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Non‑contrast CT synthesis using 
patch‑based cycle‑consistent 
generative adversarial network 
(Cycle‑GAN) for radiomics and deep 
learning in the era of COVID‑19
Reza Kalantar 1,7, Sumeet Hindocha 1,2,4,5,7, Benjamin Hunter 4,5, Bhupinder Sharma 1,3, 
Nasir Khan 3, Dow‑Mu Koh 3, Merina Ahmed 6, Eric O. Aboagye 4, Richard W. Lee 5,8 & 
Matthew D. Blackledge 1,8*

Handcrafted and deep learning (DL) radiomics are popular techniques used to develop computed 
tomography (CT) imaging‑based artificial intelligence models for COVID‑19 research. However, 
contrast heterogeneity from real‑world datasets may impair model performance. Contrast‑
homogenous datasets present a potential solution. We developed a 3D patch‑based cycle‑consistent 
generative adversarial network (cycle‑GAN) to synthesize non‑contrast images from contrast CTs, as 
a data homogenization tool. We used a multi‑centre dataset of 2078 scans from 1,650 patients with 
COVID‑19. Few studies have previously evaluated GAN‑generated images with handcrafted radiomics, 
DL and human assessment tasks. We evaluated the performance of our cycle‑GAN with these three 
approaches. In a modified Turing‑test, human experts identified synthetic vs acquired images, with 
a false positive rate of 67% and Fleiss’ Kappa 0.06, attesting to the photorealism of the synthetic 
images. However, on testing performance of machine learning classifiers with radiomic features, 
performance decreased with use of synthetic images. Marked percentage difference was noted in 
feature values between pre‑ and post‑GAN non‑contrast images. With DL classification, deterioration 
in performance was observed with synthetic images. Our results show that whilst GANs can produce 
images sufficient to pass human assessment, caution is advised before GAN‑synthesized images are 
used in medical imaging applications.

Since the COVID-19 pandemic, significant attention has been directed towards developing medical imaging-
based Artificial Intelligence (AI) models for rapid diagnosis, risk-stratification and prediction of complications 
for this  disease1–5. Computed tomography (CT) remains the imaging modality of choice for assessment of patients 
with moderate to severe features of COVID-19, for confirmed cases with worsening respiratory status, and for 
patients with functional impairment or hypoxia after recovery from COVID-196.

Radiomics models, either using hand-crafted  features7 or deep learning (DL) methods, may facilitate the 
development of advanced imaging analysis tools for diagnosis and prognostication in COVID-19  research3,5,8. 
Through the extraction of quantitative features from standard-of-care medical imaging, they offer non-invasive 
biomarkers that can guide clinical decision-making9–11. Such algorithms are reliant on large and high-quality 
annotated  datasets12,13. However, heterogeneity is inherent in medical imaging datasets, for example due to 
variation in scanning protocols, contrast enhancement and acquisition parameters including slice thickness and 

OPEN

1Division of Radiotherapy and Imaging, the Institute of Cancer, London SM2 5NG, UK. 2AI for Healthcare Centre 
for Doctoral Training, Imperial College London, Exhibition Road, London SW7 2BX, UK. 3Department of Radiology, 
The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK. 4Cancer Imaging Centre, Department of Surgery 
& Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK. 5Early Diagnosis and Detection Team, 
The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK. 6Lung Unit, The Royal Marsden 
NHS Foundation Trust, Sutton SM2 5PT, UK. 7These authors contributed equally: Reza Kalantar and Sumeet 
Hindocha. 8These authors jointly supervised this work: Richard W. Lee and Matthew Blackledge. *email: 
matthew.blackledge@icr.ac.uk

http://orcid.org/0000-0001-8368-3406
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36712-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10568  | https://doi.org/10.1038/s41598-023-36712-1

www.nature.com/scientificreports/

reconstruction kernels between  centres14,15. This represents a common challenge which can introduce confound-
ing factors that may impair a model’s ability to learn effectively from the data and perform  reliably16–22. Imaging 
biomarker standardization efforts are underway to mitigate against  this23–25. Contrast-enhanced CT imaging 
is a key example. Its use is clinically dictated and correlates with other variables which are likely to influence 
model  performance26. Furthermore, patient related factors including physiology can significantly impact upon 
the resultant images between patients injected with the same contrast dose under the same imaging  protocol26. 
Simply excluding images based on contrast status introduces bias, however datasets with a combination of 
contrast and non-contrast CT images can lead to signal intensity distribution shifts in training data which may 
impair performance of CT imaging-based predictive  models27. This can influence the development of clinically 
relevant computational algorithms.

Imaging guidance for COVID-19 advises single-phase CT with no contrast enhancement or post-contrast 
series, as radiological features of COVID-19 tend to be confined to the lungs, without involvement of the pleura 
or  mediastinum6. Direct post-contrast arterial-phase CT is recommended in the context of suspected pulmonary 
embolism or superimposed bacterial pneumonia, which are the primary differential diagnoses and common 
complications of severe COVID-19  cases6,28. Patients with COVID-19 who meet indications for CT imaging are 
likely to be breathless, coughing or clinically unstable, placing importance on shorter scanning  protocols6. If com-
parable quality non-contrast images could be synthesized from contrast-enhanced CT images, this could enable 
standardization of contrast and non-contrast imaging for radiomics and DL algorithm training and validation.

Generative adversarial networks (GANs) present a potential  solution29. GANs have gained popularity in 
data synthesis due to their ability to learn global context from large training  examples30,31. In medical imaging, 
they facilitate domain adaptation for AI-based  networks29,32. Choi et al. developed a three-dimensional (3D) 
conditional GAN (cGAN or pix2pix) to generate synthetic non-contrast chest CTs, demonstrating higher lesion 
conspicuity for expert reviewers in mediastinal lymph node assessments when synthetic images were used along-
side acquired contrast  CTs33. However, whilst their method produced predictions with higher perceptual quality 
than previous non-adversarial convolutional neural network (CNN)-based  networks34, it still relies on paired 
input images which may not be feasible for real-world applications. The cycle-consistent GAN (cycle-GAN)35 
has emerged as a revolutionary training strategy for generating photo-realistic and high-resolution synthetic 
images using unpaired  data36–38. Chandrashekar et al. deployed a two-dimensional (2D) cycle-GAN to synthesize 
contrast CT angiograms (CTAs) to negate contrast CTA  acquisition39. Xie et al. developed a 3D residual cycle-
GAN to predict contrast-enhanced CTs for anatomy localization as well as organ-at-risk (OAR) delineations for 
radiotherapy treatment planning, without the need to perform contrast CT  imaging40. Conversely, Sandfort et al. 
developed a cycle-GAN model as a data augmentation tool and demonstrated that the addition of synthetic non-
contrast CT images in multi-organ segmentation training improved performance for out-of-distribution patient 
 scans41. This is especially pertinent when considering the challenges around using COVID-19 imaging data to 
develop accurate and generalizable AI models. Therefore, synthesizing non-contrast CT images from contrast 
enhanced CTs has both clinical and research applications, which merit further development in DL technology. 
Non-contrast CT images can also be generated using non-AI techniques, such as acquiring the images using 
dual-energy  CT42. The paired images acquired using different energies can be used to generate a virtual subtrac-
tion non-contrast  image42. However, access to dual energy or multiband CT scanners and radiologist expertise 
is costly and not widely available, and therefore the development of AI techniques is an important solution.

Whilst previous research demonstrates a promising outlook for the integration of image synthesis in clini-
cal decision-making, in-depth investigation of the performance of these algorithms on large multi-centre and 
contrast heterogenous COVID-19 datasets remains  unexplored31.

In this study, we sought to close this research gap with the following contributions. Firstly, we developed a 
3D patch-based cycle-GAN to synthesize non-contrast images from contrast CTs. We used 2,078 scans from 
1650 patients with COVID-19 pneumonia, and qualitatively evaluated our results with a modified Turing-test 
for blind classification of synthetic and acquired CT images. We subsequently performed both a handcrafted 
radiomics and VGG-Net43 DL classification task to assess network generalizability as a data homogenization 
tool. We believe that our study on a large scale, multi-centre COVID-19 dataset provides a valuable evaluation 
of cycle-GAN generated synthetic CT data in the context of wider AI applications.

Methods
Datasets and ethical approval. This study was approved by the UK Health Research Authority (HRA) 
(reference number: 20/HRA/3051), ClinicalTrials.gov identifier: NCT04721444. CT images used for this study 
were obtained from the National COVID-19 Chest Imaging Database (NCCID)44 (Research Ethics Council 
(REC) reference number: 20/LO/0688). Patient consent was not required to use this deidentified data as per 
the respective UK Health Research Authority and UK Research Ethics Council approvals. All methods were 
performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from the 
human experts involved in the study. NCCID is a centralized database containing medical images of hospital 
patients from over 25 centres across the UK. Images were filtered to include only CT images that included the 
entire thorax. For example, CT coronary angiograms were excluded. 2,078 CT scans were downloaded together 
with available metadata and manually labelled as either contrast-enhanced or non-contrast by a clinician (Fig. 1).

Cycle‑GAN framework. This section details how the 2078 labelled NCCID CT images were pre-processed 
and describes the development of the cycle-GAN framework including architecture, training, and inference.

Image pre‑processing. From the 2,078 downloaded CT scans, low-dose CT scans, which constituted less than 
3% of the dataset were excluded. The remaining 2,019 CT images (from 1650 patients) were resampled to 
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1.0× 1.0× 2.0mm3 voxel spacing using bilinear  interpolation45. Intensity values outside the range of −1,000 to 
1,000 Hounsfield units (HU) were truncated, and the remaining values were scaled to (−1.0, 1.0) following divi-
sion by 1,000 to shorten the dynamic range for cycle-GAN training.

Network architecture. Conventionally, GANs consists of a generator and a discriminator, whereby the genera-
tor predicts synthetic images from random noise for the discriminator to classify as synthetic or real, during 
training. In a cycle-GAN35, images from domain A are synthesized to the domain B distribution and then recon-
structed back to domain A to maintain spatial consistency. This process is simultaneously conducted for domain 
B synthesis and reconstruction, requiring two generators and two discriminators. Concurrent training of the 
generator and discriminator generates sets of trained weights that yield realistic synthetic images, which are 
indistinguishable from real images by the discriminator. Thereby, cycle-GAN promises to be an ideal strategy for 
style transfer from contrast to non-contrast CT, (and vice versa), using unpaired training data. This is particu-
larly appealing for large multi-centre datasets that constitute large heterogeneity in CT images.

We developed a 3D patch-based cycle-GAN where the convolutional operations in the generators  (GAB and 
 GBA) and discriminators  (DA and  DB) were performed using 3D layers (Fig. 2). Our generator architecture was 
inspired by the Res-Net model in the vanilla cycle-GAN  paper35 and consisted of one convolutional encoding 
block (ReflectionPad-Conv3D-InstanceNorm-Relu), two down-convolution blocks (StridedConv3D-Instan-
ceNorm-Relu), nine residual units, two up-convolutional blocks (StridedTransposedConv3D-InstanceNorm-
Relu), and a final Tanh activation layer. The patch-GAN discriminator included three down-convolutional blocks 
(StridedConv3D-InstanceNorm-LeakyRelu), one 3D convolutional layer and a final sigmoid activation layer. 
The computational graph for the models and the training code were implemented using TensorFlow 2.4.1 and 
Keras libraries.

Loss functions. The adversarial loss is an essential component of the cycle-GAN loss function that uses the 
minimax loss between real and synthesized images in domains A and  B29 (Eqs. 1–3). To maintain spatial consist-
ency in cycle-GAN predictions, cycle consistency loss was used. This term was defined as the average of mean 
absolute error  (L1) and the structural similarity index (SSIM)  loss46 between the input and reconstructed patches 
(Eq. 4). SSIM is an established and differentiable metric for evaluating image  quality46. Additionally, a weighted 
identity loss term ( � = 10 ) was included in the overall cycle-GAN loss to enforce sensitivity to both domains 
(Eq. 5). The overall cycle-GAN generator loss is presented in Eq. (6). During training, the patch-GAN discrimi-
nator loss was the mean squared error  (L2) for classifying real and synthetic patches.

(1)Ladversarial(A) = Ea∼p(a)

[

logDA(a)
]

+ Eb∼p(b)

[

log(1− DA(GBA(b))
]

(2)Ladversarial(B) = Eb∼p(b)

[

logDB(b)
]

+ Ea∼p(a)

[

log(1− DB(GAB(a))
]

(3)Ladversarial(A,B) = Ladversarial(A) + Ladversarial(B)

(4)Lcycle−consistency = (L1 + LSSIM)/2

Figure 1.  Examples of (a) contrast-enhanced and (b) non-contrast CTs from the NCCID.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10568  | https://doi.org/10.1038/s41598-023-36712-1

www.nature.com/scientificreports/

Figure 2.  Cycle-GAN architecture—(a) Cycle-GAN schematic: image patches from domain A and domain 
B are respectively fed into the GAB and GBA generators to predict synthetic images. Subsequently, synthetic 
images are (1) reconstructed into their respective original domain, and (2) classified as synthetic or real by the 
DA and DB discriminators. Convergence is achieved when the discriminators are unable to distinguish between 
synthetic and real input CTs. For visual clarity, the operational blocks in the (b) generator and (c) discriminator 
architectures are presented as non-cubic blocks.
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where a and b represent domains A and B,  GAB and  GBA are the generators, and  DA and  DB denote the 
discriminators.

Training. From the 2,019 CT images (1,650 patients) in the NCCID dataset, 1,171 contrast CTs (929 patients) 
and 607 non-contrast CTs (522 patients) were used for training, and 119 contrast CTs (100 patients) and 126 
non-contrast CTs (100 patients) for testing. During cycle-GAN training, random patches of size 64× 64× 64 
were selected from the resampled training image volumes. The network training was performed on an NVIDIA 
RTX6000 GPU (Santa Clara, California, USA) for approximately 450,000 iterations (batch size = 1; G&D Adam 
optimizer, learning rate = 2 ×  10–4). Network training parameters were informed by our previous  work38.

Inference. During the evaluation phase, synthetic CT volumes were generated using a sliding window algo-
rithm with a stride of 16 voxels (Fig. 3). Intensity averaging for overlapping regions in adjacent patches was 
applied so that the predicted voxels in the middle of each patch carried larger weighting than those from the 
borders. First, the inference algorithm was performed on acquired contrast CT scans to generate synthetic non-
contrast images. Then, the non-contrast to contrast generator was used to regenerate contrast CTs. The absolute 
intensity difference maps between the normalized contrast/synthetic non-contrast and contrast/synthetic con-
trast CTs were generated for improved visualization of contrast removal from the test images (range: −0.4, 0.4).

Expert human reader assessment. To assess the photorealism of the synthetic non-contrast images, we under-
took a modified Turing-test. Two radiologists and a clinical oncologist, with 43 years of cumulative experience 
since Fellowship of the Royal College of Radiologists (FRCR) accreditation were asked to review and classify 
200 non-contrast single-slice thoracic CT images. 100 images were acquired CT slices and 100 were synthetic 
non-contrast CT slices generated from our cycle-GAN model, windowed to −1200 and 200 HU. The individual 
scores were recorded, and percentages and Fleiss’  Kappa47 were calculated to determine classification accuracy, 
sensitivity, specificity, and interrater agreement reliability respectively (Eqs. 7–9).

where:

where N is the total number of image slices, n is the number of expert readers and k represents the number of 
categories (synthetic vs acquired).

Validation with a VGG16 feature classifier. In addition to the human reader study, we developed an automated 
binary classifier for discriminating synthetic non-contrast from acquired non-contrast CT scans using a transfer 
learning paradigm. The classifier consisted of a fully connected network with node sizes of 256, 128, 64, 32, and 

(5)Lidentity = Ea∼p(a)[||GBA(a)− a||]+ Eb∼p(b)[||GAB(b)− b||]

(6)Loverallcycle−GANloss = Ladversarial(A,B)+Lcycle−consistency + �× L
identity

(7)k =
P − Pe

1− Pe

(8)P =
1

Nn(n− 1)

N
∑

i=1

k
∑

j=1

nij(nij − 1)

(9)Pe =

k
∑

j=1

(

1

Nn

N
∑

i=1

nij

)2

Figure 3.  The sliding window inference algorithm used to predict synthetic patches by moving across the entire 
CT image volume with pre-determined strides.
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16 for consecutive hidden layers (sigmoid activation, ‘He’ uniform weight/bias initialization, and  L1 weight/bias 
regularization applied on all nodes), and a final sigmoid layer for classification. As input to the classifier, we 
extracted features from each image slice using the pre-trained VGG16  model48; after removing the original clas-
sification layer of the VGG16 network and max-pooling across each channel in the preceding layer this resulted 
in 512 extracted features. To ensure that the features represented regions within the body only, an automatic 
body contour algorithm was applied prior to feature extraction, consisting of image thresholding (HU > −500), 
followed by morphological opening ( 5× 5 square kernel) and hole filling. Images were subsequently normalized 
to the range y ∈ [0, 1, ..., 255] using Eq. (10): y = ⌊255× (x + 1000)/2000⌋ , where x represents the CT number, 
and the result was replicated across all red, green, blue channels required for input to the VGG16 network (values 
greater than 255 or less than 0 were clipped).

Using a single slice from each of 200 test patients held back from the NCCID dataset in cycle-GAN training 
(100 contrast and 100 non-contrast), we trained three classifiers: (i) acquired contrast versus acquired non-
contrast, (ii) synthetic non-contrast versus acquired non-contrast, and (iii) acquired contrast versus acquired 
non-contrast where labels were shuffled to derive performance statistics for a random choice model (i.e. to 
generate a Null hypothesis). These 200 patients were split into training/test datasets using an 80:20 ratio by 
stratified sampling. Using the 160 patient training data, the classifier was trained for 2,500 epochs, using Adam 
optimization (learning rate 1 ×  10–4), a binary cross entropy loss function, batch size of 28, and validation data 
size of 48 patients (split evenly between both classes). To determine the distribution of training/validation curves, 
each of the models were trained in this way 30 times, in each instance randomly sampling 48 different validation 
patients. The mean and standard error in the mean of the training/validation curves at each epoch were recorded.

Validation with a handcrafted radiomics classifier. We undertook an additional assessment by comparing AUC 
values of machine learning classifiers trained using handcrafted radiomic features to predict COVID-19 vs non-
COVID-19 pneumonia from single-slice CT images. Twin datasets were produced for this experiment:

• A “contrast-heterogenous” dataset—this combined CT images from 100 COVID-19 patients held back from 
the NCCID dataset in cycle-GAN training (50 contrast and 50 non-contrast) and 100 patients with non-
COVID-19 pneumonia (30 contrast and 70 non-contrast) (further information is detailed in the Supplemen-
tary Material).

• A “contrast-homogenous” dataset—the contrast-enhanced images were replaced by the GAN-generated 
synthetic non-contrast equivalents (50 COVID-19 and 30 non-COVID-19 patients). For consistency and to 
exclude potential artifacts from the generators, acquired CTs were replaced by their corresponding predic-
tions from the contrast to non-contrast model. Note that the identity term in the cycle-GAN loss function 
for network training ensured that the non-contrast images remained unaffected.

The images were resampled to a 1.0× 1.0× 1.0mm3 resolution using bilinear  interpolation45 and single slice 
lung regions of interest (ROIs) encompassing diseased parenchyma were manually segmented by a clinician using 
the ITKSnap desktop  software49. The radiomic features were standardized and extracted using TexLAB 2.050. This 
was achieved using 25 HU intensity bins and for features broadly related to volume, intensity, heterogeneity and 
wavelet transformations, as previously  described50. The subjects were divided into training and validation sets 
with a 4:1 ratio (training: 160, validation: 40).

Starting with the heterogenous dataset, highly correlated features were removed (threshold: 0.9) leaving 122 
features, and then feature selection was performed using Kendall’s rank (threshold: 0.2) identifying 24 features 
(detailed in supplementary material). Seven machine learning classifiers (logistic regression (LR), linear-support 
vector machine (SVM), random forest (RF), partial least squares (PLS), ridge, least absolute shrinkage and 
selection operator (LASSO) and elastic-net regression) were trained using these features. A receiver operating 
characteristic curve (ROC) analysis was conducted to evaluate the performance of the model and the area under 
the ROC curve (AUC) was recorded for validation images. Hyper-parameter optimization was performed via 
grid-search with 20 repeats of ten-fold cross-validation using the caret  package51 in R. Hyper-parameters of the 
final selected models are listed in the Supplementary Material.

The same features selected from the heterogenous dataset were then selected from the homogenous dataset 
and validation set AUC of the classifiers recorded. AUC values between the heterogenous and homogenous 
datasets were compared using bootstrap with the pROC package in  R52, and p-values were recorded.

For completeness, this experiment was repeated in reverse, first selecting features from the homogenous 
dataset, and then comparing performance of the classifiers with these same features selected from the heter-
ogenous dataset (results detailed in the supplementary material). The schematic of our proposed framework is 
shown in Fig. 4.

Patient consent. Patient consent was not required for this study. Please see the section on Datasets & Ethi-
cal Approval for further information.

Results
The examples of the inferred synthetic non-contrast and synthetic contrast CT images predicted from synthetic 
non-contrast CT are shown in Fig. 5. The absolute intensity difference maps reveal that the trained generators 
in our framework were able to successfully learn the correct anatomy for contrast removal/transfer despite the 
heterogeneity in the NCCID dataset. However, in cases with pulmonary angiograms, contrast from hyperdense 
regions within the chest CT were not fully removed (e.g. Figure 5c). On the other hand, our results demonstrated 
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that the proposed cycle-GAN framework produced photorealistic synthetic contrast CTs from the test dataset, 
with high visual fidelity closely representing the sharpness and contrast of acquired images. While some differ-
ences in contrast intensities were observed on the intensity difference maps (e.g. Fig. 5b–f), the correct structures 
were identified by the network with no obvious changes to other anatomies on patient scans.

Expert human reader assessment. The results from our human reader assessment revealed that the 
experts achieved a mean accuracy of 58.7%, with individual classification accuracies of 62%, 13% and 23% for 
synthetic CT images (Fig. 6). Sensitivity, specificity and AUC for each reader is shown in Table 1. The false posi-
tive rate, indicating the instances where the experts failed to correctly identify the synthetic CT images was 67%. 
The Fleiss’ Kappa metric was 0.06 (z-score 1.44, p-value 0.15), demonstrating only very slight agreement among 
the human expert  readers53.

Validation with a VGG16 feature classifier. Demonstrated in Fig. 7 are the training (dotted) and vali-
dation (solid) curves from our VGG16 classifiers for discriminating (i) acquired contrast from acquired non-
contrast scans (green) and (ii) synthetic non-contrast from acquired non-contrast scans (red). For all explored 
metrics, the performance of classifier (ii) demonstrates inferior performance than classifier (i). This indicates 
that the synthetic non-contrast scans generated by our cycle-GAN are able to fool the classifier, further support-
ing the evidence found in the reader study. However, classifier (ii) still demonstrates a degree of predictive power 
that is significantly better than random choice (blue curve), suggesting that there exist subtle features within the 
synthetic non-contrast scans that are not visible to human readers but can be extracted by a VGG16 classifier.

Validation with a handcrafted radiomics classifier. Contrast-heterogenous and synthetically homog-
enized validation set AUC values for 7 classifiers (trained using features selected from the heterogenous images) 
are detailed in Table 2. LASSO and Elastic Net were the highest performing classifiers on the heterogenous vali-
dation set. When models were applied to the contrast-homogenised data, absolute AUC values decreased for all 
classifiers, with wider confidence intervals (CI), however this was not found to be statistically significant at the 
5% level except for the SVM classifier.

We further explored the impact of the cycle-GAN on the raw handcrafted radiomic feature values. Figure 8 
shows histograms of the absolute percentage difference in the raw radiomic features derived from only the non-
contrast images, before and after the cycle-GAN inference was applied. We noted a marked percentage difference 
of feature values after the GAN was applied, for example up to 500% change for GLRLM_LRLGLE_25HUgl, 
again indicating that the cycle-GAN model caused visually imperceptive differences in the output images that 
are nonetheless important in the context of radiomics-based studies.

Discussion
In response to the global need for improved detection and diagnosis of COVID-19 pneumonia, research atten-
tion has been directed towards developing generalizable and efficient AI algorithms that can be applied to 
large and multi-centre datasets. In this study, we developed a 3D patch-based cycle-GAN to synthesize non-
contrast images from contrast-enhanced CTs, using a multi-centre dataset containing 2078 CT scans from 1,650 
patients with COVID-19. We hypothesized that this approach could provide contrast-homogenized datasets 
which may improve performance of future imaging-based AI models. Whilst our investigation primarily focuses 
on evaluating the efficacy of this technique in the context of COVID-19, its clinical utility may be even wider-
reaching, for example finding applications in cancer care. Contrast-enhanced CT plays a key role in lesion 

Figure 4.  Overview of the proposed COVID-19 data generalization framework. In the training phase, random 
patches of contrast and non-contrast CT images are selected from pre-processed image volumes and passed to 
the cycle-GAN network. In the evaluation phase, the synthetic images are generated from the trained weights 
using sliding window inference. Finally, (a) the chest CT slices are qualitatively evaluated in an expert reader 
assessment, (b) the VGG16 features from predicted images are extracted and used in a binary classifier to 
evaluate our synthesis framework, and (c) radiomics features are compared between acquired and synthetic 
cycle-GAN-generated images.
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Figure 5.  Results of cycle-GAN training on eight example test cases (a–h) for contrast to non-contrast CT 
synthesis. The absolute intensity difference maps show the scaled intensity differences between normalized 
acquired contrast/synthetic non-contrast and synthetic contrast/acquired contrast CTs (intensity range: −400, 
400HU; normalized intensity range: −4.0, 4.0). The framework successfully removed and predicted contrast 
on test chest CTs (e.g. a,d,h). Contrast regions within synthetic contrast images were mainly removed from 
pulmonary arteries, with some cases showing intensity differences due to variable contrast agent injection 
timepoints (e.g. b,e,f,g). The white arrow represents structures where hypo-intensity remains on chest CTs after 
synthesis (e.g. c).
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detection, characterization, and staging, as well as for radiotherapy treatment planning, guidance, and response 
 assessment54–56. Whilst non-contrast CT is less commonly used in these settings, it does provide utility in dif-
ferential diagnosis, for example in depicting hemorrhage or calcification and by serving as reference images to 
evaluate the degree of enhancement on contrast-enhanced  CT56. Contrast-enhanced CT is also widely used in 
planning radiotherapy to better delineate target volumes and OARs. However, it has been suggested that this 
may lead to dosimetric errors because of overestimations in tissue electron  density56. It would therefore be 
advantageous to automatically synthesize non-contrast images from contrast CT scans, avoiding the need for 
additional acquisition of non-contrast CTs. Such approaches would be advantageous to reduce demands on 
resource-constrained health systems.

Cycle-GAN is a promising technique in medical imaging research because of its ability to generate photore-
alistic images from unpaired  data31,35,37–41. However, few previous studies have conducted an in-depth analysis 
of this technique in the context of handcrafted radiomics or qualitative reader assessments. Earlier studies have 
reported the use of  CNNs34, cycle-GAN33,35 and  RadiomicGAN57 for CT standardization, however these tech-
niques rely on paired input images for training which limits their applicability in most real-world scenarios. 
Selim et al. proposed a framework inspired by cycle-GAN that successfully homogenized CT scans from different 
vendors using their 2D CT harmonization model (CVH-CT)58. Although they validated their results based on 
radiomic features, clinical evaluation of their results was not explored.

In this study, we employed VGG16-based DL and handcrafted radiomics classifiers, along with human reader 
assessments, to evaluate the technical and clinical aspects of GAN-generated images using 3D patch-based 
training. Our human reader assessment, which involved two radiologists and one clinical oncologist, revealed 
that the experts failed to correctly identify the synthetic CT images in 67% of cases (false positive rate). Figure 6 
shows that, particularly for Experts 2 and 3, most of the synthetic images were labelled as “real” by the human 
readers. The mean AUC for the readers was 0.59 and the interrater reliability measurement showed only very 
slight agreement among the readers, indicating that the readers’ judgement on images were different on cases 
across our test cohort. These results suggest that the human readers were unable to distinguish consistently and 
accurately synthetic non-contrast from acquired non-contrast images.

We employed a VGG16 to assess the effectiveness of a DL model in distinguishing between acquired and 
synthetic non-contrast CT images. Even though there was a decrease in classification accuracy when using 
homogenized datasets, the classifier was still able to differentiate between the two groups better than chance, 
supporting the notion that there exist nuanced features within the synthetic non-contrast scans that can influ-
ence the VGG16 classifier’s performance. Whilst there was a slight increase in validation binary cross entropy 
loss, suggesting some overfitting, the validation curves plateaued for AUC, precision, and recall, indicating that 
the training was stable.

Contrast is known to impact upon the performance of radiomic  models22,59. In our experiment using a hand-
crafted radiomics classifier, we hypothesized that replacement of contrast images with GAN-generated synthetic 
non-contrast images would improve performance of a radiomic classifier trained to distinguish COVID-19 vs 
non-COVID-19 pneumonia. We were unable to reject the null hypothesis in this experiment, likely due to the 

Figure 6.  The modified Turing-test of 3 expert readers for blindly classifying 200 chest CT slices (100 synthetic, 
100 real). For all readers the number of synthetic images identified wrongly as real CTs were greater than real 
images classified as synthetic.

Table 1.  Sensitivity, specificity, and AUC values for the human reader assessment.

Reader Sensitivity Specificity AUC 

Expert 1 0.8 0.62 0.71

Expert 2 0.92 0.13 0.525

Expert 3 0.82 0.23 0.525



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10568  | https://doi.org/10.1038/s41598-023-36712-1

www.nature.com/scientificreports/

GAN radiomic features being sensitive to subtleties within the synthetic images that were not appreciable by 
eye, further validating our VGG16 classification experiment. Our findings suggest that the use of synthetically 
homogenized datasets may impair the discriminatory ability of classifiers based on radiomic features. Histograms 
of absolute percentage difference in the features from non-contrast scans before and after synthesis support that, 
whilst cycle-GAN produced photorealistic images that were sufficient to pass a modified Turing test, they were 
not identical at the radiomic feature level.

Figure 7.  Training and validation curves of the binary classifier applied to acquired contrast/acquired 
non-contrast, synthetic non-contrast/acquired non-contrast and label shuffled acquired contrast/acquired 
non-contrast images. Training and validation (a) loss, (b) AUC, (c) precision and (d) recall metrics from all 
classifiers. For each metric the mean values are shown alongside the error margins (shown in pastel colors) from 
cross validation training. The legend for (a) also applies to (b–d).

Table 2.  Validation set AUC values and confidence intervals (CI) for 7 machine learning classifiers based on 
the original contrast-heterogenous dataset and GAN synthesized contrast-homogenous data. P-values were 
calculated by comparing corresponding classifier ROC curves using bootstrapping.

Classifier

Heterogenous data Validation set
Homogenous data
Validation set

P-valueAUC value CI AUC value CI

LR 0.9 0.80–1 0.77 0.62–0.92 0.095

SVM 0.9 0.80–1 0.75 0.62–0.88 0.015

RF 0.84 0.72–0.96 0.76 0.61–0.92 0.215

PLS 0.91 0.81–1 0.8 0.66–0.94 0.146

Ridge 0.87 0.75–0.98 0.81 0.68–0.94 0.317

Lasso 0.92 0.83–1 0.82 0.69–0.95 0.138

Elastic Net 0.92 0.83–1 0.80 0.67–0.94 0.102
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Overall, our results demonstrate that unsupervised DL algorithms can effectively learn global contexts from 
large datasets and generate realistic predictions sufficient to pass human reader assessments. However, the 

Figure 8.  Histograms of the absolute percentage difference in the values of the 24 radiomic features that 
were used for modeling before and after non-contrast images had the GAN applied. X-axis values pertain to 
percentages. There is a marked percentage difference, suggesting that the cycle-GAN is augmenting images and 
subsequently the radiomic features extracted from them.
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synthetic images are distinguishable from acquired images by VGG16-DL and handcrafted radiomics classi-
fiers, likely due to underlying subtleties introduced by the cycle-GAN.

One of the challenges of synthesizing non-contrast images from contrast CT is the difference in image acqui-
sition parameters, which can result in variations in texture and contrast  distribution14,15,60. This was evident in 
absolute intensity difference maps of some cases that displayed slight variations in texture for synthetic images. 
Additionally, the heterogeneity in contrast distribution amongst patients may affect the success of cycle-GAN. 
The NCCID dataset included CT pulmonary angiograms that had marked differences in contrast distribution at 
the time of acquisition compared to CTs performed for evaluation of lung parenchyma. In these cases, unrealistic 
non-contrast CT synthesis occurred for some hypo-intense structures. Another consideration is that GANs are 
notoriously difficult to train and our model may have converged to local  minima61. Despite these challenges, our 
framework was able to generate plausible synthetic contrast chest CTs from test patients.

A limitation of this study was the use of small patches for training the cycle-GAN framework. Whilst patch-
based methods provide more training examples, they also lead to a reduction in field-of-view (FOV) of train-
ing images. We overcame this limitation by using stochastic training and dense inference to generate the final 
synthetic volumes. However, further research is needed to compare the predictive performance of models with 
varying input sizes. The use of single-slice ROIs for feature extraction in the radiomics experiment and the vari-
ability in contrast distribution due to the timing of contrast injection (including angiograms and portal venous 
phase images) were additional limitations of our experiments. Our radiomics analysis was limited by the small 
dataset, although we were still able to obtain statistically significant results for the SVM classifier. In addition, 
the non-COVID-19 dataset had an imbalance of contrast and non-contrast images, unlike the balanced dataset 
of COVID-19 patient scans. However, our AUC values were higher than would be expected if the classifiers were 
classifying purely based on contrast-status alone.

Further work with a larger radiomics dataset and multi-slice volumes is warranted.

Future work
Though further investigation is required to evaluate the diagnostic abilities of synthetic non-contrast CTs for 
automated predictions, our experiments provide valuable insight into the use of unsupervised synthesis tech-
niques, such as cycle-GAN, as data augmentation or homogenization strategies. Future studies on unsupervised 
style-transfer should incorporate additional metrics that guide GANs to not only produce realistic predictions 
but closely represent the underlying information (e.g. radiomic features) from training images. Furthermore, 
training DL networks using large and multi-centre data can be influenced by bias, due to factors such as contrast/
non-contrast data distribution, image acquisition parameters, or scanner type, which may hinder the cycle-GAN’s 
performance in effectively learning the optimal mapping between both sets of input images. Utilizing more 
controlled training datasets or introducing intermediate scan homogenization techniques may further assist the 
framework learning process, however, caution must be exercised in use of chained-AI algorithms to avoid error 
propagation and diminishing returns.

Conclusion
Handcrafted and DL CT-based radiomic models are increasingly being used both for COVID-19 and other health 
conditions in the context of COVID-19  endemicity1–5. Such models require large datasets, however, may suffer 
from contrast/scan heterogeneity, adversely affecting model generalizability. We developed and evaluated a cycle-
GAN model using a multi-centre dataset of COVID-19 pneumonia for data homogenization. Though synthetic 
non-contrast images generated by our cycle-GAN model passed human assessment, our findings indicate the 
presence of subtle features in the synthetic images that are detectable at the radiomic feature level. This implies 
caution is warranted before GAN-synthesized images are used for data homogenization prior to handcrafted or 
DL radiomic modeling. Whilst our model shows promise in addressing contrast heterogeneity, it also highlights 
challenges associated with large-scale datasets and the need for more controlled training datasets or intermediate 
homogenization steps for improved performance. Overall, our study underscores the need for further research 
to optimize the use of GANs for medical imaging and improve their clinical utility.

Summary
Handcrafted and deep learning (DL) radiomics are two common imaging-based artificial intelligence (AI) tech-
niques that have been leveraged to develop computed tomography (CT) imaging-based models for COVID-19 
and other healthcare research. Such approaches require large datasets for training and analysis, however contrast 
heterogeneity from real-world medical imaging datasets may impair model performance.

In this study, using a multi-centre dataset containing 2078 CT scans from 1,650 patients with COVID-19, 
we developed a 3D patch-based cycle-GAN to synthesize non-contrast images from contrast-enhanced images 
to homogenize CT data for the development of future COVID-19 AI models. We initially hypothesized that as 
COVID-19 reaches endemicity, our framework may offer superior applicability to future CT imaging datasets, 
compared to those developed in the pre-COVID era.

We evaluated the performance of our contrast to non-contrast cycle-GAN to assess network generalizability 
as a contrast homogenization tool with both a handcrafted radiomic and VGG DL classification task. In a modi-
fied Turing-test, human experts identified synthetic vs original images, with an average score of 58.7% (range 
52.5–71%) attesting to the photorealism of the synthetic images. Furthermore, Fleiss’ Kappa was 0.06 (p-value 
0.15), demonstrating only slight agreement among human experts. However, on testing performance of machine 
learning classifiers with radiomic features, performance decreased with use of synthetic images. Marked percent-
age difference was noted in feature values between pre- and post-GAN non-contrast images. Our results sug-
gested that our cycle-GAN model produced synthetic non-contrast images sufficient to pass human assessment, 
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subtle features existed in the synthetic images, potentially introduced by the cycle-GAN or inference strategy 
which are detectable at the radiomic feature level. This implies caution is warranted before GAN-synthesized 
images are used for data synthesis prior to radiomic modeling or further clinical studies.

Data availability
Due to confidentiality, data collected for the study are not publicly available for download, however the corre-
sponding authors can be contacted for academic inquiries. Tools for deep learning are indicated in the methods 
section.
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