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Tool‑tissue force segmentation 
and pattern recognition 
for evaluating neurosurgical 
performance
Amir Baghdadi , Sanju Lama , Rahul Singh  & Garnette R. Sutherland *

Surgical data quantification and comprehension expose subtle patterns in tasks and performance. 
Enabling surgical devices with artificial intelligence provides surgeons with personalized and 
objective performance evaluation: a virtual surgical assist. Here we present machine learning models 
developed for analyzing surgical finesse using tool‑tissue interaction force data in surgical dissection 
obtained from a sensorized bipolar forceps. Data modeling was performed using 50 neurosurgery 
procedures that involved elective surgical treatment for various intracranial pathologies. The data 
collection was conducted by 13 surgeons of varying experience levels using sensorized bipolar forceps, 
SmartForceps System. The machine learning algorithm constituted design and implementation for 
three primary purposes, i.e., force profile segmentation for obtaining active periods of tool utilization 
using T‑U‑Net, surgical skill classification into Expert and Novice, and surgical task recognition into two 
primary categories of Coagulation versus non-Coagulation using FTFIT deep learning architectures. 
The final report to surgeon was a dashboard containing recognized segments of force application 
categorized into skill and task classes along with performance metrics charts compared to expert 
level surgeons. Operating room data recording of > 161 h containing approximately 3.6 K periods of 
tool operation was utilized. The modeling resulted in Weighted F1‑score = 0.95 and AUC = 0.99 for 
force profile segmentation using T‑U‑Net, Weighted F1‑score = 0.71 and AUC = 0.81 for surgical skill 
classification, and Weighted F1‑score = 0.82 and AUC = 0.89 for surgical task recognition using a subset 
of hand‑crafted features augmented to FTFIT neural network. This study delivers a novel machine 
learning module in a cloud, enabling an end‑to‑end platform for intraoperative surgical performance 
monitoring and evaluation. Accessed through a secure application for professional connectivity, a 
paradigm for data‑driven learning is established.

Incorporating artificial intelligence (AI) powered by cloud connectivity to aggregate data in and across operating 
rooms (OR) offers an objective tool for systematic feedback on the optimal use of medical devices and systems. 
This is important for improving the safety of surgery and utilizing digital innovation towards standardization 
of patient care. Implementing AI through sensor-enabled and data-driven surgical devices can transform tra-
ditional and subjective training based on apprenticeship into an objective and non-intimidating  paradigm1. 
Context-aware assistance by surgical phase recognition can further facilitate and improve the training process 
through particularized analytic feedback on the performance of  surgery2. As a new frontier in surgical coaching, 
surgical data science can be defined through novel frameworks involving collection, structuring, analysis, and 
modeling of such  data3,4.

Machine learning algorithms in surgery, while early, may enhance care in various pathologies, including epi-
lepsy, brain tumors, spine lesions, and cerebrovascular  disorders5. Sensor-driven data can be used to accurately 
capture surgeon dexterity and technical skill, using meaningful features extracted from surgical maneuvers and 
workflow. This, in turn, would help provide a quantitative feedback metric during a graduated surgical train-
ing period. The movement of instruments has been used in the past as a kinematic measure of performance 
and skill discrimination in a laboratory  environment6–8. For skill evaluation, a deep learning-based instrument 
tracking system based on surgical videos has been implemented, which is compliant with Objective Structured 
Assessment of Technical Skill (OSATS) and Global Evaluative Assessment of Robotic Skill (GEARS) manual 
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 metrics9. Surgical skill assessment and navigation in colorectal surgery can be facilitated through forceps type 
and object recognition on video  data10. Additionally, the use of motion features extracted from video temporal 
pattern analysis led to the categorization and analysis of surgical  actions11,12. A comprehensive review of surgical 
skill analysis literature has also been  published13. The manuscripts included in this review used kinematic (61%) 
and video (29%) data, with limited attention to tool-tissue  forces14,15. The ML models used herein were Artifi-
cial Neural Networks (ANN), Hidden Markov Models (HMM), and Support Vector Machines (SVM), all with 
higher accuracies than 80%. Their findings, however, were limited in data from real-life surgery (12%), as well 
as the lack of a framework application for providing surgeons with interpretable and clinically relevant feedback.

Among the sensory data, kinesthetic force feedback, i.e., concerning the reconstruction of the human sense 
of touch by activating muscular mechanoreceptors, is eminent. This type of force can have implications for surgi-
cal outcomes, e.g., non-optimal force application leading to tissue damage or prolonged surgical  times1,16,17. In 
various studies, grip force was used as a metric for assessing surgical  skill6,18. Instrument force analysis showed a 
lower force level in experienced surgeons than novices when performing dry laboratory  exercise6. Furthermore, a 
regression analysis for automated skill evaluation based on contact force with task materials, robotic instrument 
accelerations, and task completion time was also  performed18. The findings were in agreement with the manual 
GEARS metric. In addition, the combination of visual signals with force feedback has been shown to enhance 
tissue  characterization19 with lower force peak magnitudes leading to significantly lower tissue trauma and 
surgical error  rates20. Previous studies while successful in their respective goals, never focused on performance 
evaluation based on surgical tasks, e.g., coagulation as a paramount aspect of vascular surgery, using a single 
modality data from tool-tissue interaction, i.e.,  forces16.

Here we present an original machine learning framework, i.e., from data ingestion, analytics, and machine 
learning, to insights, for information extraction using a data-rich environment enabled by a sensorized bipolar 
forceps coupled to an intelligent software platform, the SmartForceps  System1,16,21–24. The medical grade Smart-
Forceps are sterilized between each procedure following the standards approved by regulatory bodies and the 
Central Sterilization and Reprocessing Department. For regulatory approval, we have demonstrated that each 
SmartForceps withstands multiple cycles of sterilization without impacting the instrument’s sensors, i.e., altering 
the  calibration1,25. This novel framework builds upon our recent work on a data-enabled surgical performance 
dashboard, now creating an automated analytical platform. The work leverages sensor-based technology whereby 
evolving AI systems complement the way surgery is performed and taught. The modeling efforts encompass 
deep learning architectures and data analytics for surgical skill classification between Expert and Novice, and the 
recognition of a critical neurosurgical task, i.e., Coagulation, to improve granularity in performance feedback. 
Such analytics on surgical performance and comparison to the gold standard can be reviewed in an interactive 
environment, i.e., the Expert Room. This study offers new opportunities within an objective and sensor-driven 
surgical performance tracking and analytics model, towards improved learning and safety of surgery.

Materials and methods
Data recording. The SmartForceps System (developed at Project neuroArm, University of Calgary, Calgary 
AB, Canada) allows real-time display and recording of tool-tissue force data during surgery. Surgical tasks were 
categorized into: (1) Coagulation (cessation of blood loss from a damaged vessel), (2) non-Coagulation with 
sub-categories of (a) Dissection (cutting or separation of tissues), (b) Pulling (moving and retaining tissues in 
one direction), (c) Retracting (grasping and retaining tissue for surgical exposure), and (d) Manipulating (mov-
ing cotton or other non-tissue objects), which were identified following expert approval of cumulative data 
reviews. The audiotaped voice of each surgeon accompanied force recordings, which indicated the periods of 
force application and specific task names. This information facilitated the labeling process for each force seg-
ment, creating a supervised dataset for the machine learning models. The study was approved by the Conjoint 
Health Research and Ethics Board of the University of Calgary, Calgary, AB, Canada (REB19-0114), with the 
technology approved by Health Canada (ITA 329,641 Class II, 2021). Details on technology development, pre-
clinical and clinical use have been previously  published16,21–23,26,27. Informed electronic and verbal consent was 
obtained from participating surgeons per the REB, which included a waiver of informed patient consent by the 
Institutional Review Board at the University of Calgary. The surgical team adopted the SmartForceps system in 
place of the conventional bipolar forceps with the added advantage of real-time tool-tissue force measurement, 
display, and recording. Adult patients undergoing elective surgical treatment for various intracranial pathology 
were included in this prospective study (under the supervision of the senior author as the staff surgeon). Emer-
gency neurosurgical procedures and the pediatric population were excluded. No identifiable patient informa-
tion is included in the manuscript and methods were performed in accordance with the relevant guidelines and 
regulations for human experimental studies and Declaration of Helsinki.

The data framework included a HIPAA and PIPEDA Compliant Cloud architecture for retaining and pro-
cessing the intraoperative de-identified data through a Cloud platform (Microsoft Azure, Microsoft USA) with 
secure authentication through organizational credentials. In addition, an installable web/mobile application was 
developed to monitor the force-related data/features, which is available at smartforceps-app.azurewebsites.net.

Workflow architecture. To quantify the behavior of force profiles for pattern recognition and performance 
analysis, we developed machine learning models for segmenting and recognizing the patterns of intra-operative 
force profiles. The models make no assumption about the underlying pattern in force data and hence are robust 
to noise. The framework enables modeling a complex structure in our non-stationary time-series data, where 
data characteristics including mean, variance, and frequency change over time. Figure 1 shows the workflow 
architecture from data recording to modeling and visualization.
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Force profile segmentation. The force data points labeled as ON or OFF were included for analysis after 
applying rule-based data balancing (Figure S1, detailed in Supplementary Materials). To transform data to a nor-
mal distribution, i.e., Gaussian with zero mean and unit variance, and to eliminate the dominant effect of larger 
variance in a specific signal, feature normalization of the left and right prong force was performed by removing 
the mean and scaling to unit variance. This allowed standardization of corresponding values. Data prepara-
tion comprised of normalization and reshaping into windows of 224 data points which ended up with approxi-
mately 5.9 K resampled force windows. Following this, the segment labels were encoded, and a one-hot encoding 
schema was implemented. Finally, a 80% (20% validation)—20% split with a random seed was performed to split 
the data into training-validation and testing samples. A custom-designed U-Net (T-U-Net: Time-series-U-Net; 
U-Net is a dominant model for image  segmentation28) model was trained and implemented that consisted of a 
convolutional encoder and decoder structure to capture the properties and reconstruct the force profile. Grid 
search was performed for hyperparameter tuning (Figures S2, S3, detailed in Supplementary Materials).

Surgical force pattern recognition. Data pre-processing for surgeon skill classification. Segmented 
training data with binary Expert and Novice labels were included in this phase. To fortify prediction power in 
force data, a total of 29 hand-crafted features (Table S1) that can capture the behavior of surgical force time-series 
data and were analyzed in our previous  study1 were calculated for each window of 200 data points and were 
added as the third signal to a deep learning model after a feature selection process (Supplementary Materials 
Tables S2, S3). Our data curation pipeline performed time-series based feature extraction on the segmented data 
after noise  reduction1. The normalization process transformed the feature data into a Gaussian distribution with 
zero mean and unit variance and resampling to match the force data window size of 200 points with ratio to 
maximum as the order of spline interpolation and edge mode for the boundary data imputation. The normalized 
and reshaped data created 3.6 K resampled force segment windows (1766 Novice and 1859 Expert segments), 
which were encoded using a one-hot vector and a random split into training-validation, i.e., 80% (20% valida-
tion), and testing, i.e., 20%, samples.

Data pre-processing for surgical task recognition. In this phase, the main surgical task of Coagulation was con-
sidered as a data label to be distinguished from other tasks. Similar to the skill classification model, the 29 
hand-crafted features (Table S1) were fed into the neural network after being calculated over 200 data point 
window, proper noise reduction, outlier removal, normalization, and resampling, and feature selection (Supple-
mentary Materials Tables S4, S5). The processed force segments comprised of 2 K samples (1170 force segments 

Figure 1.  Workflow architecture of SmartForceps platform from data recording to modeling and visualization. 
Forces of tool-tissue interaction along with de-identified case information were uploaded to a HIPAA-compliant 
data storage and analytics platform. Force data were manually segmented and labeled by listening to the 
surgeon’s voice recordings, where surgeon names, surgical tasks, and important incidents were narrated. The 
AI modeling architecture included Auto Data Preprocessing (e.g., Data Balancing, Outlier Removal, Data 
Transformation, etc.), Feature Engineering, Data Modeling (T-U-Net for force profile segmentation (T-U-
Net: Time-series-U-Net); XGBoost, LSTM and FTFIT (Force Time-series Feature-based InceptionTime) for 
pattern recognition), and Modeling Optimization and Performance Evaluation, which were integrated into 
the cloud platform to generate performance evaluation reports to the surgical team. A detailed description of 
selected processes in the figure has been described in the Supplementary Materials. Visualization was created in 
Microsoft PowerPoint version 16.49 with the icons obtained from a Google search: e.g., https:// www. iconfi nder. 
com.

https://www.iconfinder.com
https://www.iconfinder.com
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of Coagulation and 915 segments of non-Coagulation (Manipulation = 323, Pulling = 316, Retracting = 149, and 
Dissecting = 127)) with one-hot encoding format having 64% training, 16% validation, and 20% testing samples.

Model implementations. Two deep learning and a baseline model were created to classify surgeon experience 
levels (i.e., Novice and Expert) and activity recognition while performing a specific task (i.e., Coagulation and 
non-Coagulation (e.g., Pulling, Manipulation, Dissecting, and Retracting)). A deep neural network model for time 
series classification based on  InceptionTime29, i.e., FTFIT (Force Time-series Feature-based InceptionTime), was 
developed to obtain the learned features. This, together with engineered features described above, was used in 
a logistic regression-based surgeon experience classification. A second deep learning model based on an LSTM 
neural network for time-series-based surgeon activity and experience recognition was used. These models fol-
lowed a baseline XGBoost classifier that used the hand-crafted features (details of the modeling and results are 
in the Supplementary Materials Figures S11, S12 and S18, S19). Further details on model characteristics and 
hyperparameter tuning are available in Supplementary Materials (Figures S4, S5, S6).

Modeling evaluations. For all models, summary including the type, shape, and parameter counts for each 
layer; loss and accuracy values for both training and validation data in each epoch; classification report includ-
ing fivefold cross-validation accuracy, selected model (through grid search on validation loss) testing accuracy 
(sensitivity and specificity), average precision, recall, weighted F1-score, and area under the curve (AUC) for 
receiver operating characteristic (ROC), and precision-recall curves during validation and testing with the cor-
responding charts and graphs were generated. Model training was performed using a workstation with Intel 
Core i9-9820X (10 cores, 4.20 GHz turbo) CPU, 2 × Titan RTX with NVLink GPU, and 64 GB memory taking 
approximately 0.7 h for the training and validation of data segmentation and 0.4 h for skill classification and task 
recognition models.

Results
Tool-tissue interaction force data from 50 neurosurgery procedures of adult tumor resection (30 males/20 
females, mean (SD) age: 54.7 (14.1)) between November 2019 and October 2020, including meningioma (n = 10), 
glioma (n = 10), schwannoma (n = 15), and hemangioblastoma (n = 3) (+ 12 other cases, e.g., trigeminal neuralgia/
hemifacial spasm, cavernous angioma, etc.) was employed. The cases were performed by 13 surgeons, i.e., one 
Expert with 30 + years of experience and twelve Novice surgeons, including residents with post-graduate years 
(PGY) ranging across three levels of 1–2 (n = 4), 3–4 (n = 3), and > 4 years (n = 4), and one fellow.

Force profile segmentation. Point-wise data classification as ON and OFF regarded as segments of force 
data through T-U-Net model showed the best results for 0.001 learning rate, 16 as filter size, moving window 
size of 224, and batch size of 128. The mean inference time was 0.24 s, and the minimum validation loss value 
occurred at epoch 27 (Figure S7a) was 0.1046 (training loss = 0.0853). fivefold cross-validation results showed 
a mean (SD) accuracy of 0.95 (0.01). Macro-AUC of ROC was 0.99 and when testing the model, accuracy was 
0.95 (F1-score: 0.96 for class ON, and 0.95 for class OFF, weighted value = 0.95) (Table 1). Detailed results are 
illustrated in Figure S7, S8, S9, S10 (Supplementary Materials).

Surgical skill classification. The overlapping distribution of features in Expert and Novice classes is an 
early sign for a sub-optimal performance of feature augmentation to the network (Fig. 2a). Time-series classifica-
tion performed best in FTFIT with no hand-crafted features added to the network (AUC = 0.81; p value < 0.001) 
(Fig. 3a). The model was characterized by a learning rate of 0.001 and a network depth size of 6, moving win-
dow size of 200, and batch size of 128. Testing time for each sample occurred in an average of 0.24 s, and the 
model reached minimum validation loss at epoch 66 (out of 100 epochs) (validation loss = 0.5285 and training 

Table 1.  Combined best modeling performances for SmartForceps Machine Learning pipeline.

SmartForceps machine learning pipeline step

Force profile segmentation Surgical skill classification Surgical task recognition

Model name T-U-Net FTFIT FTFIT

Best performing hyperparameters
learning rate = 0.001
filter size = 16
window size = 224
Batch size = 128

learning rate = 0.001
depth size = 6
window size = 200
Batch size = 128

learning rate = 0.01
depth size = 12
window size = 200
Batch size = 128

Mean inference time (s) 0.24 0.24 0.20

Mean (SD) 5-Fold cross-validated accuracy 0.95 (0.01) 0.73 (0.03) 0.79 (0.07)

Testing accuracy 0.95 0.71 0.82

Testing sensitivity/recall 0.97 0.78 0.90

Testing specificity 0.94 0.66 0.78

Average precision score 0.98 0.81 0.89

Testing weighted F1-score 0.95 0.71 0.82

Respective AUC 0.99 0.81 0.89
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loss = 0.4841 (Figure S14a)). Macro-AUC of ROC was 0.81 and while testing the model for unseen instances of 
force data, the accuracy was 0.71 (mean (SD) value of fivefold cross-validated accuracy was 0.73 (0.03)) with 
F1-score of 0.71 in both Expert, and Novice classes (weighted value = 0.71) (Table 1). Detailed results are available 
in Figures S14, S15, S16, S17 (Supplementary Materials).

(a) Skill classification model The figure shows the shape of standardized (Gaussian with zero mean and unit 
variance) data distribution for each skill, i.e., normal with a low tendency of negative skewness in Entropy, 

Figure 2.  Correlation and distribution plots for standardized subset 1 hand-crafted features with their 
respective class labels used in the Skill Classification and Task Recognition models.
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normal with a low tendency of positive skewness in Range Force, negative skewed in Heterogeneity, and 
positively skewed in Duration Force. In addition, a positive correlation in Stability vs. Range Force and a 
negative correlation in Entropy vs. Range Force and Stability vs. Entropy was observed. Note: data visuali-
zation was created after outlier removals of Z-score < 3 across the samples.

(b) Task recognition model The shape of standardized data distribution for coagulation vs. other tasks, i.e., 
normal in Entropy, negatively skewed in Heterogeneity, and positively skewed in Duration Force and Range 
Force has been shown. In addition, a positive correlation was noted in Heterogeneity versus Range Force 
and a negative correlation in Entropy versus Range Force and Heterogeneity versus Entropy. Note: data 
visualization was created after outlier removals of Z-score < 3 across the samples.

(a) Surgical skill prediction The best performing model was FTFIT with no hand-crafted features added to 
the network showing an AUC = 0.81 (p value < 0.001).

(b) Surgical task recognition FTFIT with subset 1 of the hand-crafted features (n = 4) added to the network 
was among the best performing models with an AUC = 0.89 (p value < 0.001).

Surgical task recognition. Performance of task recognition for Coagulation and non-Coagulation (after a 
random selection of 0.5 Coagulation segments for data balancing) using FTFIT with subset 1 of the hand-crafted 
features (n = 4) added (Fig. 2b) to the network was among the best results (AUC = 0.89; p value < 0.001) (Fig. 3-
b). This model had a learning rate of 0.01, a network depth size of 12, a moving window size of 200, batch size of 
128, and concluded with a mean inference time of 0.20 s. This model’s minimum validation loss value occurred 
at epoch 46 (out of 150 epochs) with validation loss of 0.4002 and training loss of 0.3025 (Figure S21a). Macro-
AUC of ROC was 0.89 and testing results showed 0.82 in accuracy with a mean (SD) fivefold cross-validated 
accuracy of 0.79 (0.07). (F1-score of the Coagulation class was 0.85 and for non-Coagulation it was 0.77; weighted 
average = 0.82) (Table 1). Detailed results are available in Figure S21, S22, S23, S24 (Supplementary Materials).

End‑to‑end pipeline implementation. Machine learning models were translated to resources and pipe-
lines embedded in the cloud platform for on-the-fly analytics and feedback to surgeons. Final output for seg-
mentation and skill/task recognition was visualized through comparative distribution plots and individual force 
profile segments as previously  described1. Figure 4 shows the force profiles and performance report of a surgeon 
across 3 cases of brain tumor resection.

(a) Surgical force data In this representation, aggregative data distribution of both Expert-level (green violin 
plots) and Novice-level (purple violin plots) performance of the surgeon across the surgical tasks based on force 
Uncertainty Index (i.e., Entropy as a feature) selected from the dropdown menu (left column chart) is reported. 
The right column chart shows actual force profiles for the left (red time-series plot) and right (blue time-series 
plot) prong of SmartForceps.

(b) Performance comparison This figure shows performance comparisons (purple bar) of the surgeon 
compared to the Expert level surgeons (mean and standard deviation indicated as red mark and green area, 
respectively) after surgical-force-related feature extraction on segmented force profiles by T-U-Net. The gauge 
charts show the respective values for Average Force Duration, Range of Forces, Force Variability, and Force 
Uncertainty Indexes across 3 surgical procedures performed by the surgeon. In this graph, the representative 
surgeon gauge starts from zero as the baseline with the goal of reaching to the expert level values denoted by a 
red bar and green area. This surgeon had a higher average force duration (2.19 s more), lower range of forces 

a b

Figure 3.  Performance comparison between LSTM and FTFIT models with hand-crafted feature combinations 
in surgical skill prediction and task recognition. Different combinations of hand-crafted features, i.e., no feature, 
selected set of features identified through KNN and XGBoost feature importance ranking, and a subset of 
features (Duration Force, Range Force, Entropy, and Heterogeneity; which were consistent with the features 
presented in SmartForceps performance  dashboard1) have been compared.
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(0.2 N less), lower force variability (46 points less), and higher force uncertainty (0.12 points more) compared 
to the average of expert data.

Discussion
This work presents an original algorithm running in perpetuity behind-the-scenes in the OR as a data-enabled 
virtual surgical assistant in real-world  settings30,31. Built upon the time-series data obtained using SmartForceps, 
a step-by-step process was developed to establish unique machine-learning models custom-tailored for real-time 
credible performance feedback and interconnectivity in the OR. Indeed, such automated analytics based on tool-
tissue interaction force provided a holistic view of combinatorial elements shaping surgical skill, e.g., tool-tissue 
forces, force profile, motion, hand–eye coordination, etc., all of which may contribute to surgical  finesse1,32.

a

b

Figure 4.  Overview of the processed data for three surgical procedures using SmartForceps machine learning 
modeling and recognition. This figure is a snapshot of the Surgical Force Data tab in the SmartForceps 
performance monitoring dashboard showing the final output of the data and analytics pipeline. The pipeline 
started from operating room data collection using dedicated software, continued with Microsoft Data Factory 
running analytics engine for preprocessing data and pattern recognition, and ended with the mobile/desktop 
performance monitoring dashboard.
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In training a machine learning framework, any data imbalance can pose a challenge in the predictive models 
through bias toward the majority class. This problem was mitigated through data elimination, i.e., force block 
removal during device-idle periods in force profile segmentation, and random 50% sampling of force segments 
in the high frequent task of Coagulation. Since the time-series segmentation model provides a point-wise clas-
sification of ON/OFF instances, post-processing analytics are necessary for the production phase, including 
extracting continuous force-ON blocks meeting data length requirements and reconciling the noise-driven dis-
continuity in the identified segments. Production pipeline incorporated data factories, functions, and REST APIs 
that, following the upload of OR data into the cloud, served as personalized performance monitoring dashboard 
 application1,27.

While annexing hand-crafted features to neural networks for skill recognition and task classification models 
was preferred, the output can imply dual inference. Following extensive trials, it was evident that a selected fea-
ture-set incorporation would reduce performance in skill classification (AUC reduces from 0.81 to 0.76 in FTFIT 
when using the window size of 200). On the other hand, the combination of replicated performance features in 
the SmartForceps monitoring  dashboard1, e.g., Duration Force, Range Force, Entropy, and Heterogeneity, were 
among the best performing combinations in deep learning models (performance range from AUC = 0.85 to 0.89 
in task recognition models using LSTM or FTFIT). This showed the importance of application-specific optimal 
modelling and its validation for usage in the real world. In machine learning models with limited data, overfit-
ting occurs frequently, and the baseline models indicate such a phenomenon as shown in the Supplementary 
Materials with the differences seen between training and testing accuracies. To mitigate overfitting, grid search 
for model fine tuning and early stopping based on validation loss were implemented. A fivefold cross-validation 
was performed to assess the final performance of the model based on the best hyperparameters. The results 
showed good matching between testing and mean (SD) cross-validated accuracies for segmentation (0.95 vs. 
0.95 (0.01)) and skill classification (0.71 vs. 0.73 (0.03)), but higher variabilities for task recognition (0.82 vs. 0.79 
(0.07)). However, an accuracy of 0.7 is the minimum value that is covered across all the cross-validated models.

Although included feature sets went through a normalization process before circulating in the deep neural 
networks, some of these features inherent variability and noise-prone characteristics (e.g., Spikiness and Coef-
ficient of Variance with very low and high variabilities, respectively) would negatively affect a time-series profile 
descriptor. The distribution of feature values in Fig. 2a, despite Fig. 2b for task categories, showed high similarity 
across skill levels. This is, to some extent, reflected in performance comparison between the two pattern recogni-
tion efforts, i.e., task recognition has a better performance than skill classification. This suboptimal performance 
of surgical skill classification can be explained through a statistical analysis of the factors underlying this model. 
Our analysis showed that the mean (SD: Standard Deviation) for Force Duration in Coagulation was 12.1 (7.2) 
seconds (i.e., around 58% higher than the average of completion time in other tasks: two-way ANOVA test p 
value < 0.001), however, this measure comparison across Expert and Novice groups was 12.2 (7.2) versus 12.1 
(7.3) only 0.8% difference. Similar behavior was observed for Minimum Force (Task Classes p value = 0.1; Skill 
Classes p value < 0.001), Force Distribution Skewness (Task Classes p value = 0.8; Skill Classes p value < 0.001), 
and Force Profile First Autocorrelation Zero (Task Classes p value = 0.9; Skill Classes p value < 0.001)13. A lower 
performance for skill classification has also been reported in previous studies where investigators showed a mean 
precision of 91% in detecting surgical actions, however, 77% when predicting surgical skills using deep learning 
on surgical videos 6. This may in part relate to real-world scenario whereby trainee surgeons perform only those 
tasks delegated by the attending based on their level of competency and comfort. In addition, this similarity 
of pattern can perhaps be attributed to the trainees following the mentor’s lead in our single institutional data. 
Including multi-institutional data with more distinctive patterns across mentor-trainee populations and pro-
cedures would help equip and enrich the machine learning framework with more granularity and diversity of 
incoming data, i.e., rating of skill proficiency, into the skill level classification model.

Of interest, the input time-series window size had an impact on modeling performances, i.e., AUC = 0.78 to 
0.81 for the skill classification model and AUC = 0.87 to 0.89 for the task recognition model using the FTFIT 
network. This primarily related to the average duration time of a force segment, which was close to 10 s (200 
data points considering the sampling rate of 20 Hz). Internalization of the FTFIT network for SmartForceps data 
modeling showed significant improvement compared to a widely used deep learning model, i.e., LSTM, for both 
skill recognition (AUC improvements from 0.60 to 0.81) and task recognition (AUC improvements from 0.69 
to 0.89). This comparison with the baseline XGBoost model also showed an improvement in testing accuracy, 
i.e., from 0.65 to 0.71 in skill classification and from 0.81 to 0.82 in task recognition. Convolutional operations 
in FTFIT further allowed the local structure of force profile, e.g., line and curves, to be captured in bottom-layer 
neurons of the network, while various shapes, e.g., valleys and hills, in the top layers. Additionally, the speed 
performance, and scalability establish FTFIT as a suitable candidate for widespread use of the SmartForceps 
machine learning  platforms29.

Efforts in utilizing AI for surgical monitoring and performance assessment have been initiated, mainly in 
surgical robotics, linking haptic feedback, robot kinematics, and clinical information such as operating time, 
blood loss, etc. to predict surgical outcomes as a measure of  performance33,34. Similarly, surgical video-based 
localizing of surgical instrument’s trajectory and motion characteristics, using the Fast R-CNN model have been 
employed for estimation of performance  monitoring35. For surgical task recognition, investigators have studied 
continuous kinematic data represented as strings for discriminative gesture discovery via relative occurrence 
frequency measured by comparative numerical  statistics36. Low-level spatiotemporal features from video data, 
combined with a high-level segmental classifier based on a convolutional neural network integrating visual 
objects with temporal components have also been  used37. Data-driven approaches have been developed for clini-
cal decisions support. Multi-source preoperative and intraoperative data from a large number of surgical cases 
were used to predict postoperative  complications38. Additionally, deep learning was used to forecast surgical 
duration in real-time for informed preoperative  decisions39. Although one-to-one comparison of performance 
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between studies was deemed unsuitable due to differing goals, a single modality, force data, has never been used 
to evaluate performance based on surgical tasks, such as coagulation as a vital component of vascular surgery.

Limitations
This study was limited by the inclusion of only one Expert surgeon, which may affect the surgical skill classifica-
tion model. As the technology currently spreads to other centers, it allows a diversified data collection from a 
variety of surgical teams. Clinical trials and retraining of models with larger numbers of surgical teams will be 
included in future studies.

Conclusions
Here, using the SmartForceps technology, we have developed a unique end-to-end data-enabled pipeline that 
consolidates the concepts of immortalizing surgical skills. Perhaps this could be considered as a virtual assist 
hosted in a cloud platform enabling access beyond geographical or generational limits. Facilitating contempo-
rary transition to competency-based surgical education and practices, sensor-driven technology, which allows 
a digital, quantifiable output, is deemed timely and necessary.

Additional information. Supplementary figures and table are available for this paper through this link: 
https:// github. com/ smart force ps/ ai_ models/ tree/ main/ suppl ement ary- files.

Data and code availability
Sample de-identified data and modeling codes are available at a GitHub repository: https:// github. com/ smart 
force ps/ ai_ models.
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