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Characterization, sources, 
and risk assessment of PAHs 
in borehole water from the vicinity 
of an unlined dumpsite in Awka, 
Nigeria
Chiedozie Chukwuemeka Aralu  1, Patrice‑Anthony C. Okoye 1, Hillary O. Abugu 2, 
Nkiruka C. Eboagu 1 & Victor Chukwuemeka Eze  1,3*

Polycyclic aromatic hydrocarbons (PAHs) are contaminants of interest in the ecosystem due to 
associated health risks. Therefore, their detection in the environment is important. In this regard, 
the risk assessment of PAHs in borehole water near the unlined dumpsite in Anambra State was 
investigated. Samples of borehole water (16 each) were collected from the study and control areas 
during both seasons. The PAH concentrations in the borehole water samples were analyzed using 
gas chromatography. The mean PAH concentration in the study and control samples for the wet 
season varied from BL–7.65 µg/L to BL–2.98 µg/L, respectively. The study samples’ dry season values 
ranged from BL to 3.33 µg/L, while control samples ranged from BL to 1.87 µg/L. 

∑
PAHs for the wet 

and dry seasons varied from 5.8 to 13.94 µg/L and 4.25 to 10.09 µg/L for study and control samples, 
respectively. The four and five rings PAH were the most dominant group in the 

∑
 PAHs for the study 

and control samples, respectively. Diagnostic ratios suggested pyrolytic and petrogenic sources for 
both locations. The cluster analysis showed different sources of the congeners in the samples. The 
non-carcinogenic risk showed no possibility of risks via dermal and ingestion routes. In addition, 
the possibility of cancer risks via ingestion routes was doubtful. The carcinogenic risk index through 
dermal contact exceeded the acceptable limit for adults and is at a tolerable limit for children, 
indicating potential threats to humans, with adults more susceptible to cancer risks. Therefore, this 
study recommends that sanitary dumpsites be constructed for waste disposal and implementation of 
environmental laws to prevent underground water pollution and the environment.

Accompanied by industrial expansion, rapid urbanization, and swift economic development, water pollution has 
become a serious environmental threat in Nigeria1–3. Anambra State has witnessed significant economic growth 
and development, which has increased waste output. Poor waste management system associated with unlined 
dumpsites has been a menace to the environment due to the percolation of leachates4–7. These leachates contain 
organic and inorganic pollutants, which damage the ecosystem if not properly treated before discharging. Lea-
chates from domestic/agricultural wastes and discharge of untreated effluents are various ways of PAH pollution 
in the environment8–12. PAHs are ubiquitous organic constituents formed during the combustion processes of 
biomass, fossil fuel, garbage, and industrial activities6,13,14.

PAHs are organic compounds that have attracted global recognition because of their carcinogenic threats15,16. 
PAHs are categorized into high (4–6 rings) and low-member (2–3 rings) weight groups17–19. PAHs are gener-
ally classified as relatively persistent organic and environmental pollutants20–22. Higher molecular weight PAHs 
groups are relatively immovable, and moderately insoluble in water18,23. PAHs are normally found in the bottom 
sediments, thus accumulating to greater concentrations, which can be lethal to the environment24.
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Certain PAHs occur at low environmental concentrations due to their low biodegradability and elimina-
tion problems18–27. Also, the PAHs have bioeffects, such as interactive effects on hematological parameters and 
developmental toxicity28,29.

Underground/surface water can be polluted with PAHs via leaching from landfills, petroleum spills, and fossil 
fuel combustion, which have attracted global attention30–32. Populace living around waste Sites can be exposed to 
PAHs through pollution of the borehole water via leachates17,20,33. In the current study, the Agu-Akwa dumpsite in 
Awka was considered. The dump site is an open/unlined dumpsite, the most common method of waste disposal 
in Nigeria due to poor budgetary allocation34–36. Contamination of the underground water, such as boreholes, is 
expected since the refuse dump is highly unregulated due to the release of toxic pollutants.

Previous studies have been done on the contamination effects of leachates on underground water37–40. Most 
work has focused mainly on groundwater’s physicochemical and heavy metals contamination. Aralu et al.7 inves-
tigated the pollution effect of PAHs in the Nnewi metropolis, Anambra State. However, studies have not been 
conducted on PAH status in borehole water around the Agu-Awka dump site in the Awka metropolis in Anambra 
State. The urgent need to investigate the health implications of using the boreholes is very important, considering 
the proximity of the dumpsite to residential homes in the area.

Therefore, the work was done to determine the PAH concentrations of the boreholes around the dump site. 
Also, to determine the sources and compositions of the PAHs in the underground water, and to assess the health 
risks of residents using the borehole water for domestic use. The results can serve as key data in reviewing exist-
ing laws on waste management.

Materials and methods
Study area.  Figure 1 and Table 1 show the sampling coordinates and sampling points area within the dump 
site area. The map in Fig. 1 was generated using Google earthpro version 7.3.1. The sampling points are within 
the Agu-Awka dumpsite in Awka South, Anambra State. The refuse dump is an unlined/open dumpsite with 
no preventive liners to prevent leachate. The wastes are openly burnt in the open atmosphere, which releases 
dangerous fumes. Awka South lies within the tropical rainforest region and Anambra Basin in South-Eastern 
Nigeria. The city has experienced significant economic development and rapid population growth. The natural 
vegetation of the area has been affected due to deforestation of the environment due to urbanization. The climate 
of the location is composed of rainy and dry seasons. The average rainfall varies from 165 to 1025 mm annually. 
The area’s average temperature varies between 27 and 28ºC, which experiences its highest peak at 35 °C41. The 
area’s relative humidity varied between 85 and 100% during the wet season and less than 70% during the dry 
season41,42.

The average elevation above sea level is about 70 m43. The soil is characterized by the Imo Shale formation, 
which consists of blue-grey shale with sand clays, loamy, clay, and sandstones44. The Imo Formation is Paleocene 
in age40. The area has a mean depth to the water table of about 16–35 m and a mean static water level of about 
40 m40. The dump site is located around an industrial area comprising markets, factories, workshops, and con-
struction companies. The types of waste in the dumpsite comprise paper, plastic materials, aluminum, metal 
objects, batteries, lubricants, and household wastes.

Figure 1.   Sampling points description.
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Sampling and preparation of borehole samples.  Sixteen borehole water samples each were collected 
monthly for the study and control samples, respectively. The wet season was sampled for 4 months (May–August 
2018), while the dry season was sampled for 3 months (Dec 2018–February 2019). The study samples were col-
lected within 152–213 m from the dumpsite area, while a distance of 619–788 m away from the study samples 
was used to collect the control samples. Before sampling, glass sample bottles were washed with detergent, rinsed 
with distilled water, and dried in an oven. Properly cleaned glass bottles were used to collect borehole water 
samples. The 16 samples from each location were combined to form a homogenous sample representing the 
samples collected from a particular location. The homogenized water samples were stored in the refrigerator at 
4 ◦ C before analysis.

Chemicals used for the analysis.  A standard mixture of 16 US EPA priority PAHs was procured from 
Accustandards Inc (USA). Analytical grade dichloromethane, acetonitrile, acetone, n-hexane, and anhydrous 
sodium sulphate were acquired from Sigma-Aldric, USA.

Preparation of borehole samples and clean‑up.  The analysis was carried out using the method45. 
10 mL of the sample was extracted with 200 mL of dichloromethane. The separation of the mixture was carried 
out using a separating funnel and was concentrated with the aid of a rotary evaporator. The concentrated sample 
was analyzed by adding 1 mL of acetonitrile. Residue cleaning was performed using an 8 mL (12 mm 5 cm long) 
glass chromatography column from Restek, USA. The sample was passed through a chromatographic column 
loaded with 14 g of activated silica gel (60–100 mesh) deposited with glass wool and anhydrous Na2SO4 (2 g). It 
was conditioned with 7 mL of n-hexane. The concentrated extract was dissolved in 2 mL n-hexane and loaded 
into the column. The eluate collected was concentrated using a rotary evaporator. The concentrated eluate was 
used for analysis after dissolving it with 1 mL of acetone.

Quantitative analysis of PAHs.  A Buck Scientific M910 gas chromatograph (USA) coupled with a flame 
ionization detector was utilized for the analyses. A column type HP 88 with dimension (100 m × 0.25 μm thick-
ness) CA., USA, and an on-column automatic injector were used for PAH detection. Helium (carrier gas) with 
a maintained flow rate of 1.5 mL/minand oven ramprates of 6 °C/min was utilised for the experiment. The oven 
temperature was programmed to start at 70 °C and increase to 300 °C. The detector was operated at 325 °C. The 
injector temperature was set at 280 °C. The inlet temperature was set at 290 °C. 1 μL was the injected volume 
using a split mode with a ratio of 5:146.

Validation of experiment.  100 mL of borehole water sample collected from a different location (blank) 
was spiked with 1 mL standard PAH solution. It was properly extracted using 200 mL of dichloromethane, clean 
up of the GC column was done, and the concentrated extract analysed for PAHs using the procedure stated by 
Omores et al.46. The intraday and interday precision was determined by analyzing the prepared samples on the 
same day and three different days, respectively. Triplicate analyses were done for the recovery experiment. The 
overall average recovery rates were 90.6–98.8% (Table 2) and within acceptable limits18,47. The limits of detec-
tion for the PAHs are also shown in Table 2. The analyte peak was identified by comparison of sample retention 
time values with those of the standard compounds48,49. All calibration curves of the tested PAHs were found to 

Table 1.   Sampling coordinates.

Sample points Control points

Points Latitude Longitude Points Latitude Longitude

S1 6.219668 7.091002 C1 6.221057 7.08278

S2 6.219913 7.091621 C2 6.221156 7.082889

S3 6.220296 7.090515 C3 6.221102 7.082509

S4 6.220628 7.08998 C4 6.221284 7.082726

S5 6.220093 7.08921 C5 6.22104 7.082287

S6 6.219728 7.089689 C6 6.221005 7.083127

S7 6.21943 7.089746 C7 6.220756 7.082995

S8 6.219718 7.089989 C8 6.220573 7.082746

S9 6.219429 7.089712 C9 6.221507 7.083206

S10 6.218784 7.090027 C10 6.221424 7.082812

S11 6.218253 7.089396 C11 6.221739 7.082339

S12 6.219187 7.088888 C12 6.221521 7.082213

S13 6.21945 7.08881 C13 6.221142 7.081725

S14 6.21818 7.090541 C14 6.221297 7.081679

S15 6.219003 7.088372 C15 6.220308 7.08142

S16 6.218332 7.088964 C16 6.220425 7.081378
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be linear with a correlation coefficient (r2 ≥ 0.991) within acceptable limits18. The analyses of the samples were 
performed in triplicate, and the mean results were recorded in Table 3.

Health risk assessment.  The study calculated health risks using the benzo (a) pyrene toxicity equivalent 
( BaPeq ). The  BaPeq was computed using the expression in (Eq. 1)18,50.

Ce and TEFe indicates PAH’s concentration and toxicity factors, respectively (Table 3). The health risk was 
also calculated using the benzo (a) pyrene mutagenic equivalent quotients ( BaPMeq ). The  BaPMeq was computed 
using (Eq. 2)51,52.

Ce and ME Fe indicates the concentration and mutagenic factors of corresponding PAH (Table 3). Health risks 
were calculated using risk equations for dermal and ingestion pathways53,54.

The average daily dosage by dermal interaction ( ADDdermal ) was evaluated for non-carcinogenic risks using 
(Eq. 3).

(1)BaPeq =

∑

Ce × TEFe

(2)BaPMeq =

∑

Ce ×MEFe

Table 2.   Recovery data and limit of detection for PAHs.

PAHs Recovery percentage Limit of detection (μg/L)

Acenaphthene Acp 90.6 ± 2.45 0.06

Acenaphthylene Acy 91.4 ± 2.89 0.02

Fluoranthene Fla 90.9 ± 3.02 0.03

Benzo (k) fluoranthene BkF 93.5 ± 3.12 0.18

Benzo (b) fluoranthene BbF 94.6 ± 2.15 0.11

Fluorene Flur 92.8 ± 1.56 0.02

Benz (a)anthracene BaA 92.5 ± 1.48 0.07

Pyrene Pyr 93.1 ± 2.25 0.04

Naphthalene Nap 91.8 ± 2.13 0.09

Benzo (a) pyrene BaP 94.7 ± 3.25 0.03

Dibenz (a,h) anthracene DbahA 98.8 ± 1.24 0.05

Phenanthrene Phen 96.2 ± 1.47 0.02

Benzo (g,h,i) perylene BghiP 98.1 ± 1.17 0.10

Table 3.   Contents of PAHs in borehole samples. BL below limit, LMW low molecular weights, HMW high 
molecular weights, cPAHs carcinogenic PAHs.

PAHs (µg/L) TE Fe ME Fe

Wet season Dry Season

Study sample Control sample Study sample Control sample

Range Mean Range Mean Range Mean Range Mean

Acp 0.001 – BL–0.5 0.25 ± 0.29 BL–3.2 1.03 ± 1.51 BL – BL –

Acy 0.001 – BL–0.1 0.05 ± 0.06 BL–0.2 0.05 ± 0.1 0.1–0.1 0.1 ± 0.00 BL–0.2 0.67 ± 0.12

Fla 0.001 – BL–0.2 0.05 ± 0.1 BL–0.3 0.08 ± 0.15 0.2–1.4 0.6 ± 0.69 BL–1.0 0.37 ± 0.55

BkF 0.1 0.11 BL–0.2 0.05 ± 0.1 BL – BL–0.2 0.67 ± 0.12 BL –

BbF 0.1 0.25 BL–7.9 3.13 ± 3.85 0.8–4.8 2.98 ± 2.13 1.1–6.1 3.1 ± 2.65 0.8–3.9 1.87 ± 1.76

Flur 0.001 – BL–0.3 0.1 ± 0.14 BL–0.1 0.28 ± 0.49 BL – BL –

BaA 0.0 0.082 BL–1.2 0.65 ± 0.55 BL–1.0 0.35 ± 0.47 BL–0.4 0.27 ± 0.23 BL–0.1 0.33 ± 0.06

Pyr 0.001 – BL–11.8 7.65 ± 5.23 BL – BL–6.0 3.33 ± 3.06 BL–0.5 0.17 ± 0.29

Nap 0.001 – BL–4.4 1.33 ± 2.09 BL–1.3 0.5 ± 0.57 BL–5.3 1.76 ± 3.06 BL–0.3 0.17 ± 0.15

BaP 1 1 BL–0.4 0.1 ± 0.2 BL–0.2 0.05 ± 0.1 BL–0.2 0.13 ± 0.12 0.1–0.1 0.1 ± 0.00

DbahA 1 0.29 BL – BL – BL–0.1 0.03 ± 0.06 BL –

Phen 0.001 – BL–1.7 0.43 ± 0.85 BL–1.8 0.45 ± 0.9 BL – BL–1.4 0.47 ± 0.81

BghiP 0.01 0.19 BL–0.6 0.15 ± 0.3 BL–0.1 0.03 ± 0.05 BL–0.2 0.1 ± 0.1 0.1–0.1 0.1 ± 0.00
∑

PAHs – – 11.6–17.2 13.94 3.3–7.1 5.8 6.2–13.3 10.09 1.5–6.7 4.25
∑

LMW – – 0.1–4.5 2.16 1.5–4.2 2.31 0.1–5.4 1.86 BL–1.6 1.31
∑

HMW – – 8.1–14.2 11.78 1.8–5.1 3.49 6.1–8.9 8.23 1.0–5.1 2.94
∑

cPAHs – – 1.0–8.1 3.93 1.8–5.0 3.38 1.7–6.4 4.2 0.9–4.0 2.3
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The exposure route by chronic daily intake via ingestion (mg/kg/day) was determined using (Eq. 4) for non-
carcinogenic risks.

where ADDdermal corresponds to the average daily dosage by dermal interaction (mg/kg/day); C represents levels 
of PAHs (mg/L); EF refers to the frequency of exposure (350 days/year); ED refers to the duration of exposure 
(20 years and 6 years for adult and child respectively)55; BW denotes for the body weight (80 kg and 15 kg cor-
responds to the adult and child weight respectively)55,56; AT denotes average life span (7300 days and 2190 days 
for adult and child respectively)57; SA represents the dermal surface area (19,652 cm2 and child: 6365 cm2 for 
adult and child respectively)55; ET denotes the exposure time of shower and bathing (adult: 0.71 h/day; child: 
0.54 h/day)55; CDIingestion is the chronic daily intake (mg/kg/day); IR stands for the water ingestion rate (adult: 
2.5 L/day; child: 0.78 L/day)55. The Kp (cm/hr) stands for permeability coefficient (Nap: 0.047; Phen: 0.14; Fla: 
0.22; BaA: 0.47; BbF: 0.7; BaP: 0.7; DbahA: 1.50; Pyr: 0.324)58; CF represents conversion factor (L/1000 cm)58,59.

The HQ and HI, which represent hazard quotient and hazard index, were calculated for individual PAHs 
using the following equations60,61.

RfD stands for dermal reference dose for PAHs (Nap: 0.02; Flur 0.04; Phen: 0.04; Fla: 0.04; Pyr: 0.03 and 
BghiP: 0.04)57. The probability of exposure to a possible carcinogen was evaluated using incremental lifetime 
cancer risk (ILCR) for carcinogenic PAHs. Lifetime average daily dose (LADD) (mg/kg/day) and lifetime chronic 
daily intake (LCDI) (mg/kg/day) in (Eqs. 8, 9) was used to evaluate the LADD (dermal contact) and LCDI 
(ingestion route). The average time (AT) used for ILCR was 25,550 for adults and children. HI was calculated 
using (Eq. 10)58.

CSF stands for the cancer slope factor, which was extrapolated by multiplying the CSF for BaP (7.3 mg/kg/
day) by the toxic factor of individual PAHs53.

Statistical estimation.  Microsoft Office was used for calculating the mean standard deviations of the sam-
ple results. A hierarchical cluster dendrogram was used to assess the relationship between the PAH parameters 
using OriginPro 9.0. Pearson’s correlation analyses at 0.05 significant levels assessed the results between the 
study areas of the boreholes using SPSS software.

Ethical approval.  All the authors have read, understood, and complied as applicable with the “Ethical 
responsibilities of Authors” as found in the Instructions for Authors.

Results and discussion
Levels of PAHs in the sample.  The mean results for the borehole water samples are illustrated using 
Table 3. The data in Table 4 shows the comparative study results of the study area with other regions. The bore-
hole samples recorded different PAH concentrations for both locations, confirming the pollutants’ ubiquitous 
nature. Some values were below limit (BL) in the experiment. The wet season PAH mean values varied from BL 
to 7.65 µg/L for study locations and BL to 2.98 µg/L for control locations. The level of PAHs in the dry season 
varied from BL to 3.33 µg/L for study locations, while control areas varied from BL to 1.87 µg/L. The wet season 
values were higher than the dry season, which might be attributed to the leaching of pollutants from the refuse 
dump and surface runoff through rainfall62–64. The mean study sample values (Fig. 2) were higher than the con-
trol sample values due to the infiltration of leachates from the dumpsite12. The BaP values were lower than the 
permissible limits of 200 μg/L and 700 μg/L for both locations59,65. The values of BaP, which ranged from 1.2 to 
4.3 µg/L, were higher than the study sample’s values62. The values obtained in Tehran, Iran, which ranged from 
BL to 0.01 μg/L, were lower than the present study66,67.

The low molecular weight PAHs occur mainly in lower concentration values as a result of their high volatil-
ity and dissolution62. Naphthalene which is a low molecular weight PAH is mainly from petrogenic sources 

(3)ADDdermal =
C× SA× KP× ET× EF× ED× CF

BW × AT

(4)CDIingestion =
C× IR × EF× ED

BW × AT

(5)HQ =
ADD

RfD

(6)HQ =
CDI

RfD

(7)HI =
∑

HQs

(8)ILCRs = LADD× CSF

(9)ILCRs = LCDI× CSF

(10)HI =
∑

ILCRs
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usually from oil spills77. It is of importance to note that the values of naphthalene found were within the range of 
1.33–1.76 μg/L for the study samples and 0.17–0.5 μg/L for control samples. The relatively high values obtained 
could be attributed to leaching leachates, oil spills and surface runoff68,69,77–79. The values obtained for fluorine 
varied from BL–0.1 μg/L to BL–0.28 μg/L for study and control samples respectively for both seasons. These 
values were lower than 0.18–204.38 μg/L obtained in a study conducted by Sun et al.77.

Higher molecular weight PAHs comprising four or more aromatic rings were also detected in the borehole 
water samples. Pyrene had the highest concentration (7.65 μg/L) of individual PAHs in the borehole water. BbF 
is a colourless, aromatic hydrocarbon with five fused rings formed through incomplete combustion of organic 
matter51. The individual PAHs mean values of BbF which ranged from 3.1 to 3.13 μg/L for the study sample and 
1.87 to 2.98 μg/L for control samples, were lower than the values reported in a study conducted by Onydinma 
et al.62.

DbahA is a five-fused benzene ring produced from the incomplete combustion of organic matter43. Worthy 
of note is that DbahA was the least detected PAH and occurred at a relatively lower concentration in the samples 
with a range of BL–0.13 μg/L. The values of Fla ranged from 0.05 to 0.6 μg/L and 0.08 to 0.37 μg/L for study and 
control samples, respectively. The obtained values were lower than the values reported by Edet et al.69.

Table 4 compares the total PAH levels in borehole water samples located within the dumpsite with borehole 
samples located in other dumpsites in other regions. High levels of PAHs higher than the study areas were found 
in Abia and Imo, Nigeria62, Rivers, Nigeria71, Chennai, India72, Rio de Janeiro, Brazil74, Tehran, Iran76, Nnewi, 
Nigeria12. The PAH levels were similar to those obtained in Jiangsu, China75 and Rivers, Nigeria69. However, low 
levels of PAHs lower than the study area results were found in Rivers, Nigeria31,32,70, Lagos and Akure, Nigeria68, 
Taipei, Kaoshiung, Taichung regions of Taiwan73, Zhejiang, China76.

Table 4.   Comparison of the PAH concentrations (µg/L) from this study with other previous works.

Locations Range References

Awka, Nigeria BL–7.65 This study

Rivers, Nigeria BL–1.7762 32

Nnewi, Nigeria B–113.13 12

Lagos, Nigeria 0.006–2.963 68

Akure, Nigeria BL–0.072 68

Rivers, Nigeria 4.25–9.03 69

Rivers, Nigeria BL–3.79 70

Rivers, Nigeria 0.13–328.9 71

Abia, Nigera 0.51–55.11 62

Imo, Nigeria 0.30–42.17 62

Chennai, India BL–143.2 72

Taipei, Taiwan BL–0.0279 73

Kaoshiung, Taiwan 0.008–0.33 73

Taichung, Taiwan BL–0.0227 73

Rio de Janeiro, Brazil 0.05–84.9 74

Jiangsu, China BL–6.6 75

Zhejiang, China BL–0.05 76

Tehran, Iran 0.0324–0.7331 67
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Figure 2.   Variation of wet and dry seasons PAH values for both locations.
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The PAHs found in the borehole water samples comprised low and high molecular weight PAHs, which was 
reported previously7,12,18. The PAH values revealed that the borehole samples were contaminated with varying 
PAH concentrations due to their proximity to landfill leachates for both locations, which agrees with previous 
literature6,7,12. The summation level of PAH values (

∑

PAHs) obtained in Fig. 3 showed that the study samples 
had the highest values of 13.94 µg/L and 10.09 µg/L for wet and dry seasons, respectively. The study samples 
(
∑

PAHs) values were greater than the control samples for both seasons, which was attributed to the runoff of 
leachates from the dumpsite due to its proximity to the study samples12.

The wet season 
(
∑

HMW
)

 and (
∑

LMW) values were greater than the dry season values due to more con-
tamination of the borehole water through leachate runoff12,80. The carcinogenic PAHs (cPAHs) levels were evalu-
ated from the borehole water results in Table 3 and Fig. 4. The 

∑

cPAHs in the wet season showed 28.19% for 
study samples and 58.28% for control samples, while the study and control samples showed 41.63% and 51.11%, 
correspondingly, during the dry season. The 

∑

cPAHs revealed that the study sample values were greater than 
the control samples in both seasons. It was attributed to the discharge of leachate from the refuse dump that 
contributed to the pollution of the borehole samples12,18. In the study areas, the levels of PAHs during the 
wet season followed: Pyr > BbF > Nap > BaA > Phen > Acp > BghiP > Flur, BaP > Acy, Fla, BkF > DBahA, while 
the control location was BbF > Acp > Nap > Phen > BaA > Flur > Fla > Acy > Bap > BghiP > BkF, Pyr, DBahA. The 
dry season levels of PAHs obeyed this order for the study site: Pyr > BbF > Nap > BkF > Fla > BaA > BaP > Acy, 
BghiP > DBahA > Acp, Flur, Phen, while the control site obeyed this order: BbF > Acy > Phen > Fla > BaA > Pyr, 
Nap > BaP, BghiP > Acp, BkF, Flur, DBahA.

In the wet season (Table 5), the correlation between the study and control locations showed a weak positive 
correlation (r = 0.229, p = 0.432). The p value (p > 0.05) was non-significant, which implied that the difference 
between the study and control samples was not statistically significant. In the dry season, the concentration of 
PAH values has a moderate positive correlation between the study and control sample values (r = 0.535, p = 0.048), 
which revealed a significant difference between both samples. The correlation values between the study samples 
(r = 0.880, p = 0.000) and control samples (r = 0.929, p = 0.000) for both seasons showed a significant positive 
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Figure 3.   Total PAHs concentration in both seasons.
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correlation. It indicated that the study and control sample’s PAH levels in the wet season were higher in the dry 
season due to the influx of leachates from the dumpsite.

Consequently, the over-dependence on these boreholes by individuals residing around the dumpsite for a 
long time may result in several human health conditions.

Characterisation of ring size.  Figures  5 and 6 show the ring size arrangement in the borehole water 
samples for both locations. The 4-ring PAHs recorded the maximum value (59.92%) during the wet season at 
the study location, while 52.3% was observed at the 5-ring PAHs. The maximum value of 41.6% was observed 
during the dry season for 4-ring PAHs, while the 5-ring PAHs recorded a 46.4% maximum value. The 6-ring 
PAHs recorded the lowest value of 0.52% in the wet season. The ring size profile generally showed that the 
HMW-PAHs had a higher percentage contribution than the LMW–PAHs. This finding isin agreement with simi-
lar studies12,69,81 but not in agreement with the study conducted by Aderonke et al.82 and Adedosu et al.81 where 
the LMW–PAHs were the dominant PAHs. The dominant high molecular weight PAHs were attributed to the 
incomplete combustion of organic materials and solid wastes from the dumpsite81. The LMW–PAH’s presence in 
the ring structures is linked to the emission of oil spills and non-combustible matter81.

Table 5.   Pearson correlation between study area parameters across both seasons. **Correlation is significant at 
the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed).

Correlations Study sample (wet season) Control sample (wet season) Study sample (dry season)
Control sample (dry 
season)

Study sample (wet season) 1

Control sample (wet season)
0.229 1

0.432

Study sample (dry season)
0.880** 0.509 1

0.000 0.063

Control sample (dry season)
0.270 0.838** 0.535* 1

0.351 0.000 0.048
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Figure 5.   Ring size distribution of PAHs in both locations.
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Source identifications of PAHs.  Isomeric ratios of PAH have been applied in the determination of pos-
sible input sources of PAH and their transport properties33,83. In the present study, PAH source identification 
was carried out using diagnostic ratios50. Fla/Pyr PAHs ratio < 1 implies petrogenic, while > 1 implies pyrolytic84. 
BaA/228 ratio showing < 0.2 suggests petrogenic, while 0.2–0.35 implies pyrolytic sources85.

The ratio of ΣLMW/ΣHMW was < 1 for the study and control locations (Table 6), suggesting a dominant 
pyrolytic source due to incomplete combustion of refuse or biomass18,85,86. Also, BaA/228 ratio showed a petro-
genic input for both the study sample and control sample locations. The Fla/Pyr diagnostic ratios suggested 
that study sample locations were from petrogenic sources, while control sample locations confirmed pyrolytic 
sources. Generally, the PAH contamination in both study areas originated from pyrolytic sources, largely due 
to incomplete combustion of biomass, discharge of untreated leachates and surface runoff, while the petrogenic 
sources were due to combustion of petroleum products and oil spills. A predominant petrogenic source was 
observed in the study sample, while in the control sample, the pyrolytic sources were the dominant PAHs source.

PAHs cluster analysis.  The hierarchical cluster dendrogram (HCD) showed that the PAH congeners in the 
borehole samples during the wet season were grouped into four clusters (Fig. 7). Acy, BkF, NaP, and BbF are in 
the first cluster, Fla and Flur in the second cluster, BaA,Pyr, Ant, DBahA, in the third cluster, while BaP, BghiP, 
and Phen are in the fourth cluster. The first cluster mainly comprises 5, 3, and 2-membered ring PAHs, while the 
second comprises 5 and 3-membered PAHs. Fluorene, fluoranthene, chrysene, and pyrene are markers for oil 
combustion87. The third and fourth clusters comprised 5, 4, and 3-membered rings and 5, 6, and 3-membered 
rings, respectively.

During the dry season, the PAHs were grouped into two main clusters Acy, BaA, Pyr, and BaP are in one 
cluster, while the rest are in the second cluster (Fig. 8). The first cluster mainly comprises 5, 3, and 4-membered 
ring PAHs. The second cluster comprises 6,5,4, 3, and 2-membered ring PAHs. The difference in the cluster-
ing during the wet and dry seasons could be attributed to the leachate runoff caused by rainfall during the wet 
season (seasonal variation) and concentrations of the PAHs congeners where most were undetectable during 
the dry season6,88.

Toxicity and mutagenic equivalent assessment.  The summation of the benzo(a) pyrene toxicity and 
mutagenic equivalent (TEQs and MEQs) are presented in Fig. 9. The TEQ value for the sample study in the wet 
season was 0.49, while for the control study was 0.39. The TEQ value for the dry season was 0.57 and 0.32 for 
the study and control samples, respectively. The MEQ values in the wet season were 0.97 for the study sample 
and 0.83 for the control sample. The dry season values were 1.03 and 0.61 for the study and control samples, 
respectively.

The TEQ and MEQ values for the study sample locations were higher than those at the control locations 
in both seasons, which might be attributed to the infiltration of pollutants from the refuse dump6,7,12. The BbF 
followed by BaA contributed significantly to the TEQ values. The BbF followed byBaP contributed significantly 

Table 6.   Isometric ratio values and sources.

PAH ratios

Study sample Control sample

Ratio value Source Ratio value Source
∑

LMW/
∑

HMW 0.263 Pyrolytic 0.181 Pyrolytic

BaA/228 0.002 Petrogenic 0.001 Petrogenic

Fla/Pyr 0.059 Petrogenic 2.647 Pyrolytic

Acy BkF Nap BbF Fla Flur BaA Pyr AntDBahABaPBghiPPhen
0.0

0.5

1.0

1.5

Di
sta

nc
e

PAHs)

Figure 7.   Hierarchical cluster dendrogram for the wet season.
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to the MEQ values. The individual PAH’s contribution to the TEQ and MEQ could trigger carcinogenic and 
non-carcinogenic health effects89.

PAHs risk assessment of borehole water samples.  Hazard quotient (HQs) values obtained from the 
average daily dose ( ADDderm ) are shown in Table 7. The HQ and HI values obtained via skin absorption were < 1 
for age categories and locations. Therefore, the possibilities of non-carcinogenic risks are very unlikely21. The HI 
values for the child were higher than the adult, which agrees with previous work62,69,86,90.

Cancer risk through dermal exposure is shown in Table 8. ILCR values (1.E−06) are deemed satisfactory, 
above 1.00E−05 but lesser than 1E−04 are tolerable, while values ≥ 1.0 ×10−4 indicate severe threats91. The ILCR 
values were less than 1 ×10−4. The hazard indices showed that the adult HI was predominantly higher than the 
child HI for both locations, confirmed in a similar report75. HI values for the adult age category were above the 
threshold limit, while HI values for children were within the tolerable limit. The sample study HI values were 
higher than the control sample values. The overall assessment showed that the borehole water samples are unfit 
for washing, bathing/showering. Adults are more prone to exposure to cancer health risks than children, which 
was in agreement with previous work75.

HQ and HI values for non-carcinogenic PAH exposure through the ingestion route are illustrated using 
Table 9. The hazard quotient values were < 1, which shows no chance of a non-carcinogenic effect88,92,93. The HI 
values for the study location were higher than the HI of the control location. The HI values were less than 1, 
which suggested no chance of contacting non-carcinogenic health risks.
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Figure 8.   Hierarchical cluster dendrogram for the dry season.
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Figure 9.   Toxicity and mutagenic equivalent concentration.

Table 7.   Hazard quotient values of average dermal dose.

PAHs

HQsDermal (ADULT) HQsDermal (CHILD

Study Sample Control Sample Study Sample Control Sample

Fluoranthene 2.99 ×10
−4 1.7 ×10

−4 3.93 ×10
−4 2.72 ×10

−4

Naphthalene 2.96 ×10
−4 6.4 ×10

−5 3.89 ×10
−4 8.44 ×10

−5

Pyrene 9.92 ×10
−3 1.54 ×10

−4 1.3 ×10
−2 2.02 ×10

−4

HI 1.05 ×10
−2 3.88 ×10

−4 1.38 ×10
−2 5.58 ×10

−4
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The ILCR and HI values via the ingestion route are obtained in Table 10. The ILCR values were < 1E−04. The 
HI values were within the tolerable limit 1E−05. The adult HI was higher than the child HI, which showed that 
the adult has more chances of exposure to cancer risk through bioaccumulation 75,86,90.

Conclusions
The borehole water samples were contaminated with PAHs through leachate runoff from rainfall. The total PAH 
concentration values obtained showed that the study sample was predominantly greater than the control sample 
due to its closeness to the dumpsite. The PAH levels in the borehole water samples were greater in the wet than 
in the dry season due to leachate infiltration from the dumpsite. The predominant ring in the study location was 
the 4–ringed PAHs, whereas the most dominant PAH group was the 5-ringed PAHs. The least dominant PAH 
group was the 6-ringed PAHs for both seasons and locations. The diagnostic ratios suggested both locations had 
mixed sources (petrogenic and pyrolytic). The TEQ and MEQ values were greater in the study samples than in 
the control samples. The individual PAH contributions to the TEQ and MEQ could trigger carcinogenic and 
non-carcinogenic health effects. Non-cancer risks seem unlikely for dermal contact and ingestion exposure 
routes. Carcinogenic risk through dermal contact exceeded the threshold limit for an adult and was lower for 
a child at the tolerable limit. Adults would be more susceptible to cancer risk than children. The HI values for 
carcinogenic risks through the ingestion pathway were within (1.0 ×10−5 ) the acceptable limits for the adults 
and the children categories in all the locations. Based on the study’s findings, there is a dire need to protect the 
environment and make it suitable for human lives by controlling the indiscriminate release of pollutants which 
often bioaccumulate to toxic levels if unmonitored. In addition, we recommend that the borehole water be treated 
before use to avoid health-related risks through domestic usage.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Table 8.   ILCR values of average dermal dose.

PAHs

ILCRDermal (ADULT) ILCRDermal (CHILD)

Study sample Control sample Study sample Control sample

BbF 7.61 ×10
−5 7.46 ×10

−5 3.0 ×10
−5 2.34 ×10

−5

BaA 2.75 ×10
−5 8.22 ×10

−6 2.97 ×10
−6 2.2 ×10

−6

BaP 2.81 ×10
−5 1.83 ×10

−5 1.11 ×10
−5 7.22 ×10

−6

DBahA 7.85 ×10
−5 – 3.1 ×10

−6 –

HI 1.39 ×10
−4 1.01 ×10

−4 4.71 ×10
−5 3.28 ×10

−5

Table 9.   Hazard quotient for ingestion route.

n

HQsIngestion (ADULT) HQsIngestion (CHILD)

Study Sample Control Sample Study Sample Control Sample

Acp 0.0025 0.0103 0.0267 0.1098

Fla 0.0098 0.0068 0.1039 0.072

Flur 0.0015 0.0042 0.016 0.0448

Nap 0.0452 0.0098 0.4819 0.1045

HI 0.059 0.0311 0.6285 0.3311

Table 10.   ILCR for ingestion route.

PAHs

ILCRIngestion(ADULT) ILCRIngestion(CHILD)

Study sample Control sample Study sample Control sample

BkF 2.25 ×10
−6 9.8 ×10

−6 1.12 ×10
−6 –

BbF 1.95 ×10
−5 5.85 ×10

−6 9.72 ×10
−6 7.6 ×10

−6

BaA 2.88 ×10
−6 1.27 ×10

−6 5.23 ×10
−6 1.1 ×10

−6

BaP 7.19 ×10
−6 3.13 ×10

−6 3.59 ×10
−5 2.3 ×10

−6

DBahA 9.4 ×10
−7 1.35 ×10

−8 4.68 ×10
−7 –

HI 3.28 ×10
−5 2.01 ×10

−5 2.01 ×10
−5 1.1 ×10

−5
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