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Air‑quality prediction based 
on the ARIMA‑CNN‑LSTM 
combination model optimized 
by dung beetle optimizer
Jiahui Duan , Yaping Gong *, Jun Luo  & Zhiyao Zhao 

Air pollution is a serious problem that affects economic development and people’s health, so an 
efficient and accurate air quality prediction model would help to manage the air pollution problem. 
In this paper, we build a combined model to accurately predict the AQI based on real AQI data from 
four cities. First, we use an ARIMA model to fit the linear part of the data and a CNN‑LSTM model to 
fit the non‑linear part of the data to avoid the problem of blinding in the CNN‑LSTM hyperparameter 
setting. Then, to avoid the blinding dilemma in the CNN‑LSTM hyperparameter setting, we use the 
Dung Beetle Optimizer algorithm to find the hyperparameters of the CNN‑LSTM model, determine 
the optimal hyperparameters, and check the accuracy of the model. Finally, we compare the proposed 
model with nine other widely used models. The experimental results show that the model proposed 
in this paper outperforms the comparison models in terms of root mean square error (RMSE), mean 
absolute error (MAE) and coefficient of determination  (R2). The RMSE values for the four cities were 
7.594, 14.94, 7.841 and 5.496; the MAE values were 5.285, 10.839, 5.12 and 3.77; and the  R2 values 
were 0.989, 0.962, 0.953 and 0.953 respectively.

Due to industrialization, urbanization, and other factors, air pollution has become increasingly prominent. The 
air quality index (AQI) is an important index reflecting the level of atmospheric  pollution1, and its size is closely 
related to the content of various pollutants in the atmosphere. There are six major pollutants affecting air qual-
ity: PM2.5,  PM10,  NO2,  SO2, CO, and  O3. Continuous exposure to air pollution can cause a variety of diseases, 
such as respiratory, cardiovascular, neurological, etc., and its harm is  increasing2,3. Air pollution is the product of 
multiple factors, and its concentration has non-constant and nonlinear characteristics, which brings difficulties 
to the forecast of atmospheric environmental quality indicators.

Many academics have suggested many prediction models in recent years. The statistics model, machine 
learning model, and deep learning model can all be generically categorized as these three types of models. A 
statistical model bases its explanation of cause and effect on assumptions about the distribution of the data and 
places a high emphasis on parameter inference.

The application of statistical methods in air quality prediction mainly includes the autoregressive (AR) model, 
the autoregressive integrated moving average (ARIMA) model, the gray model, and the multiple linear regres-
sion (MLR)  model4,5 proposed an algorithm to assess the pollution level of air quality parameters and create a 
new air quality index based on the fuzzy reasoning system to predict air quality parameters by AR model. Zhang 
et al.6 examines two different approaches to model development, including GAM and traditional linear regres-
sion methods. To show the requirement for first-order  differencing7, proposed an ARIMA model based on the 
augmented Dickey-Fuller test for PM2.5 annual data. In order to offer accurate forecasts that can accurately 
capture seasonal and nonlinear  properties8, created a seasonally nonlinear gray model to account for seasonal 
fluctuations in the time series of seasonally fluctuating pollution indicators.

Machine learning models rely on large data sets to predict the future, weakening the convergence problem 
and focusing on model prediction. Mehmood et al.9 discusses the transformation of traditional methods into 
machine learning methods and analyzes emerging trends to identify potentially valuable research directions. 
Using machine learning models and methods. Varghese and  Kumar10 developed a machine learning-based 
empirical model to predict the laminar combustion rate of air pollutants under high pressure and high tem-
perature conditions, using volume fraction as the independent variable. Zhang et al.11 uses machine learning 
models and methods in order to predict how the unpredictability and variability of the indoor mode can cause 
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excessive adjustment or a deficiency of air quality. Rakholia et al.12 developed a model that included factors such 
as weather conditions, urban traffic, air quality data in residential and industrial areas, urban spatial informa-
tion, time-series composition, and pollution concentrations. Gu et al.13 proposes a new hybrid interpretable 
prediction machine learning model for PM2.5 prediction that can outperform other models in terms of peak 
prediction accuracy and model interpretability. Maltare and  Vahora14 focuses on support vector machine algo-
rithms based on RBF kernel models.  Munir15 used machine learning models to assess the impact of intelligent 
transport interventions on air quality.

Deep learning model is more adaptive and easily transformable than a machine learning model, allowing 
easier adaptation to different domains and applications. Zhang et al.16 made a comprehensive review of the 
Deep Learning Method dedicated to air pollution concentration forecasting. Wu et al.17 proposes a hybrid deep 
learning-based model to predict the pollutant concentration in the next hour at the network scale based on the 
identified spatio-temporal features.  Jurado18 developed a fast and accurate system using convolutional networks 
for real-time forecasting of air pollution based on wind speed, traffic flow, and building geometry. Zhang et al.19 
gives a meta-learning algorithm for knowledge transfer between cities with large differences that can incorporate 
spatio-temporal correlations between monitoring stations and transfer data from other cities with rich training 
data. Saez and Barceló20 proposed a new model that can predict the space for long-term and short-term exposure 
to air pollutants and has relatively low monitoring STA pollutants and a lower calculation time.

Some scholars have developed combinatorial models to improve the accuracy of prediction in pursuit of 
greater prediction rates. Due to the combination of the advantages of different models, the combined model’s 
accuracy has greatly improved in prediction accuracy.  Kshirsagar21 explores the role that neural networks, regres-
sion, and hybrid models play in the analysis, prediction, and mitigation of air pollution, taking into account the 
most recent developments and new research in the field. Zhang and  Li22 combined the efficient features of CNN 
with the algorithmic advantages of LSTM to propose a CNN-LSTM model to predict future air pollution data. 
 Vlachokostas23 confirmed the regression model by using multiple stepwise regression analysis to find a significant 
statistical relationship between  C6H6 and CO. Gunasekar et al.24 developed a new hybrid model for air quality 
prediction, optimizing the residual error of ARIMA by the LSTM algorithm. Wang et al.25 added an attention 
mechanism to the model to improve the prediction accuracy of the LSTM model. Dai et al.26 established five 
haze hazard risk assessment models by improving theparticle swarm optimization (IPSO) light gradient boosting 
machine (LightGBM) algorithm and a hybrid model combining XGBoost, four GARCH models and MLP model 
(XGBoost-GARCH-MLP) is proposed to predict PM2.5 concentration values and  volatility27.

With the rapid development of soft computing technologies, many meta-heuristic algorithms have recently 
been designed and used as competitive alternative solutions to address improved accuracy of predictive models 
due to their simplicity and ease of implementation.Grey Wolf Optimizer (GWO) is a nature-inspired optimisation 
algorithm inspired by the behaviour of grey wolves in packs. Its flexibility and efficiency make it a popular optimi-
sation algorithm. Akilandeswari et al.28 used LSTM with the Weighted Grey Wolf Optimizer (LSTM-WGWO) to 
increase the accuracy of the air quality index significantly.The Harris-hawks optimisation algorithm is a nature-
inspired group intelligence based optimisation algorithm where the objective is to minimise or maximise an 
objective function given a constraint. Du et al.29 proposes a new multi-objective optimisation version of HHO and 
develops a new hybrid model to improve the accuracy of the predictive model. PSO is a population intelligence 
based optimisation algorithm inspired by the behaviour of groups of organisms searching for optimal solutions 
in the solution space. Huang et al.30 improved the PSO algorithm accordingly, optimized the overall prediction 
performance of BP neural network, adjusted the change strategy of the inertia weight as well as the learning fac-
tor, and ensured the diversity of particles during the early stage and the fast convergence to the global optimal 
solution.The Cuckoo optimisation algorithm is an optimisation algorithm based on the idea of parasitism in a 
bird’s nest, simulating the biology of a male bird occupying a nest and a hetero bird making the same random 
behaviour and thus searching for the optimal solution. Sun et al31 proposes a hybrid model for cuckoo search 
optimisation based on principal component analysis (PCA) and least squares support vector machine (LSSVM). 
The model outperforms a single LSSVM model with default parameters and a general regression neural network 
(GRNN) model for PM2.5 concentration prediction.In summary, machine learning and deep learning models 
can handle time series forecasting more accurately than traditional statistical models. However, due to the non-
stationary nature of AQI data, it may be difficult for individual models to fully explore the internal regularities 
among the data. Most of the comparative models chosen by previous models are based on derivatives of the 
proposed model, do not provide a comprehensive comparison of other models, and have limited accuracy. A new 
combined model is therefore proposed in this paper. To verify the superiority of the model, the AQI is used as 
an example for forecasting and four different cities in China are selected for the study to compare the forecasting 
effectiveness of other models. Beijing, Lanzhou, Jiaozuo and Guangzhou were chosen for the study.

The main contributions of this paper are as follows: (1) The linear part of the data is extracted and fitted using 
the ARIMA model to output the prediction results of the linear part and the non-linear part, and the output 
non-linear part is imported into the deep learning model for fitting to obtain the prediction values of the non-
linear part. (2) The prediction results of the linear part and the non-linear part are combined to obtain the final 
prediction output. (3) To avoid the problem of blindness in CNN-LSTM hyperparameter setting, this paper uses 
a dung beetle optimization algorithm to search for hyperparameters of the CNN-LSTM model.

Materials and methods
Statistical method. The ARIMA model is called the average model of the Returning Integration Move-
ment, which is usually written as ARIMA(p, d, q). This model is able to handle non-stationary series and is 
widely used in algorithmic prediction and has high accuracy in air quality prediction. In the ARIMA model, 
AR is the autoregressive and p is the number of autoregressive terms; I is the difference and d is the number of 
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differences (order) made to make it a smooth series; MA is the sliding average and q is the number of sliding 
average terms, and the mathematical model can be represented by (1). In general, second-order differences are 
single-integer smooth data, i.e., only the ARMA(p, 2, q) model is required. ARMA(p, 2, q) can be transformed 
into AR() and MA(), which correspond to the characteristic that both functions exhibit a gradual decay. The p’s 
and q’s are determined by either the deficit pool information criterion (AIC) or the Bayesian information crite-
rion (BIC). In this paper, BIC is used to determine the values of p and q. The BIC formula is (2).

where yt is the number of difference levels, c is a constant value, φ is the AR parameter (autocorrelation size), 
p is the number of lags (AR order), θ is the MA parameter value (error autocorrelation), q denotes the number 
of lags (order of the model MA), and et is the  error32. k is the number of model parameters, n is the number of 
samples, and L is the likelihood function.

Machine learning model. RF. Random forest is an integrated prediction model based on decision trees, 
which integrates multiple decision trees, each of which has a certain dependence on the independently sampled 
random vector values, and all decision trees in the random forest have the same distribution. The two most 
important parameters of RF are Number of trees and Number of features. Number of decision trees indicates 
the number of trees in the forest andNumber of features indicates the number of randomly selected features for 
each decision  tree33).

SVM. A supervised learning algorithm, Support Vector Machine (SVM), is a generalized linear classifier that 
performs binary classification of data in a supervised learning manner, with its decision boundary being the 
maximum margin hyperplane of the learned example solution. For example, ω · x + b = 0 is separation hyper-
plane in Fig. 1.

The SVM model parameters include: kernel function, penalty coefficient, regularization parameter and accu-
racy. There are five kernel functions: linear, poly, rbf, sigmoid and pre-computed. This paper choose linear kernel 
function, mathematical formula for (3); maximum number of iterations Number of iterations of the algorithm.

Deep learning model. LSTM. Long-short-term memory (LSTM), as a unique class of recurrent neural 
networks, is used to solve the gradient diffusion problem in recurrent neural networks. LSTM model contains 
three main gates, namely: forget gate, memory gate and output gate, and its structure is shown in Fig. 2.

The task of the forget gate is to accept a long-term memory Ct−1 (the output from the previous unit module) 
and decide which part of Ct−1 to retain and forget, with the mathematical expression (4);

The memory gate will forget the attribute information discarded by the gate, locate the corresponding new 
attribute information in the unit module, and supplement the discarded attribute information. The memory 

(1)yt = c + φ1 ∗ yt−1 + · · · + φp ∗ yt−p + θ1 ∗ et−1 + · · · θq ∗ et−q

(2)BBIC = k ∗ ln (n)− 2 ln (L)

(3)K(x, z) = x · z

(4)ft = σ
(

Wf · [ht−1 · xt]+ bf
)

Figure 1.  SVM schematic.
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gate is made up of two layers: the sigmoid layer and the tanh layer, which have the mathematical expressions 
(5), (6), and (7).

The output gate is used to determine the cell state output part, and the cell state is processed through the 
tanh layer, and the two are multiplied to get the final information we want to output, with the mathematical 
expressions (8) and (9).

where h(t−1) represents the previous cell output, xt represents the current cell input, σ denotes the sigmoid acti-
vation function, Wf  represents the forgetting gate’s weight coefficient matrix, and bf  represents the forget gate 
bias vector. Wi , bi denote the input gate weight coefficient matrix and bias vector determined by the sigmoid 
activation function, while Wc and bc denote the input gate weight coefficient matrix and bias vector determined 
by the hyperbolic tangent activation function, respectively. tanh denotes the hyperbolic tangent activation func-
tion. Wo , bo , denote the output gate weight coefficient matrix and bias vector, respectively, and ot denotes the 
output gate at time t34.

DBO. DBO (Dung Beetle Optimizer, DBO for short) is a new population intelligence algorithm based on 
beetle ball rolling, dancing, foraging, stealing, reproduction and other behaviors. This algorithm is character-
ized by strong merit-seeking ability and fast convergence. The DBO algorithm consists of four main processes: 
ball rolling, breeding, foraging and stealing. In the case of dung beetle unobstructed ball rolling, assuming 
that light intensity affects dung beetle position, the formula for updating the dung beetle’s position as fol-
lows.xi(t + 1) = xi(t)+ α · k · xi(t − 1)+ b ·�x

where t  is the current number of iterations, xi(t) is the position information of the i th praying mantis in the i 
th iteration, and k ∈ (0, 0.2] is the current number of iterations represents the deflection coefficient’s constant 
value, b represents the value of the constant assigned to (0, 1), and α represents the natural coefficient assigned 
to − 1 or 1. Xw represents the ball’s worst position, and �x is used to simulate the change in light  intensity35.

When the dung beetle encounters an obstacle that prevents it from progressing, it adjusts by dancing to find 
a new path. The algorithm uses a tangent function to model the dancing behavior. The dung beetle’s position is 
updated as follows after determining a new direction and continuing to roll the ball.

(5)it = σ(Wi[ht−1, xt]+ bi)

(6)C̃t = tanh (Wc[ht−1, xt]+ bc)

(7)Ct = ft × Ct−1 + it × C̃t

(8)ot = σ(Wo[ht−1, xt]+ bo)

(9)ht = ot tanh (Ct)

(10)�x = |xi(t)− Xw|

Figure 2.  LSTM Structure.
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where θ is an angle tilted from the [0,π]  direction35.
In the reproductive process, the scarab algorithm adopts an edge selection strategy to simulate the spawning 

area of scarabs as Equation.

where X∗ represents the current optimal solution, while Lb∗ represents the optimal solution of the optimal 
solution, and Ub∗ represents the optimal solution of the optimal solution. R = 1− t

T  and T is the maximum 
number of iterations, Lb is the upper and lower limits of the optimal solution and Ub is the upper limit of the 
optimal  solution35.

When the egg-laying zone is determined, the dung beetle lays only one egg per iteration. It is clear from 
(12) that the egg-laying area is dynamically adjusted in the iteration and therefore the location of l eggs is also 
dynamic as  Equation35.

where, Bi(t) is the position of the i th sphere at the t  th iteration, b1 and b2 are two independent random vectors 
of size 1× D , and D is the dimension of the optimal  solution35.

During the predation process, the boundary of the optimal predation area is determined according to the 
position changes of the insects during the predation process.

where Xb is the global optimization, Lbb is the lower bound of the optimal search domain, and Ubb is the upper 
bound of the optimal search domain. The location of the little beetle is updated as follows.

where, xi(t) denotes the position information of the i th dung beetle at the t  th iteration, C1 denotes a random 
number obeying normal distribution, and C2 denotes a random vector belonging to (0, 1)35.

During the stealing phase, the location of the thieving dung beetle is updated as follows.

where xi(t) represents the location information of the i th thief at the t  th iteration, g represents a 1× D random 
vector that obeys a normal distribution, and S represents a constant  value35.

Combination model. CEEMDAN‑CNN‑LSTM and CEEMDAN‑LSTM. CEEMDAN is an improved al-
gorithm based on EMD. CEEMDAN improves the reconstructed signal by adding a limited amount of white 
noise consistent with the standard normal distribution in each  iteration36. The CEEMDAN algorithm solves 
the EMD sub-modal mixing problem and the EEMD and CEEMD residual white noise problem. The algorithm 
steps are divided into 4 main steps.

The first step is to introduce Gaussian white noise into the known signal y(t) to obtain a new signal 
y(t)+ (−1)qευ j(t) , where q = 1 or 2. EMD decomposition is performed on the new signal to generate a character-
istic mode component C1 in the form of Eq. (17). As shown in, the ensemble average of the N mode components 
generated in the second step yields the first characteristic mode component of the CEEMDAN decomposition 
(18). The third step, by Eq. (19), calculates the residual after removing the 1st mode component. The preceding 
process is repeated in the fourth step until the obtained residual signal is a monotonous function. In this way, 
the number of eigenmodes can be obtained. The original signal y(t) is then decomposed into (20).

where Ei(·) is the i  th eigenmode obtained by EMD decomposition, Ci(t) is the i  th eigenmode obtained by 
CEEMDAN decomposition, υ j is composed of Gaussian noise (Gaussian noise) , j is the amount of white 
noise added, ε is the white noise standard table, y(t) is the decomposed signal.

(11)xi(t + 1) = xi(t)+ tan(θ)|xi(t)− xi(t − 1)|

(12)
{

Lb∗ = max (X∗ · (1− R), Lb)
Ub∗ = min(X∗ · (1− R),Ub)

(13)Bi(t − 1) = X∗ + b1 · (Bi(t)− Lb∗)+ b2 · (Bi(t)− Ub∗)

(14)
{

Lbb = max
(

Xb · (1− R), Lb
)

Ubb = min
(

Xb · (1+ R),Ub
)

(15)xi(t + 1) = xi(t)+ C1 ·
(

xi(t)− Lbb
)

+ C2 ·
(

xi(t)− Ubb
)

(16)xi(t − 1) = Xb + S · g ·
(

∣

∣xi(t)− X∗
∣

∣+

∣

∣

∣
xi(t)− Xb

∣

∣

∣

)

(17)E
(

y(t)+ (−1)qευ j(t)
)

= C
j
1(t)+ rj

(18)C1(t) =
1

N

N
∑

j=1

C
j
1(t)

(19)r1(t) = y(t)− C1(t)

(20)y(t) =

k
∑

k=1

Ck(t)+ rk(t)
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CEEMDAN-CNN-LSTM and CEEMDAN-LSTM i.e., the CNN-LSTM model is used to fit each IMF com-
ponent with the LSTM model, and the final prediction is obtained after combining all components, and the 
process is shown in Fig. 3.

ARIMA‑CNN‑LSTM、ARIMA‑DBO‑LSTM and ARIMA‑DBO‑CNN‑LSTM. Consider the time series data xt 
as the combination of linear component Lt and nonlinear component Nt represented by (21). Since linear and 
nonlinear modeling methods have their own characteristics, the former can only identify linear features of time 
series, while the latter can effectively mine  them37. The ARIMA model can predict short-period linear trends 
well, while the LSTM model can predict complex, non-linear time series  well32.

The ARIMA model is used to predict the linear and nonlinear components of the data, which is then fed 
into the deep neural network and fit to obtain the predicted value of the nonlinear component. On this basis, 
the data of both linear and nonlinear aspects are integrated, and the final prediction result is obtained. In order 
to overcome the blindness of hyperparameter setting, the dung beetle optimization algorithm is introduced to 
determine the optimal value of hyperparameter setting, the model flow is shown in Fig. 4.

Air pollutant concentration prediction
Study area selection. To verify the prediction effect of the model, AQI data of Beijing, Lanzhou, Jiaozuo 
and Guangzhou cities in China are selected for the study. Because all four cities are industrial, a large number of 
industrial emissions cause severe air pollution. The Chinese government has worked to reduce urban air pollu-
tion in recent years, but China’s air quality ranking remains at the bottom. Therefore, the air forecasts for these 
three cities are very important.

The AQI data for the four cities in this paper were gained by the Resource and Environment Science and Data 
Center of the Chinese Academy of Sciences (https:// www. resdc. cn/ Defau lt. aspx), and the data are daily AQI data 
from January 2015 to March 1, 2022, as shown in Fig. 5.

Data processing. On this basis, the training samples are divided into two parts, one part accounts for 80% 
of the training samples, and the other part accounts for 20% of the test samples. Also, in order to improve the 
training speed of the model, the data are mapped between (0, 1] by a normalization operation. with the normali-
zation formula as follows.

(21)xt = Lt + Nt

(22)xi =
x − xmin

xminmax

Figure 3.  Data decomposition model process.

https://www.resdc.cn/Default.aspx
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After model training and prediction, the data need to be subjected to an inverse normalization operation to 
facilitate the calculation of the evaluation function and plotting, with the inverse normalization equation being 
as follows.

Among them, xi represents the standardized data, xmax represents the largest data in the array, and xmin 
represents the smallest data in the array. This paper chooses three evaluation indicators: root mean square error 
RMSE, coefficient of determination  R2, and mean absolute error MAE, and provides specific calculation formulas 
to accurately compare the prediction effects of each model.

where n is the sample capacity, yi is the sample value, y is the mean value, and ⌢yi is the predicted value.

model prediction results. Model parameter setting. For the advantages of the ARIMA-DBO-CNN-
LSTM model, we compared the classic machine learning model, deep learning model and statistical model, re-
spectively, and the selection of the combined model is not limited to the derivatives of the model proposed in this 
paper, but also selects the data decomposition combined model which is very widely used at present. And one-
dimensional regression equation is used, and multiple experiments are carried out on each equation to ensure 
that it has the best forecasting effect. On this basis, the maximum constraints on p and q are made using the BIC 
criterion, and the statistical model restricted the maximum value of p and q to 5. Table 1 shows all parameters in 
the four cities. The hyperparameter settings of other models are shown in Table 2.

Forecast comparison and analysis. All models were predicted after the parameters were set, and the CEEM-
DAN-CNN-LSTM and CEEMDAN-LSTM models AQI data were decomposed by CEEMDAN to obtain 9 or 10 
IMF components and one residual component, as shown in Fig. 6.

(23)x = (xminmaxxi + xmin)

(24)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

⌢
yi − yi

)2

(25)R2 =

∑n
i=1

(

yi −
⌢
yi

)2

∑n
i=1

(

yi −
⌢
y
)2

(26)MAE =
1

n

n
∑

i=1

∣

∣

∣

⌢
yi − yi

∣

∣

∣

Figure 4.  ARIMA-DBO-CNN-LSTM model and derived model process.
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Figure 5.  Raw data.

Table 1.  Statistical model parameter setting.

City Beijing Lanzhou Jiaozuo Guangzhou

ARIMA parameter setting (3, 1, 1) (2, 1, 2) (3, 1, 1) (2, 1, 2)
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Table 2.  Model parameter settings.

Model type Models Parameter setting

Traditional machine learning models SVM kernel = ‘linear’, Other parameters select default

Deep learning models LSTM neurons1 = 50, neurons2 = 100, neurons3 = 150, batch_size = 64, epochs = 100, Learning Rate = 0.1, Sliding 
Window = 10

Combination model

ARIMA-CNN-LSTM filters = 512, kernel_size = 2, strides = 1, 3 layers of neurons = 50, batch_size = 64, epochs = 100, Learning 
Rate = 0.2, Sliding Window = 10

CEEMDAN-CNN-LSTM filters = 512, kernel_size = 2, strides = 1, neurons = 128, batch_size = 100, epochs = 100, Learning Rate = 0.2, Slid-
ing Window = 10

CEEMDAN-LSTM neurons1 = 128, neurons2 = 100, epochs = 100, Learning Rate = 0.2, Sliding Window = 10

Optimization algorithm model 3 layers of neurons = [1,300], Sliding Window = [1,50], Learning Rate = [0.001,0.99], batch_size = [1,300], 
filters = [1,600], kernel_size =  [1,10], strides =  [1,5],

Figure 6.  CEEMDAN decomposition.
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Results and analysis
Taking Jiaozuo City as an example, the evaluation indicators obtained after import-ing the evaluation function 
were compared with the output results of all the models after they had been run. In order to compare the per-
formance of the evaluation metrics of dif-ferent models more intuitively, the evaluation metrics of each model 
were plotted as bar charts as shown in Fig. 7a. In order to clearly compare the ARIMA-DBO-CNN-LSTM model 
with other kinds of models, the best-performing model among the models was selected to plot line and scatter 
plots, as shown in Fig. 7
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Figure 7.  Jiaozuo City Forecast Comparison.
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Through the predicted effect of Jiaozuo City we can easily find:

A. The single model has poor forecasting ability, while the combined model has significantly better forecasting 
accuracy than the single model.

B. The four types of single prediction models performed similarly, with the  R2 metric showing a prediction 
accuracy of around 0.5, with SVM being the worst performer among the traditional machine learning models.

C. By splitting the data, the model’s prediction accuracy can be significantly im-proved. CEEMDAN-RMSE, 
LSTM’s MAE, and  R2 decreased by 23.07%, 22.41%, and 39.72%, respectively, when compared to LSTM.

D. The ARIMA-DBO-CNN-LSTM model has a 64.02% reduction in RMSE, 77.78% reduction in MAE and 
30.65% improvement in  R2 relative to the combined data processing model CEEMDAN-CNN-LSTM; and 
84.71% reduction in RMSE, 84.78% reduction in MAE and 92.41% improvement in  R2 relative to the deep 
learning model DBO-LSTM. 84.78% and an increase in  R2 of 92.41%.

E. The DBO can effectively improve the prediction accuracy of the model, comparing the ARIMA-DBO-CNN-
LSTM model with the ARIMA-CNN-LSTM model, the RMSE metric is reduced by 34.53%, MAE is reduced 
by 34% and  R2 is improved by 1.64%.

F. Using different models to predict different parts of the data can effectively im-prove the prediction accuracy 
and has better results than CEEMDAN decom-posed data. From the comparison between the derivative 
model of ARI-MA-DBO-CNN-LSTM model and the decomposed combined model, the deriva-tive model 
can reach above 0.95 in  R2 index, while the data decomposed com-bined model maintains between 0.7 and 
0.8.

G. As can be seen in Fig. 7b, the ARIMA-DBO-CNN-LSTM model can predict the AQI of Jiaozuo City well in 
comparison with the single model and the combined model, and the scatter plot has the best aggregation 
effect.

Similar conclusions as Jiaozuo City can be drawn in the predictions of Beijing and Lanzhou, and the predic-
tion pairs of Beijing and Lanzhou are shown in Figs. 8, 9 and 10. The combined prediction results of the three 
cities show that the ARIMA-DBO-CNN-LSTM model has the best prediction performance with an  R2 index 
of 0.989.

Discussion and conclusion
Air pollution is an environmental problem faced worldwide, and effective AQI prediction can help in air pollution 
management. Traditional time series prediction models have large prediction errors in air quality prediction, 
which increasingly cannot meet the needs of current production and life. However, neural networks represented 
by LSTM have shown excellent prediction performance in time series prediction. In this paper, we predict 
AQI of four cities by building ARIMA-DBO-CNN-LSTM models. To verify the advantages of the models, the 
comparison models are not limited to the selection of derived models, and the current mainstream algorithmic 
models for air quality prediction are incorporated.

We used the AQI data detected in four cities, Beijing, Lanzhou, Jiaozuo and Guangzhou, to construct and 
analyze all models, and the experimental results show that the ARIMA-DBO-CNN-LSTM has good prediction 
effect on the test set. The experimental results show that the model proposed in this paper outperforms the 
comparison models in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of 
determination (R2). The RMSE values of the four cities are 7.594, 14.94, 7.841 and 5.496; the MAE values are 
5.285, 10.839, 5.12 and 3.77; the R2 values are 0.989, 0.962, 0.953 and 0.953, respectively. The ARIMA-DBO-
CNN-LSTM model has higher prediction accuracy for the four cities and better adaptability. Among the four 
selected Chinese cities, Jiaozuo city has the best prediction accuracy performance with three evaluation indexes 
of 7.594, 5.285 and 0.989 for RMSE, MAE and R2, respectively.

The model proposed in this paper also has the following problems: (1) The proposed model consists of a com-
bination of two models, and each group of models can only fit part of the model better, but not 100%, which will 
produce reaveraging. (2) There are many external factors that affect the air quality (AQI) index, such as various 
meteorological indicators and seasonal factors, which are not considered in this paper.

In the future, various influencing factors can be introduced into the model to improve the accuracy of the 
model. In conclusion, this study shows that our proposed model can achieve higher accuracy than traditional 
single models such as BiLSTM, while the method based on EMD decomposition and LightGBM integration has 
better performance than other decomposition integration methods. In addition, the model is not complicated 
to construct and is worthy to be applied in practice.
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Figure 8.  Beijing City Forecast Comparison.
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Data availability
The data that support the findings of this study are available from [Resource and Environment Science and Data 
Center of the Chinese Academy of Sciences (https:// www. resdc. cn/ Defau lt. aspx)] but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of [Resource and 
Environment Science and Data Center of the Chinese Academy of Sciences].
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