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Creating musical features using 
multi‑faceted, multi‑task encoders 
based on transformers
Timothy Greer 1,2*, Xuan Shi 1, Benjamin Ma 1,3 & Shrikanth Narayanan 1

Computational machine intelligence approaches have enabled a variety of music-centric technologies 
in support of creating, sharing and interacting with music content. A strong performance on specific 
downstream application tasks, such as music genre detection and music emotion recognition, 
is paramount to ensuring broad capabilities for computational music understanding and Music 
Information Retrieval. Traditional approaches have relied on supervised learning to train models to 
support these music-related tasks. However, such approaches require copious annotated data and 
still may only provide insight into one view of music—namely, that related to the specific task at hand. 
We present a new model for generating audio-musical features that support music understanding, 
leveraging self-supervision and cross-domain learning. After pre-training using masked reconstruction 
of musical input features using self-attention bidirectional transformers, output representations are 
fine-tuned using several downstream music understanding tasks. Results show that the features 
generated by our multi-faceted, multi-task, music transformer model, which we call M3BERT, tend 
to outperform other audio and music embeddings on several diverse music-related tasks, indicating 
the potential of self-supervised and semi-supervised learning approaches toward a more generalized 
and robust computational approach to modeling music. Our work can offer a starting point for many 
music-related modeling tasks, with potential applications in learning deep representations and 
enabling robust technology applications.

The amount of consumable music has been growing rapidly over the past decades. As an effective way of utilizing 
such massive music content, automatically providing high-level descriptions about music (like genre, emotion, 
and theme) are becoming increasingly useful, which is why they are of interest to the MIR community1,2. Prior 
approaches have relied largely on supervised learning models3–6, which are trained on human-annotated music 
datasets. However, the performance of supervised learning is inherently limited by the size and scope of labeled 
music datasets, which can be prohibitively expensive and time-consuming to collect and generalize to new con-
texts and tasks. Recently, self-supervised pre-training models7–10, particularly Bidirectional Encoder Representa-
tions from Transformers (BERT), have been used extensively in the field of Natural Language Processing (NLP). 
BERT involves learning representations of language by reconstructing masked input sequences in pre-training. 
The intuition behind this design is that a model that can recover missing content of an input has learned a robust 
contextual representation of the input. BERT and its variants11–13 have achieved significant improvements on 
various NLP benchmark tasks14. Compared to the text domain, whose inputs are discrete word tokens, inputs 
are usually multi-dimensional feature vectors in the audio-acoustic domain: continuous and smoothly changing 
over time. Therefore, some particular designs have been introduced to bridge the gap between the original BERT 
model, which is trained on text, and audio-based transformer models, which are trained on acoustic data frames. 
Specifically for the domain of music audio, we use Contiguous Frame Masking (CFM) and Contiguous Channel 
Masking (CCM), as proposed in Zhao and Guo15, and compare it to Patch Masking, as done in Li et al.16. This 
model learns powerful acoustic music representations through pre-training. Finally, in order to adjust our model’s 
output representations for applications in downstream tasks, we fine-tune the outputs of this transformer model 
on several supervised music information retrieval relevant tasks at once. Because of the variety of the possible 
downstream tasks in the MIR community, creating a representation of music that is adaptable to diverse end 
tasks is important for model generalization and robustness. We use a multi-task learning approach to fine-tune 
the transformer-generated representations, ensuring that they are useful for broader music understanding. Our 
contributions are summarized below.
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1.	 We present a new self-supervised pre-training model that is pretrained using diverse musical inputs and 
builds upon the structure of multi-layer bidirectional self-attention transformers; rather than relying on vast 
amounts of human-labeled data, this model can learn a powerful music representation from a variety of 
unlabeled music data. This model, which we will call M2BERT (multi-faceted, music BERT), is pretrained 
in a self-supervised fashion on audio data from 4281 h of music across four large and diverse music datasets.

2.	 We present several pre-training paradigms for M2BERT. Previous ablation studies have shown that a combi-
nation of CFM and CCM in tandem can effectively improve the performance of an audio-based transformer 
in pre-training15. In this work, we also use patch-masking and compare this paradigm to CFM and CCM.

3.	 We fine-tune our model on five diverse downstream tasks which span popular areas of research in MIR: 
genre classification, mood and theme detection, music emotion recognition (MER), and instrument clas-
sification. The final model, which we call M3BERT (multi-faceted, multi-task, music BERT), generates fea-
tures that serve as better inputs for a variety of downstream music-related tasks, when compared to other 
commonly-used features. The success of M3BERT indicates the potential for applying transformer-based 
masked reconstruction pre-training (with subsequent multi-task enrichment) within the MIR field.

4.	 We conduct a correlational analysis with our encoder outputs, identifying certain cell activations that are 
similar to interpretable high-level audio features. This demonstrates that transformer models can generate 
features that are potentially human-understandable, lending to its appeal as a tool for music understanding 
and deriving meaningful music representations.

Related work
Transformer models.  In the past few years, pre-trained models and self-supervised representation learn-
ing have yielded great success on NLP tasks. Many self-supervised pre-trained models based on multi-layer 
self-attention transformers17, such as BERT18, GPT19, XLNet12, and Electra20, have been used effectively. BERT 
is perhaps the most popular model due to its simplicity and outstanding performance across a variety of tasks. 
BERT reconstructs masked input sequences in its pre-training stage; through reconstruction, the model learns a 
powerful contextual representation of its input. More recently, the success of BERT in NLP has drawn attention 
from researchers in acoustic signal processing. Some pioneering works7–10,21,22 have shown the effectiveness of 
adapting BERT and other self-supervised approaches to Automatic Speech Recognition (ASR). By designing 
pre-training objectives specific to the audio modality, it is possible to adapt BERT-like models to music and other 
audio domains. In vq-wav2vec21, input speech audio is first discretized to a K-way quantized embedding space 
by learning discrete representation from audio samples. However, the quantization process requires heavy com-
puting resources and runs counter to the continuous nature of acoustic frames. Other works7–10,23 have designed 
modified versions of BERT that directly utilize continuous speech. In some works7,23, and8, continuous frame-
level masked reconstructions were adapted in a BERT-like pre-training stage. In other work10, SpecAugment24 
was applied to mask input frames, and another method7 learned by reconstruction after shuffling acoustic frame 
orders rather than masking frames. Within the MIR realm, representation learning has been popular for many 
years. Several convolutional neural network- (CNN-) based supervised methods3–6,25 have been proposed for 
various music understanding tasks. These usually employ convolutional layers on Mel-spectrogram-based rep-
resentations or raw waveform signals of music audio to learn effective music representations, and append fully 
connected layers to predict relevant annotations such as music genres or moods. However, training CNN-based 
models usually requires large datasets with reliable and consistent human-annotated labels. Other music repre-
sentations have used contrastive learning26–29 for generating audio embeddings for downstream tasks. Carmon30 
and Hendrycks31 have shown that using self-supervision on unlabeled data can significantly improve model 
robustness. More recently, self-attention transformers have shown promising results in music generation. For 
example, the Music Transformer32 and Pop Music Transformer33 employed relative attention to capture long-
term structure from music MIDI data; however, compared with raw music audio, the size of existing MIDI 
datasets is limited. Transcription from raw audio to MIDI files is time-consuming and often not accurate, neces-
sitating a transformer system that accepts (continuous) audio input. Other works have investigated lowering 
the computational cost of using transformers, potentially enabling greater model complexity and modeling 
capacity28.

Multi‑task learning.  Multi-task learning (MTL) is an approach that involves assigning several tasks to a 
model to train on simultaneously34. This approach has been used to great extent in several music-related tasks, 
including frequency estimation35, source separation36 and instrument detection37. It is common for multi-
task systems to favor well-represented tasks, sometimes at the expense of under-represented tasks38, and some 
research has attempted to ameliorate this problem39,40. As far as the authors know, self-supervised representa-
tions in music have not been fine-tuned on multiple music tasks, let alone tasks that span regression and clas-
sification. Ideally, musical features that show utility on several downstream music tasks simultaneously would be 
highly desirable for music research, providing a “one stop shop” to researchers attempting various tasks related 
to music understanding and MIR.

In this work, we propose M3BERT, a universal music-acoustic encoder based on transformers and multi-task 
learning. M3BERT is first pre-trained on large amounts of unlabeled music datasets, and then fine-tuned using 
an MTL approach on specific downstream music annotation tasks using labeled data.

M3BERT model
A universal transformer-based encoder named M3BERT is presented for music representation learning. The sys-
tem overview of the proposed M3BERT model is shown in Fig. 1, with details of the architecture listed in Fig. 2.
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Transformer encoder.  A multi-layer bidirectional self-attention transformer encoder17,18 is used to encode 
input music frames, which are listed in Table 1. Specifically, an L-layer transformer is used to encode the input 
vectors X = (xi)

N
i=1 as: Hl = Transformerl(H

l+1) where l ∈ {1, 2 . . . L} , H0 = X , and HL = [hL1 , ..., h
L
N ] . We use 

the hidden vector hLi  as the contextualized representation of the input token ti.

Pre‑training and training.  The main idea of masked reconstruction pre-training is to perturb inputs by 
randomly masking tokens with some probability and then using the model to reconstruct these masked tokens 
at the output. Intuitively, this is similar to dropout42, in which certain features or layers in a neural network are 
set to zero in order to prevent overfitting. In the pre-training process, a reconstruction module, which consists of 
two feed-forward layers with GeLU activation43 and layer-normalization44, is appended to the encoder-decoder 
architecture to predict the masked inputs. The multi-task system then uses the output of the last M3BERT encoder 
layer as its input. For clarity, we call M2BERT the transformer component of the overall model; M3BERT refers 
to the transformer with the additional multi-task layer of enrichment.

Several masking policies are presented for enabling M3BERT to learn music representations.

Masking policy 1: contiguous frame masking (CFM).  To prevent the model from exploiting local smooth-
ness of acoustic frames, we mask spans of consecutive frames dynamically. Given a sequence of input frames 
X = (x1, x2, . . . , xn) , we select a subset Y ⊂ X by iteratively sampling contiguous input frames (spans) until the 
masking budget (in this case, 15% of X) has been spent. At each iteration, a span length is first sampled from 
the geometric distribution l ∼ Geo(p) . Then, the starting point of the masked span is randomly selected. We set 
p = 0.2 , lmin = 2 and lmax = 7 . The corresponding mean length of span is around 3.87 frames (179.6ms). Other 
schemes were also tried (variable lengths with different averages, constant lengths, etc.), but this scheme proved 
highest performance on downstream tasks. In each masked span, the frames are masked according to the fol-
lowing policy: 

(1)	 With 70% probability, replace all frames with zero. Since each dimension of input frames is normalized to 
have zero mean, setting the masked value to zero is equivalent to setting it equal to the mean.

(2)	 Replace all frames with a random masking frame with 20% probability (mutually exclusive from 1).
(3)	 Keep the original frames unchanged in the remaining cases (this happens 10% of the time). Since M3BERT 

will only receive acoustic frames without masking during inference time, this policy allows the model to 
receive real inputs during pre-training, resolving the pre-train/fine-tune inconsistency problem18.

Masking policy 2: contiguous channel masking (CCM).  The intuition of channel masking is that a model that 
can predict the partial loss of channel information has learned a high-level representation of such channels. For 
log-mel spectrum and log-CQT features, a block of consecutive channels is randomly masked to zero for all time 
steps across the input sequence of frames. Specifically, the number of masked channels, c, is first sampled from 
1, . . . ,H uniformly, where H is the number of total channels (in our case, this is 272). Then a starting channel 
index h is sampled uniformly from 1, . . . ,H − c and the channels h, h+ c are masked.

Masking policy 3: patch masking (PM).  Often, music can be dynamic, quickly changing pitch, amplitude, and 
timbre. For this reason, it can be prohibitively difficult for a decoder to accurately reconstruct contiguous frames 
of features, particularly over long spans of music. Prior work in audio-based transformers has proposed patch 
masking16, which involves masking a square set of features (channels) and timesteps (frames). In the patch mask-
ing paradigm, squares of equal size are sampled with replacement until 15% of the input matrix is masked (see 
Fig. 1). We use this policy in comparison with a policy that uses CCM and CFM in tandem, which was found to 
be the best policy in a prior study15.

Pre‑training objective function. 

(1)Huber (x, y) =

{

0.5|x − y|2 if |x − y| < 1

|x − y| − 0.5 otherwise

Table 1.   Acoustic features of music extracted by Librosa41. We sought to use musical inputs that captured 
musical qualities such as timbre, melody, harmony, and spectrum (frequency-amplitude relationships).

Feature Characteristic Dimension

Chromagram Melody, Harmony 12

MFCCs Timbre 20

Delta MFCCs Timbre 20

Mel-scaled spectrogram Raw waveform 128

Constant-Q transform Raw waveform 144
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We use Huber loss45 to minimize the reconstruction error between masked input features and the corresponding 
encoder output. Huber loss is a robust ℓ1 loss that is less sensitive to outliers46. Additionally, a prior study15 found 
that using Huber loss made training converge faster than ℓ1 loss.

M3BERT model parameters.  We report experimental results on two models: M3BERTSmall and M3BERT-
Large. Model settings are listed in Table 2. The number of transformer block layers, the size of hidden vectors, 
and the number of self-attention heads are represented as Lnum , Hdim , and Anum , respectively.

Methods
Dataset curation and preprocessing.  As shown in Table 3, the pre-training data were aggregated from 
four different datasets: Music4All47, FMA-Large48, MTG-Jamendo49, and Million Song Dataset50. Both the Musi-
c4all and FMA-Large datasets provide 30-s audio clips in mp3 format for each song. The MTG-Jamendo dataset 
contains 55,700 musical tracks, each with a duration of at least 30 s. Since the maximum sequence length of 
M3BERT is set to 1294 (30 s), music tracks exceeding this length are split up into 30 s chunks and treated as dif-

Figure 1.   M3BERT pre-training and fine-tuning. During pre-training, the M3BERT transformer layers are 
updated and we use a Huber Loss between the reconstructed signal and the original signal. During fine-tuning, 
the M3BERT layers are frozen, and a dense, multi-task learning neural network layer is used to enrich the 
output representations. TDL stands for Time-Distributed layer, and without loss of generality, we show the 
patch-masking (PM) policy in this diagram.
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ferent samples. If a song is more than 30 s long but less than 60 s long, it is split up into two equal parts without 
overlap, as this ensures that every example is at least 15 s long and no more than 30 s long. This allows for more 
pre-training examples, along with potential bias: a long track may have more representation in the final embed-
ding than a shorter song. As we have hundreds of thousands of training examples, accept the risk of skewed 
representation.

The representations produced by the transformer are fine-tuned on five downstream tasks in tandem (see 
Figs. 3 and 4.): the GTZAN music genre classification task51, MTG-Jamendo music auto-tagging task49, Real 
World Computing (RWC) Instrument Classification task52, Database for Emotional Analysis of Music (DEAM) 
task53, and the Extended Ballroom task54 were all used to fine-tune M3BERT.

GTZAN consists of 1000 music clips divided into ten different genres (blues, classical, country, disco, hip-hop, 
jazz, metal, pop, reggae and rock). Each genre consists of 100 music clips in .wav format, each with a duration 
of 30s.

Figure 2.   M2BERT architecture. M2BERT has L layers which use multi-head attention and normalization. This 
architecture, similar to BERT’s architecture, is used for pretraining; later a multi-task approach is used to enrich 
the output representations, providing a set of informative, interpretable features for downstream tasks.

Figure 3.   Multi-task learning on a sample from a batch. For this sample, there are only labels for the MTG-
Jamendo task, so the weights for other tasks are frozen, as is M2BERT. We use cross-entropy loss for our 
classification tasks.
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The MTG-Jamendo task consists of over 18,000 music clips, each with at least one mood or theme label. These 
genres range from common (“Happy” and the thirteen other most common tags are present in 68% of examples) 
to uncommon (the “Sexy” tag is present in .64% of samples) and the imbalance factor (the count of the most 
common tag divided by the count of the least common tag) is 15.7.

The Extended Ballroom dataset is an augmented version of the Ballroom dataset55. This dataset contains 
4,180 music clips divided into 13 genres representing various ballroom dances (Cha Cha, Jive, Quickstep, etc). 
As these genres are closely related to rhythmic patterns, they can also be considered as rhythm classes. This 
dataset’s imbalance factor is also quite high, at 23 (Waltz is the most common label, and West Coast Swing is the 
least common). While other metadata is available (for example, artist and beats per minute of each song), we 
leave the possibility of leveraging such information for future work.

The RWC Musical Instrument Sound Database covers 50 musical instruments. At least three musicians played 
each instrument and at least three different manufacturers’ models were used for each instrument. To further 
provide a wide variety of musical instrument performances, the dataset includes samples from every tonal and 
dynamic range of each instrument.

After breaking long songs into smaller 30s chunks, the DEAM dataset consisted of 2099 excerpts annotated 
for overall (per-excerpt) emotional valence and arousal. Each sample was appraised for (perceived) valence and 
arousal by at least five annotators, and triplet embeddings of these labels were computed as in other studies56,57.

For GTZAN, we used the fault-filtered splits given in other literature58; for MTG-Jamendo, we organized the 
training, validation and testing sets as in previous literature as well59. For all other datasets, we could not find an 
agreed-upon set of splits in prior work, so we split up our data randomly into five equal parts, using three parts 
for training, one part for validation, and one part for testing. We split these data sets into equal parts according 

Figure 4.   A workflow for another sample from the same batch. For this sample, there are only labels for the 
DEAM task, so the weights for other tasks are frozen, as is M3BERT. Weights are updated at the end of the 
batch. We use Mean Squared Error (MSE) loss for this regression task.

Table 2.   Proposed model parameters.

Lnum Hdim Anum Number of parameters

M3BERTSmall 4 768 12 29.3M

M3BERTLarge 8 1024 16 93.1M

Table 3.   Datasets used and statistics for pre-training and fine-tuning.

Task Dataset # Examples Duration (h)

Self-supervised (pre-training) Music4All 109.2K 908.7

Self-supervised (pre-training) FMA-Large 106.3K 886.4

Self-supervised (pre-training) MTG-Jamendo 55.7K 464.2

Self-supervised (pre-training) Million Song Dataset 242.7K 2023.0

Genre classification (fine-
tuning) GTZAN 1K 8.3

Genre classification (fine-
tuning) Extended Ballroom 4.6K 38.3

Instrument recognition (fine-
tuning) RWC​ 12.9K 91.6

Music emotion recogni-
tion (fine-tuning) DEAM 1.8K 18.3

Multi-label tagging (fine-
tuning) MTG-Jamendo 18.5K 157.1
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to number of songs in the original dataset. This policy ensures that excerpts from the same song are not present 
in training and testing after breaking up long songs into 30s chunks.

Audio preprocessing.  The acoustic music analysis library Librosa41 was used to extract the following features 
from each song for pre-training: Mel-scaled Spectrogram, Constant-Q Transform (CQT), Mel-Frequency Ceps-
tral Coefficients (MFCCs), Delta MFCCs and Chromagrams (see Table 1). Each feature was extracted at a sam-
pling rate of 44,100 Hz, with a Hamming window size of 2048 samples (46 ms) and a hop size of 1024 samples 
(23 ms). The Mel Spectrogram and CQT features were transformed to log amplitude with Snew = ln(10 S+ 1e-6), 
where S represents the original feature value. Then Cepstral Mean and Variance Normalization (CMVN)60,61 
were applied to the extracted features to minimize the distortion caused by noise contamination. Finally, these 
normalized features were concatenated to form a set of 324 features per frame, which was later used as the pre-
training input of M3BERT.

Training setup.  All of our experiments were conducted on 2 GTX 2080Ti. In pre-training, M3BERTSmall 
and M3BERTLarge were trained with an effective batch size of 128 for 200k and 500k steps, respectively. We 
applied an Adam optimizer62 with β1 = 0.9 , β2 = 0.999 and ǫ = 10−6 . The learning rate followed a warmup 
schedule17 according to the formula: lrate = min ( lmaxs

wT ,
lmax(T−s)
T(1−w) ) where s represents the step number, w repre-

sents the warmup steps (set to 7% of the total steps T), and lmax represents the max learning rate (set to 2 · 10−4 ). 
For downstream tasks, we performed a grid search on a set of parameters and the model that performed best 
on the validation set was selected (see Table 4). All other training parameters remained the same as those in the 
pre-training stage.

Results
Patch masking, CFM and CCM.  We first survey the difference between patch masking, CFM, and CCM. 
When testing Patch Masking, CFM, and CCM individually on the MTG-Jamendo dataset, we find that Patch 
Masking outperforms the other two masking policies (Table 5.) However, when CFM and CCM are combined, 
as was conducted in a similar study15, the performance is better than Patch Masking. A hybrid approach of 
combining CCM, CFM, and Patch Masking simultaneously was not attempted because CCM and CFM already 
involves contiguous channel and frame masking. In subsequent results, we report on results that use CCM and 
CFM only. Experiments were conducted on the Jamendo dataset because it is the largest of the fine-tuning data-
sets and has canonical train-validation-test splits, allowing for seamless comparison to other approaches and 
masking policies15.]

Evaluation on downstream tasks.  For each downstream task reported in the following sections, models 
using M2BERT and M3BERT embeddings were compared against models that use two commonly-used gen-
eral-purpose audio features: MFCCs and VGGish embeddings. We also compared our representations against a 
contrastive learning approach on music, as implemented in previous work on Contrastive Learning of Musical 
Representations (CLMR)26. In addition, the state-of-the-art model performance using task-specific features and 
architectures is reported, if available.

GTZAN.  The test accuracy of the GTZAN dataset on the fault-filtered splits is shown in Table 6.
Although this small dataset is prone to overfitting51, the multi-task paradigm does not bring our results close 

to the performances of the state-of-the-art model, which pretrains a CNN on MSD and then finetunes the entire 
network on GTZAN, therefore qualifying as a deep end-to-end model.

Table 4.   Parameter settings for downstream tasks.

Parameter Candidate values

Batch size 16, 24, 32

Learning rate 2e−5, 3e−5, 4e−5

Epoch 2, 3, 4

Dropout rate .05, .1

Table 5.   Performance of M2BERT on MTG-Jamendo using different masking policies. Highest values for each 
metric are given in bold.

Masking policy ROC-AUC​ PR-AUC​

CCM .6967 .0816

CFM .7217 .0973

Patch Masking .7308 .1073

CCM & CFM in tandem .7354 .1082
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MTG‑Jamendo emotions and themes in music.  For the Jamendo mood-theme auto-tagging task, 
ROC-AUC macro and PR-AUC macro were used to measure performance. ROC-AUC can lead to over-opti-
mistic scores when data is imbalanced65, and since the music tags given in the MTG-Jamendo dataset are highly 
imbalanced66,67, we also used PR-AUC for evaluation. The M3BERT model was compared with other state-of-
the-art models from MediaEval 2020: Emotion and Theme Recognition in Music Using Jamendo59. We used the 
same train-validation-test data splits as the challenge. The results are shown in Table 7.

For the baseline model (based on VGGish features63) and the 2019 MediaEval winner5, we directly used 
the evaluation results posted in the competition leaderboard. For the 2020 winner66, we reproduced the work 
according to their implementation. This approach uses focal loss and CNNs to achieve state-of-the-art results. 
Our results suggest that improvement over past state-of-the-art work on this music auto-tagging task may be 
possible if a back-end architecture were to be used that integrates information over the temporal domain, such 
as a CNN. We applied a simple time-distributed dense layer to the output representations from M3BERT.

Extended ballroom genre classification dataset.  For the Extended Ballroom genre classification task, 
our performances were compared against other models, although the splits were different. Evinced by the best 
performing approach that does not use deep learning in Table 8, we see that rhythmic features appear to be 
helpful in predicting ballroom music genres, which were not used in our musical inputs. The best performing 
approach used a CNN-based model for genre prediction.

DEAM music emotion recognition task.  In the DEAM music emotion recognition task, our represen-
tations were compared against other feature sets, including VGGish features and MFCCs. In Table 9, we see 
that MFCCs perform poorly on this music emotion recognition task, while hand-crafted features and the more 
generalized VGGish features perform even better than our representations.

RWC instrument detection task.  In the RWC instrument classification task, our representations outper-
formed the other results found in the literature (see Table 10.) Understandably, timbral MFCC features perform 
better than VGGish features on instrument detection. It is evident here that representations are enriched in the 
multi-task stage, as performance is better using M3BERTLarge than using M2BERT.

Ablation study.  Ablation studies were conducted to better understand the performance of M3BERT, similar 
to the work done by Zhao and Guo15. The results are shown in Table 11.

We removed datasets from pre-training to assess which datasets were most crucial to good performance on 
downstream tasks. Removing any dataset from pre-training results in a degradation in downstream performance 

Table 6.   Results of a genre classification task on the GTZAN dataset. Approaches that use deep neural 
networks for prediction are italicized. Highest value is given in bold.

Model Accuracy (%)

MFCCs 44.8

VGGish63 53.8

M2BERT, no pretraining 56.1

M2BERT 60.1

M3BERTSmall 61.0

M3BERTLarge 61.7

Contrastive Learning of Musical Representations (CLMR)26 63.4

CNN with pretraining64 82.1

Table 7.   Results of an auto-tagging task on the MTG-Jamendo dataset. Approaches that use deep neural 
networks for prediction are italicized. Highest values per metric are given in bold.

Model ROC-AUC​ PR-AUC​

MFCCs .695 .081

VGGish63 .725 .107

M2BERT, no pre-training .724 .104

M2BERT .735 .109

CLMR26 .753 .108

M3BERTSmall .777 .125

M3BERTLarge .774 .125

CNN (2019 Winner)5 .773 .155

CNN + Loss-function66 .781 .161
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on MTG-Jamendo autotagging; the larger the input dataset, the more severe the degradation. The multi-faceted 
music (M2BERT) model uses the diverse input datasets to inform its representations, and each dataset is evidently 
bringing a rich set of features for informing pre-training.

We also explore the effect that model size has on downstream task accuracy. In our experiments, M3BERT-
Large generally outperforms M3BERTSmall, which remains consistent with the findings of Zhao and Guo15, 
although in tasks like valence prediction we see that M3BERTSmall outperforms M3BERTLarge. For other tasks, 

Table 8.   Results of a genre classification task on the Extended Ballroom dataset. ∗ indicates that the model 
evaluates on different subsets of the dataset than our work and hence numbers are not directly comparable. 
Approaches that use deep neural networks for prediction are italicized. Highest values per metric are given in 
bold.

Model Accuracy Macro f1

MFCCs (our implementation) .532 .381

MFCCs25∗ .623 –

M3BERTSmall .704 .511

VGGish .757 .602

M3BERTLarge .812 .661

CLMR26 .830 .661

M2BERT, no pre-training .817 .685

ConvNet Features25∗ .819 –

M2BERT .820 .685

Rhythmic Features + SVM68∗ .949 –

DenseNet69* .967 –

Table 9.   Results of a music emotion recognition task on the DEAM dataset. ∗ indicates that the model 
evaluates on different subsets of the dataset than our work and hence numbers are not directly comparable. 
Highest values per metric are given in bold.

Model R2

V R2

A

MFCCs .122 .327

CLMR26 .107 .384

M2BERT, no pre-training .261 .515

M3BERTLarge .266 .537

Hand-crafted Features70∗ .278 .529

M3BERTSmall .332 .521

M2BERT .345 .562

VGGish .395 .582

Table 10.   Results of an instrument detection task run on the RWC Instrument dataset. ∗ indicates that 
the model evaluates on different subsets of the dataset than our work and hence numbers are not directly 
comparable. Highest values per metric are given in bold.

Model Accuracy Macro-f1

Random Forest71∗ .549 –

Partials72∗ – .634

CLMR26 .730 .717

VGGish .821 .735

Cross-Dataset73∗ – .823

MFCCs .913 .875

M2BERT, no pre-training .930 .898

M2BERT .954 .933

M3BERTSmall .951 .912

M3BERTLarge .966 .940
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like mood-theme detection, we see comparable performance using either set of features. This suggests that for 
certain tasks, using the relatively economical M3BERTSmall features may be as effective as using M3BERTLarge 
features.

Correlational analysis.  Deep learning models and featuresets alike often suffer from a lack of 
interpretability74. In an effort to find representations of music that may be interpretable , we used Librosa41 to 
compute several high-level audio features, including brightness, loudness, and spectral flux. We then correlated 

Table 11.   Performance on MTG Autotagging with Ablation Study. Highest values per metric are given in bold.

Missing Dataset ROC-AUC​ PR-AUC​

MSD .7058 .0874

FMA .7216 .0977

M4A .7234 .1006

MTG .7267 .1035

None .7354 .1082

Figure 5.   Centroid and cell activation. Certain outputs from the M3BERT encoder correlate highly with 
auditory phenomena, like spectral centroid. Pearson’s ρ = .831 between these two features.

Figure 6.   Harmonicity and cell activation. Interpretable auditory features like harmonicity were also correlated 
with certain outputs from M3BERT’s encoder. The encoder is creating high-level representations that are not 
necessarily based on frequency, as in this case. Pearson’s ρ = .823 between these two features.
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these features with outputs from the M3BERT encoder. Results and correlations are shown in Figs. 5 and 6. We 
posit that these output representations from M3BERT are both powerful and interpretable , adding to their util-
ity for studying music-related tasks.

Discussion
We see that on several different types of downstream tasks, such as instrument detection and mood-theme 
autotagging, M3BERT produces features that, when passed through a simple neural network, post performance 
well better than other music features and—in the case of mood-theme autotagging—on par with the state-of-
the-art model by the ROC-AUC metric. This makes M3BERT a useful first-stop-shop baseline for generating 
features for application to a diverse set of music-related tasks.

We observe that M3BERT performs much better on the mood-theme classification task than the M2BERT 
model: this may be because the multi-task learning paradigm exploited some labels that were present in the 
mood-theme detection task and the genre classification tasks. For example, one label in GTZAN is “jazz” and one 
label in MTG-Jamendo is “jazzy.” Curiously, the genre classification tasks did not benefit as much from multi-task 
learning; these datasets are relatively small compared to MTG-Jamendo, so in the multi-task paradigm, their 
samples are likely getting overwhelmed by the prevalence of MTG-Jamendo samples. We observe that perfor-
mance on tasks with the least amount of training examples seems to degrade after multi-task training. While 
multi-task learning may not always improve the embeddings’ performance, with multi-task-specific loss function 
adjustments, such as those suggested by Kendall et al.75, it may be possible to improve on the results posted here.

In the classification and regression tasks, we averaged outputs across timesteps. This architecture was used 
for the sake of simplicity in creating representations of music, but it does not take advantage of the temporal 
dependencies of the musical inputs. If an architecture that captures this temporal information—such as a CNN 
or LSTM—were to be built upon the features that we created, we would expect to see greater improvement on 
these downstream tasks.

We see that although M3BERT performed very well on the instrument classification task, it did not per-
form as well on the GTZAN genre classification or DEAM music emotion recognition tasks. This may also be 
explained by the relative paucity of data (the MTG-Jamendo dataset is 18 times larger than GTZAN) and the 
input features we used for pre-training, which may not have spanned feature types that would be relevant for 
these prediction tasks. To wit, we used many features that related to timbre, which sensibly would perform well 
on an instrument classification task, but may not necessarily perform well on a music emotion recognition task, 
for example. Similarly, rhythmic features are shown to be effective in ballroom dance genre classification68, but 
were not represented in our initial input features. From our results, we hypothesize that choosing a broad set of 
input audio features and balancing fine-tuning across large, diverse datasets are important for creating robust 
representations of music.

We also note that a contrastive learning approach to creating music representations performs well on the genre 
detection tasks, outperforming M3BERT representations on the GTZAN dataset and the Extended Ballroom 
dataset. However, these representations seem to fall short on other tasks, especially the tasks related to music 
emotion recognition and instrument detection. We hypothesize that augmentations used during pre-training 
(on Magnatagatune76) do not translate well to music emotion recognition or instrument classification because 
positive pairs can have different arousal, valence, or sound quality, which could adversely affect embeddings 
used for related tasks.

In the interest of investigating interpretability of our embeddings, we present two high-level features that are 
highly correlated with outputs from M3BERT, including harmonicity and spectral centroid. While centroid is a 
rough measure for a song’s pitch, other frequency-based features were also correlated with cell activations, includ-
ing brightness and spectral rolloff. Harmonicity and percussiveness were both correlated to encoder outputs 
( ρ > .8 ), and relate to timbre and, proximally, loudness (we did not analyze Root-Mean-Square of the waveform 
because it is captured in our encoder inputs by MFCC 0). Other features, including f0, spectral flatness and 
contrast, and zero crossing rate, were not found to be highly correlated with encoder outputs. These correlations 
suggest that certain base auditory features, like spectral centroid and harmonicity, are informative for a variety 
of music-related tasks; M3BERT may be used to uncover such features, providing MIR researchers additional 
insight into meaningful, interpretable features for tasks of interest.

Conclusion
We propose M3BERT, a universal music encoder based on transformers. Rather than relying on massive human 
labeled data, which are expensive and time-consuming to collect, M3BERT can learn representations of music 
from unlabeled data and improve upon its representation with multi-task learning in fine-tuning. Contiguous 
Frame Masking, Contiguous Channel Masking, and Patch Masking are applied to the pretraining examples and 
features are created in reconstruction from a BERT-like, self-supervised transformer model. Subsequently, using 
a multi-task approach, this model enriches its features in a supervised manner, learning from several disparate 
music information retrieval tasks at once. The effectiveness of different masking policies, datasets, and input 
features are evaluated through ablation studies. We find that M3BERT outperforms commonly used features 
for music classification on a variety of music-related tasks, such as instrument classification and mood-theme 
detection . We also find that multi-task learning tends to enrich the representations generated by our encoder. 
Our work shows the potential of adapting a transformer-based, masked reconstruction pre-training scheme 
with multi-task learning to MIR interests. Beyond improving the model, we plan to extend M3BERT to other 
music understanding tasks, like key estimation and cover song detection, all while managing dataset imbalance 
to ensure that multi-task enrichment does not favor tasks with more examples. This work shows that marrying 
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large-scale representation learning with diverse, supervised learning tasks can uncover powerful representations 
that can provide researchers a “canonical” first step to feature extraction for music-related tasks.

Data availability
Data used to train the M3BERT model can be found at http://​milli​onson​gdata​set.​com/, https://​sites.​google.​com/​
view/​conta​ct4mu​sic4a​ll, https://​github.​com/​MTG/​mtg-​jamen​do-​datas​et, and https://​github.​com/​mdeff/​fma. The 
datasets for fine-tuning M3BERT can be found at https://​github.​com/​MTG/​mtg-​jamen​do-​datas​et, http://​anasy​
nth.​ircam.​fr/​home/​media/​Exten​dedBa​llroom/, https://​cvml.​unige.​ch/​datab​ases/​DEAM/, https://​www.​tenso​rflow.​
org/​datas​ets/​catal​og/​gtzan, and https://​staff.​aist.​go.​jp/m.​goto/​RWC-​MDB/​rwc-​mdb-i.​html. Code for running 
scripts can be found at https://​github.​com/​usc-​sail/​M3BERT.
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