end, and DF be the size of the feature map at the output end. The comparison of the 
parameter number of the two parts is as follows:

It can be seen that the number of parameters in FCE block decreases N times, where N is the number of channels 
in standard convolution. Thus, the FCE block effectively reduces the number of parameters and improves network 
efficiency.

Vast receptive field attention. In the process described above, the feature capture enhancement block 
can increase the receptive field and reduce the number of network parameters. This improvement may lead to 
the loss of the channel information, thus attention mechanism is added to obtain channel direction information. 
At present, some well-known attention mechanisms can enhance the ability of the network to obtain spatial 
information, such as  SE25,  CBAM26, and  CA26. However, the experimental verification shows that the use of 
these attention mechanisms not only cannot improve the detection effect of the network but also reduces the 
accuracy of the network. The above attention mechanisms make the network backbone search for the target 

(4)
DK · DK ·M · DF · DF

DK · DK ·M · N · DF · DF
=

1

N

Figure 2.  The Structure of LKC-Net.
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of interest in the limited receptive field, which leads to conflict with the neck network with large convolution 
features, resulting in an unsatisfactory result. Therefore, the vast receptive field (VRF) attention is constructed to 
increase the receptive field and promote the performance of the neck network with large convolution features. 
The structure of vast receptive field attention is shown in Fig. 4.

Assuming the intermediate feature map F ∈ RC×H×W as the input, the VRF attention mechanism first uses 
a convolution block to calculate the feature map MC ∈ RC×H×W that containing channel information. Then, 
the feature map is convolved twice to successively calculate the sum of two feature maps MVRa ∈ RC×H×W and 
MVRb ∈ RC×H×W with large receptive fields. Finally, the calculated attention feature map MVRb ∈ RC×H×W is 
multiplied by the input intermediate feature map to obtain the enhanced feature map F ′ ∈ RC×H×W . The overall 
process can be summarized as follows:

where F ′ is the final output feature map, and ⊗ is the element-wize multiplication. MC(F) , MVRa(F) , and MVRb(F) 
are the three convolution modes in VRF, which are defined as follows:

where f C×1×1(F) represents the convolution whose convolution kernel is 1*1*C, f 5×5
DW (F) represents the 

convolution calculation whose convolution kernel is 1*5*5, and f 7×7
DWd(F) represents the deep cavity convolution 

whose convolution kernel is 1*7*7.

Loss function. The loss function in YOLOV5 comprises three parts: classification loss, location loss, and 
confidence loss. Among them, the classification loss refers to whether the prediction box and the corresponding 
classification are correct, the positioning loss refers to the error between the bounding box and GT, and the 
confidence loss refers to the confidence of the target detected by the network. The loss function is defined as 
follows:

(5)F ′ = F ⊗MVRb(MVRa(MC(F)))

(6)MC(F) =f C×1×1(F)

(7)MVRa(F) =f 5×5
DW (F)

(8)MVRb(F) =f 7×7
DWd(F)

Figure 3.  The feature capture enhancement block.

Figure 4.  The vast receptive field attention.
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where K, S2 and B are the index of the output feature map, the index of the cell on the feature map, and the index 
of the anchor on each cell, respectively. α is the hyperparameter loss weight set for each loss. Iobjkij  represents the ith 
cells and jth anchor in feature map, whose value is 1 if it is positive, and 0 if not. βbalance

K  is the weight for balance 
three scales (80*80, 40*40, 20*20) feature map.

To overcome the angle mismatch problem between ground truth and bounding box, the loss function is 
improved by introducing the SIoU. The loss function is composed of four parts: angle, distance, shape, and IoU 
costs. The total box loss is as follows:

where � is distance loss, � is shape loss, and IoU is IoU loss. The loss function redefines distance loss and 
considers angle loss � into distance loss as follows:

where x is the hypotenuse for the connection σ which between the center points of the anchor box B and the 
ground true BGT , and the vertical distance Ch is the sine value of the opposite side, as shown in Fig. 5.

Experiment
In this section, the experiments are conducted to prove the effectiveness of the proposed model through 
quantitative and qualitative evaluation. The experiment is divided into four parts: (1) the experimental dataset 
and training environment configuration are introduced. (2) The quantitative evaluation is performed to verify the 
improvement of LKC-Net in accuracy on the Pascal VOC and MS COCO datasets. (3) The validity analysis and 
ablation experiment is performed to verify the effect of three innovative points in LKC-Net. (4) The qualitative 
evaluation is carried out to verify the improvement of LKC-Net in vision.

Introduction of datasets. Pascal VOC dataset. The PASCAL VOC  Challenge30 consists of the following 
categories: Image Classification, Object Detection, Object Segmentation, Action Classification, etc. There are 20 
main target categories in the Pascal VOC dataset. This paper mainly uses the object detection task data set of 
the VOC2007+2012 dataset for training, in which the train set contains 16,551 pictures, and the test set contains 
4952 pictures. The representative pictures of the data set are shown in Fig. 6a.

MS COCO dataset. MS  COCO31 is a very high industry status and large-scale dataset used for object detection, 
segmentation, image description, and other scenes. The dataset used in this paper is COCO2017, in which 80 
categories of images are used for object detection. Dataset images are divided into train, verification, and test 
sets. There are 118,287 pictures in the train set, 5000 pictures in the verification set, and 40,670 pictures in the 
test set. The representative pictures of the data set are shown in Fig. 6b.

Experimental environment and hyperparameter settings. The experimental environment is PyTorch deep 
learning library, in which Pytorch version is 1.12.1+cu113, the version of torchaudio is 0.12.1+cu113, the version 
of torchextractor is 0.3.0. The version of torchvision is 0.13.1+cu113. The experiment is conducted on 12th 
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Figure 5.  The angle loss of SIoU.
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Gen Intel(R) Core(TM) i7-12700@ 2.10GHz CPU, 32GB RAM, and NVIDIA RTX 3090 Ti GPU. The system is 
Windows 10 Pro version 19044.1826. The experimental hyperparameter settings are shown in Table 1.

Quantitative evaluation. Experiment on Pascal VOC datasset. In the training process of the Pascal 
VOC dataset, the weight of pre-training on the COCO dataset is chosen. The train and verification set of 
VOC2007 and VOC2012 is used for the model training. The final results is tested on the VOC 2007 test set. The 
proposed model LKC-Net is compared with Fast  YOLO18, Faster R-CNN VGG-1618, ShuffleNetV2-SSDLite32, 
RefineDet512-VGG-1633, RFB Net512-VGG33, MobileNetV2-YOLOV434, EEEA-Net-c2-  yolov434,  SSD30018, 
 YOLOV5s29, YOLOV6-N35, and YOLOV7-Tiny36. The detection result on the VOC dataset is shown in Table 2.

Table 2 shows that the mAP0.5 of LKC-Net is increased by 1.2% in comparison with the original YOLOV5s. 
Compared with the models with the large number of parameters, such as MobileNetV2-YOLOV4 and SSD300, 
the accuracy of LKC-Net is 2.5% higher than that of MobileNetV2-YOLOV4 and 2.4% higher than that of 

Figure 6.  The representative pictures of Pascal VOC and MS COCO.

Table 1.  Hyperparameter settings.

Hyperparameter name Number

Number of epoch 300

Batch_size 16

Input size 640

Optimizer SGD

Initial learning rate 1e−2

Momentum 0.937

Weight_decay 5e−3

Weight_decay 5e−3

Warmup_epoch 3

Table 2.  Comparison with different models on Pascal VOC dataset. The results with * in the table mean 
that this model is tested in the same environment, and the code comes from open source. Bold indicates the 
optimal performance.

Models mAP0.5 (%) Params (M)

Fast  YOLO18 52.7 –

Faster R-CNN-VGG-1618 73.2 –

SSD30018 79.6 36.1

SSD51218 81.6 36.1

SSD51218 81.6 36.1

ShuffleNetV2-SSDLite32 65.4 2.17

RefineDet512-VGG-1633 83.8 –

RFB Net512-VGG33 82.8 –

MobileNetV2-YOLOV434 81.5 46.34

EEEA-Net-C2-YOLOV434 81.8 31.15

YOLOV5s29 82.8* 7.06

YOLOV6-N35 79.3* 6.4

YOLOV7-Tiny36 80.9* 6.2

LKC-Net(Ours) 84.0 7.28
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SSD300. In comparison with the models with similar parameters, such as YOLOV6-N and YOLOV7-Tiny, 
the detection accuracy of the LKC-Net is 4.7% higher than that of YOLOV6-N and 3.1% higher than that of 
YOLOV7-Tiny. In summary, LKC-Net achieves the best detection accuracy while maintaining a small number 
of parameters. Therefore, LKC-Net achieves optimal detection performance.

Experiment on MS COCO datasset. Furthermore, LKC-Net is compared with MNetV1-SSDLite37, 
MNetV2-SSDLite37, RefineDet512-VGG-1633, RFBNet512-VGG33, MnasNet-A1-SSDLite38, Retina 
Net640-ResNet-5039, YOLOV3-ASFF32040, PPYOLO-Tiny41641, YOLOV4-Tiny32042, YOLOX-Tiny43, 
 YOLOV5s29,DAMO-YOLO-Ns44,DAMO-YOLO-NM44, PP-Picodet-M45, PP-PicoDet-MV3-large-1x45, 
PP-PicoDet-LCNet-1.5x45 EffificientDet-D046(512) and YOLOV7-Tiny64036. The accuracy of these algorithms 
on the MS COCO dataset is shown in Table 3.

Table 3 shows that the mAP0.5:0.95 of LKC-Net model increased by 1.2% compared with the YOLOV5s model. 
In comparison with the other lightweight YOLO model, it can be seen that the accuracy of LKC-Net is improved 
by 16.2% compared with MNetV1-SSDLite, 16.3% compared with MNetV2-SSDLite, and 15.4% compared with 
MnasNet-A1+SSDLite. It is 9.7% more accurate than YOLOV4-Tiny320 and 5.6% more accurate than YOLOX-
Tiny. In comparison with other one-stage detection models, LKC-Net is 5.4% better than RefineDet512-VGG-16, 
2.5% better than YOLOV6-N, 5.1% better than YOLOV7-Tiny, and 0.3% better than YOLOV3-ASFF320. In 
Comparsion with the selected SOTA methods, LKC-Net is 6.1% better than DAMO-YOLO-Ns,0.2% better than 
DAMO-YOLO-Nm, 4.1% better than PP-Picodet-M, 2.8% better than PP-PicoDet-MV3-large-1×, 3.8% better 
thanEffificientDet-D0. In summary, LKC-Net achieves the best detection accuracy while maintaining a small 
number of parameters. Therefore, LKC-Net has achieved the best detection performance.

Validity analysis and ablation experiment. Parameters and computation of different convolutions. To 
verify the improvement of feature capture enhancement block, the changes in the number of parameters and 
computation cost before and after adding the feature capture enhancement block are computed, as shown in 
Table 4.

Table 4 shows that when the size of the first convolutional block in the neck is increased to 17*17, the number 
of standard convolutional parameters increases from 7.23M to 29.25M, the number of parameters increases 
nearly four times, and the calculation amount increases from 16.6M to 34.2M, nearly two times. On this basis, 

Table 3.  Comparison with different models on MS COCO dataset. Bold indicates the optimal performance.

Models AP@.5:0.95 (%) Params (M)

MNetV1-SSDLite37 22.2 5.10

MNetV2-SSDLite37 22.1 1.30

RefineDet512-VGG-1633 33.0 –

RFBNet512-VGG33 33.8 –

MnasNet-A1-SSDLite38 23 4.90

RetinaNet640-ResNet-5039 37.0 –

YOLOV3-ASFF32040 38.1 –

PPYOLO-Tiny41641 22.7 4.20

YOLOV4-Tiny32042 28.7 5.89

YOLOX-Tiny43 32.8 5.1

YOLOV5s29 37.2 –

YOLOV7-Tiny64036 37.4 6.2

DAMO-YOLO-Ns44 32.3 1.41

DAMO-YOLO-Nm44 38.2 2.14

PP-Picodet-M45 34.3 2.15

PP-PicoDet-MV3-large-1×45 35.6 2.80

PP-PicoDet-LCNet-1.5×45 36.3 3.10

EffificientDet-D0 (512)46 34.6 3.9

LKC-Net (Ours) 38.4 7.2

Table 4.  Comparison of parameters between FCE and standard convolution.

Knernel size Parameters (M) GFLOPs (G) FCE parameters (M) FCE GFLOPs (G)

1*1+1*1 7.23 16.6 7.23 16.60

17*17+1*1 29.25 34.2 7.19 16.61

17*17+5*5 30.82 39.3 7.21 16.61
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when the size of the second convolution kernel block of the neck is increased to 5*5, the number of parameters 
is further increased from 29.25M to 30.82M, and the amount of computation is increased from 34.2 to 39.3%. 
However, when the feature capture enhancement block is replaced, it can be seen that the total parameters and 
computation cost of the network do not change significantly after increasing the size of the convolution kernel.

Different kernel sizes and attention mechanisms. The convolution kernel size of the standard convolution block 
in the original YOLOV5s is increased for the experiment. The original convolution kernel size is changed to 5*5. 
Then, the kernel size is gradually increased to obtain the best performance. It is found that the best convolution 
kernel size is the combination 17*17 of 5*5. The results are shown in Table 5.

Table 5 shows that when the kernel size is increased to 5*5, the detection effect is improved from 82.8 to 83.4% 
in comparison with the original YOLOV5s model. With the increase of the kernel size, the detection effect is 
also significantly enhanced, and the detection effect reaches the best (83.7%) when the kernel size is increased 
to 17*17. When the kernel size is increased to 19*19, the detection effect begins to deteriorate, and reduces the 
detection effect. The size of the second convolution kernel block also is increased to 5*5, and the model’s accuracy 
does not increase significantly at the beginning, remaining at 83.7%. When it increases again, the accuracy begins 
to plummet. Therefore, the optimal convolution kernel size is the combination 17*17 of 5*5.

To compare the influence of standard convolution and depthwise convolution, the comparison experiments 
for the method with standard convolution and depthwise convolution are conducted, as shown in Table 6.

Table 6 shows that when large kernel convolution is used in depthwise convolution, the number of parameters 
is almost a quarter of standard convolution, the number of parameters is a third of standard convolution, and 
the final effects of different convolutions are almost the same.

Furthermore, to verify the effect of different attention mechanisms on the model, a series of experiments with 
different attention mechanisms on the model is constructed, as shown in Table 7.

Table 7 shows that different attention mechanisms have different effects on the proposed model, among which 
the large receptive field attention mechanism has a better effect on detecting the convolution model with a large 
kernel. The other attention mechanisms, such as CBAM and SE, hinder the improvement of model accuracy. In 
the network with the addition of the FCE, the network detection accuracy with the addition of CBAM decreases 
from 83.7% to 83.2%. The accuracy of network detection with the addition of the SE attention mechanism also 
decreases from 83.7 to 83.2%, and the accuracy of network detection with the addition of the CA attention 
mechanism decreases from 83.7 to 83.6%. However, when the VRF attention mechanism is used, the accuracy 
of the model is improved from 83.7 to 83.8%.

Finally, we evaluate the influence of several different loss functions, including GIOU, DIOU and SIOU. The 
results are shown in Table 8. Table 8 shows that DIOU has a poor fit to the model, resulting in a loss of 0.2% in 
the proposed model, while GIOU and SIOU both have certain improvement effects on the model, increasing by 
0.1% and 0.2% respectively. Therefore, SIOU is selected as the loss function for the model.

Ablation study. To demonstrate the respective roles of different components in the proposed model, including 
using large kernel convolution, the feature capture enhancement (FCE) block, the vast receptive field (VRF) 

Table 5.  Comparison of different kernel sizes.

Kernel size mAP0.5 (%) Kernel size mAP0.5 (%)

5*5 82.9 19*19 83.6

13*13 83.4 17*17+5*5 83.7

17*17 83.7 17*17+7*7 83.3

Table 6.  Comparison between Depthwise Conv and Standard Conv.

Conv block Kernel size Parameters (M) GFLOPs mAP0.5 (%)

Standard Conv  17*17+5*5 30.82 39.3 83.8

Depthwise Conv  17*17+5*5 7.2 16.61  83.7

Table 7.  Comparison of different attention mechanisms.

Attention mAP0.5 (%)

FCE 83.7

FCE + CBAM 83.2

FCE + SE 83.2

FCE + CA 83.6

FCE + VRF 83.8
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attention mechanism, and the loss function, the ablation study on the Pascal VOC dataset is carried out. For a 
finer analysis, the three components are added successively in the ablation experiment, and the improvement on 
the model is shown in Table 9.

Table 9 shows that the enlargement of kernel size from 1*1 to 17*17 can improve the network detection 
performance. Although the accuracy of the model is improved by 1%, the number of parameters and calculation 
amount are significantly increased, as shown in Table 6. Then, FCE block is used to reduce the number of 
parameters and calculation amount. On this basis, VRF can enhance the attention of the network model to the 
channel direction of the feature map, which further improves the accuracy of the network model from 83.7 
to 83.8%. Finally, the loss function introduced into the model further improves the detection accuracy of the 
proposed network from 83.8 to 84.0%.

Visualization comparison. Visualization comparison of receptive field. The Grad-CAM47 visualization 
method is used to conduct receptive field visualization experiments on the YOLOV5 network and LKC-Net 
network, as shown in Fig. 7.

Figure 7 shows that the larger receptive field of LKC-Net is reflected in the third line of the heat map compared 
to the YOLOV5s, which means that the network pays more attention to the input image from a larger vision. As 
can be seen from Fig. 7, LKC-Net benefits from the large receptive field brought by the large convolution kernel, 
which makes LKC-Net not only interested in the target itself to be detected but also able to notice the contextual 
semantic information of the detected object.

Visualization experiments of improvement effect. To verify the improvement on the original YOLOV5s network, 
the visualization experiments of the improvement effect are performed, and the improvements of LKC-Net are 
shown in Fig. 8.

Table 8.  Comparison of different loss function.

Loss function mAP0.5 (%)

FCE + VRF  83.8

FCE + VRF + GIOU  83.9

FCE + VRF + DIOU  83.6

FCE + VRF + SIOU 84.0

Table 9.  Results of ablation experiment. Bold indicates the optimal performance.

 Large kernel Conv FCE VRF SIoU mAP0.5 (%)

YOLOV5s 82.8

YOLOV5s � 83.8

YOLOV5s � � 83.7

YOLOV5s � � � 83.8

YOLOV5s � � � � 84.0

Figure 7.  Comparison of receptive field.
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Figure 8a show that the LKC-Net network can solve the problem of missing detection compared with the 
YOLOV5s network. The first group of pictures shows the missed chairs, the second group of pictures shows 
the missed dogs, the third group of pictures shows the missing boats, the fourth group of pictures shows the 
missing people, the fifth group of pictures shows the missed cats, the sixth group of pictures shows the missed 
cars, and the seventh group of pictures shows the missed chairs and potted plants. Figure 8b show that the LKC-
Net network can solve the problem of YOLOV5s repeated detecting large objects in the image.The first and fifth 
sets of pictures show the repeated detection of ships, the second and fourth sets of pictures show the repeated 
detection of cat, the third set of pictures show the repeated detection of people, the sixth set of pictures show 
the repeated detection of planes, and the seventh set of pictures show the repeated detection of trains. Figure 8c 
show that LKC-Net can improve the YOLOV5s’s wrong detection problem. The first set of images corrected that 
the model detected tree trunk as bird, the second set of images corrected that the model detected potted plant 
as dog, the third set of images corrected that the model detected runway track as boat, the fourth set of images 
corrected that the model detected sofa as chair, the fifth set of images corrected that the model detected person 
as dog, the sixth set of images corrected that the model detected house as train, and the seventh set of images 
corrected that the model detected clock as person. Therefore, LKC-Net can effectively improve the problems of 
missing detection, wrong detection, and repeated detection by virtue of the large receptive field brought by the 
large kernel convolution.

Visualization of limitation. Although LKC-Net has significant performance improvements compared with the 
baseline model in different respects, there is still the limitation of the proposed method. In certain detection 
scenarios, when the distance between objects of the same class is small, it can cause the model to mistakenly 
recognize two objects as one object, as shown in Fig. 9. In the first image, the model identified two birds as one 
bird. The same problem occurs in the other three images.

Figure 8.  Performance improvements of LKC-Net.
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Conclusion
In this paper, an object detection network based on a large kernel convolutional neck network is proposed. 
Firstly, the feature capture enhancement block based on large kernel convolution is proposed to improve the 
semantic feature capturing ability, and the depth convolution is used to reduce the number of parameters. 
Then, the vast receptive field attention mechanism is constructed to enhance channel direction information 
extraction ability. The experimental results demonstrate the constructed attention mechanism is more compatible 
with the proposed backbone than other existing attention mechanisms. Third, the loss function is improved 
by introducing the SIoU to overcome the angle mismatch problem between the ground truth and prediction 
box. Pascal VOC and MS COCO datasets are used to compare the object detection performance of LKC-Net 
with other existing models. The quantitative evaluation results demonstrate that LKC-Net can achieve the 
best object detection performance in terms of accuracy while maintaining a small number of parameters. The 
qualitative evaluation results demonstrate that LKC-Net benefits from the large kernel convolution structure, 
which enhances contextual semantic information extraction ability and overcomes the wrong detection, missing 
detection, and repeated detection problems. In future work, we will focus on making the proposed network 
more lightweight and adjusting the convolution kernel size to further enhance object detection performance.In 
future work, we will focus on some promising directions worth pursuing including: make the proposed network 
more lightweight; adjuste the convolution kernel size to further enhance performance; combine the proposed 
method with different baselines.

Data availibility
The datasets used in this study are publicly available. Pascal VOC dataset is available on the official website: 
http:// host. robots. ox. ac. uk/ pascal/ VOC/ voc20 12/. MS COCO dataset is available on the official website: https://
cocodataset.org/#download. The images in this manuscript are all from publicly available Pascal VOC and MS 
COCO datasets.
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