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Network analysis of pig movement 
data as an epidemiological tool: 
an Austrian case study
Gavrila A. Puspitarani 1,2*, Reinhard Fuchs 3,4, Klemens Fuchs 3, Andrea Ladinig 5 & 
Amélie Desvars‑Larrive 1,2,6

Animal movements represent a major risk for the spread of infectious diseases in the domestic swine 
population. In this study, we adopted methods from social network analysis to explore pig trades in 
Austria. We used a dataset of daily records of swine movements covering the period 2015–2021. We 
analyzed the topology of the network and its structural changes over time, including seasonal and 
long‑term variations in the pig production activities. Finally, we studied the temporal dynamics of the 
network community structure. Our findings show that the Austrian pig production was dominated 
by small‑sized farms while spatial farm density was heterogeneous. The network exhibited a scale‑
free topology but was very sparse, suggesting a moderate impact of infectious disease outbreaks. 
However, two regions (Upper Austria and Styria) may present a higher structural vulnerability. 
The network also showed very high assortativity between holdings from the same federal state. 
Dynamic community detection revealed a stable behavior of the clusters. Yet trade communities did 
not correspond to sub‑national administrative divisions and may be an alternative zoning approach 
to managing infectious diseases. Knowledge about the topology, contact patterns, and temporal 
dynamics of the pig trade network can support optimized risk‑based disease control and surveillance 
strategies.

Social networks provide a conceptual framework for representing relations between elements of a complex 
 system1,2. Social network analysis (SNA) is the process of investigating social structures through the use of graph 
theory, which provides vocabulary and mathematical operations to study the properties of social  networks1,3,4. 
Livestock movement patterns (e.g. where, when, and how many farm animals move between premises and mar-
kets) can be studied through network-based approaches. A livestock trade network consists of nodes or vertices 
(e.g. farms, markets, or slaughterhouses) and edges that connect pairs of nodes and represent the nature (i.e. 
movement of animals from a holding to another one) and direction of the relationship between the connected 
nodes. Moreover, edges can have weights, i.e. values that characterize the connection between a pair of nodes, 
e.g. number of animals or frequency of  exchanges3,5,6.

Leveraging lessons learned from the epidemics of bovine spongiform encephalopathy (BSE) in Europe in 
the  1990s7–9 and foot-and-mouth disease (FMD) in the UK in  200110–12, several EU countries have developed 
livestock registration and movement databases that facilitate tracing of animals and response to  outbreaks13,14. 
More recently, the Animal Health Law (AHL, Regulation (EU) 2016/429) sets out requirements for its member 
states regarding the electronic identification and registration of animals and certain animal products as well as 
rules for notifying and recording their movements within the  EU15. Broader availability and enhanced quality 
of livestock movement data in the EU, together with more accessible computing power and analytical software, 
have encouraged the study of real-world complex networks in veterinary epidemiology, enabling new insights 
into the complexity of livestock trade and dynamics of infectious animal disease  transmission16,17. The analysis 
of livestock movement data based on graph theory, e.g. in the  UK12,18,19,  Denmark20,21,  Germany22,  Spain23, 
 France24,25,  Italy26,  Brazil27, and  Ireland28 proved to be a valuable tool to explore the dynamics of trade patterns 
between livestock operations, quantitatively characterize the topology of animal trade networks, and understand 
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the role each animal holding plays in the  network3,29. In epidemiology, network approaches revealed also very 
powerful, e.g. to model patterns of infectious disease spread, risk of infectious disease introduction, estimate 
outbreak  sizes3,12,18,21–23,30–35, develop and evaluate disease surveillance and mitigation  strategies29,36,37, or facilitate 
policy  development6,31,38.

However, many studies propose a static representation of the livestock trade network, neglecting the temporal 
component of  it18, which oversimplifies the reality and presents major limitations for the understanding of disease 
 dynamics18,22,32,33,39–41. Similarly, when applied to animal trade networks, community detection, also known as 
graph partitioning or clustering, have generally not exploited the temporal features of the  network12,38,41–45. The 
purpose of community detection algorithms is to unveil subgroups of highly connected nodes within the network 
that share specific  properties46. Community detection is a relatively recent field of  research47 and there is a lack 
of agreement on the optimal detection  method48,49, which may explain why it is often ignored in the analysis 
of animal trade networks. However, taking into account the temporal dynamics of the community structure in 
livestock networks could reveal temporal variations in the strength of the connections between a group of hold-
ings as well as changes in the trade preferences over time (e.g. number and size of communities)48.

In 2021, Austria exhibited 103% of self-sufficiency in pork meat  production50. The same year, the pork con-
sumption reached 34.2 kg per capita, making pork the most consumed meat in the  country51,52. However, the Aus-
trian pig value chain is threatened by major exotic infectious diseases such as African swine fever (ASF), classical 
swine fever (CSF), and FMD, which can be introduced, for example, through live animal trade or importation 
of pork  products53. Furthermore, endemic infectious pathogens, e.g. the porcine reproductive and respiratory 
syndrome (PRRS)  virus54, Mycoplasma hyopneumoniae55, porcine circovirus type 2 (PCV2)56, Streptococcus suis57, 
and Actinobacillus pleuropneumoniae58 often lead to a reduction in the performance of infected animals and 
induce an important, yet often underestimated, burden on production as well as on animal health and  welfare59. 
Despite these risks and potential impact on the pig sector, to date, data on pig movements in Austria has not been 
analyzed for scientific purposes. It is essential to understand the intrinsic structure of the Austrian pig movement 
network and translate mathematical results into information that could support evidence-informed surveillance 
systems for early detection of outbreaks as well as efficient, timely response to infectious disease  outbreaks3,30,60.

In this study, we aimed to evaluate the structural characteristics and dynamic patterns of the Austrian pig 
movement network and discuss their potential applications in veterinary epidemiology. More specifically, we 
intended to:

• Describe the Austrian pig trade network topology and trends over a seven-year period;
• Apply a community detection algorithm to uncover hidden relationships among nodes (holdings) in the 

network and investigate community temporal dynamics;
• Generate meaningful information that could be concretely used, e.g. in risk analysis or disease surveillance 

and control planning.

Methods
Data. In Austria, data on animals, livestock movements, and holdings (e.g. farms, markets and slaughter-
houses) are recorded in the Verbrauchergesundheits Information System (VIS) or Consumer Health Information 
System, an electronic database of the Austrian Federal Ministry of Social Affairs, Health, Care and Consumer 
Protection (BMSGPK) and operated by Statistics  Austria61. Data used in this study covers the period January 
2015 to December 2021 and consists of (1) data on registered pig-related holdings and (2) daily records of pig 
movements within Austria as well as to and from other countries (intra-EU trade, export and import).

For each animal holding, the data includes a unique anonymized identification number (ID), the randomized 
5 km-radius geo-coordinates, information on the type of activities of the holding, and the number of pigs per 
production stage for each year the holding was operating, as reported yearly on a mandatory basis by the animal 
owner. There are four major pig production stages, themselves subdivided on the basis of the animal sex and 
weight: (1) breeding animals weighting > 50 kilograms (kg): gilts, sows, and boars; (2) piglets: up to 8 kg, 8–20 
kg, and 20–32 kg; (3) young pigs weighting 32–50 kg; and (4) fattening pigs: 50–80 kg, 80–110 kg, and > 110 kg.

Regarding pig holding activities, the following labels (and sub-labels) are registered in the database: (1) farm 
(including breeding, piglet rearing, and fattening farms); (2) private pet owner; (3) processing plant (including 
meat and by-product processing), (4) boar station; (5) trade and logistics (including trading stable, transporter, 
and animal dealer), (6) collection point or animal gathering; and (7) slaughterhouse. One holding (identified by 
an ID) can be registered with one or more labels.

Each record of pig movement contains information on the source (ID of the holding of origin) and target 
(ID of the receiving holding), date of the event, number of pigs moved (hereafter called “batch”), and type of 
movement (see below).

Data cleaning and pre‑processing. Before using the VIS data for the analyzes, it underwent a cleaning 
process. For each pig batch movement, a double notification system is in place. This means that each movement 
is reported twice, from the holding of origin and from the receiving one. Therefore, each duplicate has been 
reduced to a single data row.

Each reporting holding indicates whether the movement of pigs is outgoing, ingoing, or intended for slaughter 
and, in the case of a foreign movement, the ISO code of the country is provided. This results in four types of 
movement, (1) domestic, i.e. movement of live pigs between holdings within Austria, (2) slaughter, i.e. movement 
of pigs that are intended for slaughter, (3) abroad, i.e. import or export of live pigs, and (4) abroad-slaughter, i.e. 
import of live pigs that are intended for slaughter.
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Our final data included 40,951 pig holdings and 1,917,584 movement records over the period 2015–2021. The 
data showed animal trades between Austria and 18 EU/EEA and seven non-EU/EEA countries.

Since the study focused on revealing the structural properties of the Austrian pig trade network, movements 
to and from abroad were removed from the dataset. Similarly, establishments such as boar stations and processing 
plants were ignored. Ultimately, only “active” holdings, i.e. counting at least one trade event over the considered 
study period, were included in the analysis.

Our analysis assumed that the data accurately reflected the actual pig movements and that each of them cor-
responded to a direct transport of pigs, e.g. farm-to-farm or farm-to-slaughterhouse. Therefore, because meas-
ures applied to slaughterhouses have a very limited impact on infectious disease spread in the  network22,33,62,63, 
slaughter-type movements were not included in the main analysis. After removing abroad- (0.48% of all edges) 
and slaughter- (59%) type of movements, therefore keeping domestic movements only, the final network included 
38,888 nodes (95% of all nodes) and 783,460 edges (40.8%). In the network, each node represents a holding, 
regardless of its activity or label.

We plotted the spatial distribution of the holdings in QGIS  software64 using the geo-coordinates data. We 
then extracted for each holding the administrative divisions, i.e. federal state and district, using shapefiles of 
the Austrian administrative  boundaries65 (there are nine federal states and 94 districts in Austria). Next, we 
displayed the yearly farm density by counting the number of farm-labeled holdings with recorded movements 
within 5-km hexagonal grids for each year.

Network representation and yearly‑aggregated networks. The pig trade network was represented 
as a temporal directed graph, G = (V ,E) , where V represents a set of nodes (pig holdings) and E represents a set 
of directed edges (movements). Each edge is characterized by (i −→ j, t) and connects a specific node i (source) to 
a specific node j (target) at time t. The presence of i −→ j does not necessarily imply that j −→ i exists.

We used a static representation of the directed network, where edges were aggregated over seven years, to 
study the intra- and inter-state trade frequency.

To study major changes in the structure of the pig trade network G over the period 2015–2021, we com-
puted a time-ordered sequence of yearly snapshots, G = G1, . . . ,GT , with 1 ≤ T ≤ 7 , by aggregating the daily 
networks over one-year intervals (based on the reported date of each event). The time-ordered sequence can be 
considered as a multi-layer network in which the layers have a specific order in  time1. Each layer is a directed 
multigraph, where more than one edge may exist between a pair of  nodes3 (when several animal movements 
on different days occurred within one year). Each multigraph was converted into a digraph by collapsing the 
multiple edges into single-weighted ones, with edge weight corresponding to the trading frequency between 
pairs of nodes. We characterized the yearly networks using the metrics listed in Table 1 along with their formal 
definition and epidemiological relevance. Node-level measures (i.e. degree and betweenness) were calculated 
at graph-level through a centralization  method3, from the centrality scores of the nodes. For each snapshot, we 
described its degree distribution, pk , defined as the set of probabilities, P(k), that a node chosen at random will 
have degree k1. Additionally, for each snapshot, we searched for the presence of cycles, i.e. paths that start and 
end at the same  node3.

On average, there were 24,393 ± 2354 (SD) nodes with trading activity and 111,923 ± 8930 edges per year 
(Table 2), showing a median and a mode of 16 (min. = 1; max. = 3751) and two pigs per batch, respectively. 
Each year, on average, 98.3% of the nodes reporting trade activity had farm label (min. = 97.8%; max. = 99.2%), 
6.5% had slaughterhouse label (6.3–6.8%), 1.3% were labelled as trade and logistics facilities (1.3–1.4%), 0.11% 
as private pet owners (0.01–0.20%), and 0.18% as collection points (0.16–0.21%). A node can have more than 
one label (the proportion of nodes with more than one label in the seven-year aggregated network was 5.9%). 
Holdings with at least one label “farm” will thereafter be referred to as “farms”.

Trend and seasonal patterns in the pig trade network. We computed a time series of monthly 
directed networks by aggregating the daily networks over each month, in which edge weight corresponded to 
trading frequency between pairs of animal holdings. The method of classical time series decomposition with 
two-sided moving averages (MA)66 was used to analyze the trend in the number of nodes that recorded move-
ments, edges, and volume of traded pigs.

We additionally explored the weekly patterns (Monday to Sunday) of the pig trade network using a daily 
aggregation of the number of nodes, edges, and volume of traded pigs. We then performed ANOVA (analysis of 
variance), taking into account the interaction weekday ∗month , to test whether the average number of nodes, 
edges, and volume of traded pigs for each weekday differed among months. For instance, we evaluated whether 
the average number pigs traded on Monday over the seven-year study showed significant difference between 
months. Prior to the analysis, the assumptions for ANOVA were tested, e.g. we checked the normality assumption 
by analyzing the model residuals through a QQ plot and we checked the homogeneity of the variance assumption 
using a residual versus fits plot. The observations were considered independent.

Dynamic community detection. Using the yearly snapshots of the network, G = G1, . . . ,GT , we spa-
tially aggregated all nodes located in the same district. Edges were aggregated accordingly, so that each (directed) 
edge represented the frequency of trade between two districts. The node of origin and destination of each move-
ment was therefore identified with the district name. Loops (i.e. trades that start and end in the same district) 
were removed. To detect groups of districts sharing similarities in connectivity patterns, so called a community, 
we applied the InfoMap  algorithm67 to each yearly snapshot sequentially, i.e. from the earliest to the latest one. 
The algorithm decomposes the network into modules by mapping the probability flows induced by the network 
structure through a large number of random “surfing” processes that consider the weight and direction of the 
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Table 1.  Theoretical definitions of the network measures and metrics used in this study and relevance for 
livestock movements and veterinary epidemiology.

Metrics Theoretical definition Epidemiological relevance

Assortativity (mixing pattern)

The assortativity coefficient measures the proportion of links 
between and within groups of nodes sharing identical attributes. Its 
value lies between −1 and +1, negative values mean that nodes are 
likely to connect with other nodes showing different attributes; a 
positive value shows homophily (i.e. assortative mixing)98.

Reflects the preferential (trade) connections of an epidemiological 
unit, e.g. a holding or a district, with other epidemiological units 
which have a similar attribute, e.g. number of trade links (degree 
assortativity) or location (district assortativity and federal state 
assortativity)99,100.

Average path length
The average number of steps along the shortest paths for all possible 
pairs of nodes. The shortest path is the smallest number of edges 
from node i to node j1.

The average number of steps needed for an infection to spread from 
a random holding to another randomly chosen  holding6.

Betweenness centrality
For a node k, the number of shortest paths between nodes i and j 
that pass through k1. Captures the capacity of a node to propagate an 
information or infection across the  network31.

Holdings with high betweenness can act as gatekeepers for control-
ling or altering the spread of pathogens; removing these holdings 
will fragment the  network6.

Degree centrality

For a node, the number of edge(s) connected to it, i.e. the number 
of neighbor(s) it has. In directed graphs, each node has both, an 
in-degree, kin (number of incoming edges) and an out-degree, kout 
(number of outgoing edges). Nodes with a high degree, compared 
to other nodes in the network, are considered well connected and 
called hubs1,6,101.

For a holding, the numbers of sources (or trading partners) provid-
ing animals (in-degree) or that receive animals from it (out-degree)6. 
Livestock holdings with a high degree centrality are at higher risk of 
infection and more likely to infect a large number of other holdings 
in the  network81.

Density (connectance)
Proportion of edges, among the maximum possible number of 
edges in the network, that are actually existing. The proportion 
ranges from 0 to 1, where 0 means that all nodes are isolated while a 
network with density of 1 displays maximal  cohesion3.

Represents the fraction of all possible trades among all livestock 
holdings that are actually  present6.

Diameter
Length of the longest shortest path, i.e. among all shortest paths 
between every pair of nodes in the network for which a path exists, 
the diameter is the length of the longest one. The smaller the diam-
eter, the more connected the network  is1.

Longest geodesic distance between any pair of holdings in the net-
work. A shorter diameter means that the number of generations for a 
disease to spread throughout the network is  reduced6,100.

Global clustering coefficient (CC)
Fraction of closed triplets, i.e. three nodes linked to each other and 
forming a closed triangle, among all possible triplets. It lies between 
0 and  13,5.

Reflects holding-to-holding interactions (or trade links). High clus-
tering coefficient induces a fast spread of diseases in the  network5.

Range For a node, the number of nodes that can be reached from it through 
a path of random  length22.

Measure the potential of a holding to spread an infectious disease in 
the  network22.

Strongly connected component (SCC)
A strongly connected component is the subset of nodes in a directed 
graph in which a directed path exists in both directions between 
every pair of nodes in the  subset1.

A subset of holdings in a livestock network in which all holdings are 
mutually accessible by following the direction of the  trades6. The size 
of the largest SCC can be used to estimate the lower bound of the 
maximum epidemic  size12.

Weakly connected component (WCC) In a directed graph, a subset of nodes in which every pair of nodes is 
connected by one or more paths, ignoring the direction of  edges1.

A subset of holdings in which a link exists between every pair of 
holdings, ignoring trade direction. The size of the WCC can be used 
to estimate the upper bound of the maximum epidemic  size12.

Table 2.  Summary of the graph-level metrics for the yearly snapshots of the Austrian pig trade network, 
2015–2021. CC: clustering coefficient; LSCC: largest strongly connected component; LWCC: largest weakly 
connected component. Farm: farm-labeled holdings.

2015 2016 2017 2018 2019 2020 2021

Number of edges 126,092 119,554 115,602 109,350 105,618 106,917 100,327

Number of nodes 27,938 26,752 25,348 23,860 22,609 22,578 21,667

Number of animals 4,614,349 4,483,219 4,510,794 4,413,947 4,404,170 4,493,835 4,373,382

Number of farms 27,498 26,268 24,909 23,667 22,109 22,163 21,263

Assortativity (degree) −0.09 −0.09 −0.08 −0.09 −0.09 −0.10 −0.09

Assortativity (state) 0.87 0.87 0.86 0.87 0.85 0.84 0.84

Assortativity (district) 0.45 0.45 0.44 0.44 0.43 0.43 0.42

Average shortest path length 10.1 8.8 10.7 7.1 8.0 6.2 6.2

Betweenness centrality 0.01 0.01 0.03 0.01 0.01 0.00 0.01

Diameter 29 27 28 23 22 19 25

Degree (total) 0.01 0.01 0.02 0.02 0.02 0.02 0.02

Degree (in-) 0.01 0.01 0.01 0.03 0.01 0.01 0.01

Degree (out-) 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Edge density 5.7× 10−5 5.8× 10−5 6.2× 10−5 6.5× 10−5 6.8× 10−5 6.9× 10−5 7.1× 10−5

Global CC 4.4× 10−3 3.9× 10−3 4.3× 10−3 4.3× 10−3 4.7× 10−3 4.5× 10−3 5.4× 10−3

Size LSCC (No. nodes) 558 646 964 210 498 127 168

Size LSCC (% of nodes) 2.0% 2.4% 3.8% 0.9% 2.2% 0.6% 0.8%

Size LWCC (No. nodes) 27,144 25,957 24,504 22,966 21,807 21,933 20,904

Size LWCC (% of nodes) 97.2% 97.0% 96.7% 96.2% 96.4% 97.1% 96.5%
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network edges. A random “surfer” differs from a random “walker” by the introduction of a teleportation prob-
ability in the random walk, which represents a positive probability that the process jumps randomly to any other 
node in the network. The algorithm does not allow overlap between community, i.e. a district can belong to one 
community  only67.

To evidence temporal changes in the communities, we compared how similar the communities mapped at 
time T were with those at T+n68. More specifically, we defined C and C′ as a community at time T and T+n, 
respectively, and computed a matching value (C, C′ ) based on the nodes’ membership, as described in Hopcroft 
et al.68. The matching value ranges from 0 to 1; a matching value of 1 signifies that a community is identical at 
time T and T+n, whereas if it is equals 0, both communities display completely different members. We evaluated 
every community at time T against its corresponding community at time T+n. We considered n = 1 to compare 
each community between consecutive years (year-over-year comparison) and 1 ≤ n ≤ T − 1 to compare each 
community detected in the first snapshot (2015), used as a reference, with the subsequent ones (2016–2021), i.e. 
2015 versus 2016, 2015 versus 2017, etc. Moreover, by averaging the matching values over all communities, we 
calculated a global matching value in every time window to observe the overall stability of the communities in 
the Austrian pig trade network over the study period.

Additional analyses. We acknowledge that there might be movements or events that were not captured by 
the data, e.g. movements involving truck sharing, where pigs from different farms are collected and delivered 
to one or several farms or to the slaughterhouse, which represents a risk of disease spread via  fomites69. There-
fore, to provide a full picture of the Austrian pig trade network, we used the above-mentioned methods and 
analyzed the data including both domestic and slaughter-type movements. Outputs of these analyses (metrics 
of the yearly-aggregated networks and dynamic community detection) are presented in Supplementary Results.

Software and packages. Analyses for this study were performed with R programing  software70 (v.4.1.3) 
using  RStudio71 (v.2022.07.1). The network analysis was conducted using the ’igraph’ package and the package 
’TSstudio’ was used for trend analysis. Map visualization was performed in  QGIS64 (v.3.26.3-Buenos Aires) and 
network visualization was executed in  Gephi72 (v.0.9.7).

Results
Data description. We observed that the spatial distribution of the Austrian pig farms remained stable over 
the study period 2015–2021 (Supplementary Video S1). Upper Austria showed the highest number and density 
of farms, counting on average for 25.3% (min. = 25.2%; max. = 25.5%) of the total number of Austrian farms 
every year, followed by Styria (mean = 20.6%; min. = 20.0%; max. = 20.1%). Figure 1 displays the spatial farm 
density for 2021. Overall, the network exhibited a high proportion of small-sized farms, with, on average, 62.9% 
(min. = 59.4%; max. = 65.5%) of the farms reporting four pigs or less per year over the study period. On the other 
hand, large-sized farms (i.e. farms presenting ≥ 2000 pigs) counted on average 0.25% (0.22–0.28%) of all farms. 
For example, in Upper Austria and Styria, the median size of the farms was two pigs per farm (Upper Austria: 
min. = 1; max. = 3045, Styria: 1–17,615).

Over the study period, the intra-state movements (i.e. trades that occurred between holdings located in the 
same federal state) were more frequent than inter-state movements (91.6% of all recorded movements versus 
8.4%, respectively). The majority of the intra- and inter-state movements (41.7%) originated from Upper Austria, 
followed by Lower Austria (25.1%), Styria (17.8%), and Carinthia (8.0%). These four federal states exhibited the 
highest relative contribution to the total number of intra-state movements, representing 42.4%, 24.8%, 17.8%, 
and 8.3% of them, respectively (Fig. 2). In general, median batch size tended to be bigger for intra-state trades 
compared to inter-states movements (18 vs. 9, respectively).

Yearly aggregated networks. Table  2 presents the network metrics for each yearly snapshot of the 
domestic pig movements. Results of the analyses that incorporated slaughter-type movements are reported in 
(Supplementary Results Table 1). Notably, both analyses resulted in similar metrics.

The degree assortativity (connection preference) of the yearly networks remained stable with a slight negative 
value over the seven years (mean = −0.09± 0.004 (SD)). This means that holdings did not have any preference in 
connecting with other holdings based on the number of trades (degrees). Similarly, the (federal) state and district 
assortativity showed little yearly variations. However, both metrics exhibited positive values, demonstrating pref-
erential (homophilic) trade relationships among pig holdings located in the same district (mean = 0.44 ± 0.010 ) 
and even higher preference for pig holdings located in the same federal state (mean = 0.86 ± 0.012 ), supporting 
observations from Fig. 2 which clearly illustrates that the majority of trades occurred within federal states.

The edge density displayed very low values (close to zero), which indicates the sparsity of connections between 
nodes in the  network3. Similarly, the yearly global clustering coefficients were relatively small, varying from 
3.9× 10−3 to 5.4× 10−3 , showing low connectivity of each node with its neighbors. The network diameter and 
average shortest path length fluctuated annually but exhibited a decrease of 13.8% and 35.2%, respectively, over 
the study period. The network diameter showed relatively high values (min. = 19; max. = 29). The yearly average 
shortest path lengths showed medium values (min. = 6.2; max. = 10.7), meaning that any pair of holdings was 
distant by approximately 6–11 movements every year. These properties are only partially compatible with those 
of small-world networks, i.e. networks that show high clustering (like regular lattice) but have small character-
istic path lengths (like random graphs)1. The network betweenness centrality was close to zero for each year. 
However, at node level, the betweenness score (min. = 4781; max. = 47,158) was highly skewed with 1% of all 
holdings showing betweenness scores ≥ 21,672, reflecting a greater capacity of these holdings to act as a bridge 
and spread an infectious pathogen across the  network5.
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The yearly in-degree, out-degree, and total degree distributions were right skewed, heavy-tailed and could 
be approximated by a power law distribution with an average exponent of 2.79 ± 0.012 , 1.65 ± 0.017 , and 2.14 
± 0.008 , respectively (Supplementary Fig. S1). The degree distributions also showed that each year, the majority 
of nodes (on average 85%) had either out- or in- degree only. Figure 3 presents the results for 2021. The 1% most 
connected nodes counted yearly for 252 nodes on average (min. = 226; max. = 292), including 249 (223–288) pig 
farms on average. They counted on average for 0.22% (0.21–0.24 %) of all in-movements and 0.79% (0.76–0.81%) 
of all out-movements. In 2021, 74.3% of the top 1% highly connected nodes were similar to the top 1% highly 
connected nodes identified in 2015. Over the 7-year study period, these nodes were mostly located in Upper 
Austria, which represented on average 29% of all most connected nodes (min. = 27.3%; max. = 31.4%), followed 
by Styria (24.6%; 23.9–26%), Lower Austria (19.4%; 18.2–20.9%), and Carinthia (12.2%; 10.6–13.2%). We con-
sidered these top 1% of most connected nodes as hubs in the network. Among them, 35.7% (29.5–47.6%) were 
also identified as nodes with high betweenness. The typical topology of the Austrian pig trade network (i.e. 
sparse connectivity, skewed distribution of the network degrees, and rare hubs) is illustrated for Upper Austria 
(2021) in Supplementary Fig. S2.

For each year, the largest strongly connected component (LSCC) contained a very small fraction of the nodes 
(min. = 0.56; max. = 3.80%) (Table 2) whereas more than 95% of the nodes were included in the largest weakly 
connected component (LWCC). Among pig holdings included in the LSCC, 56% (min. = 49.5%; max. = 64.9%) 
were located in Upper Austria while the remaining ones were located in Styria (20.6%; 9.4–30%), Lower Austria 
(16.0%; 5.6–39.4%), and Carinthia (8.5%; 2.9–13.5%). Most of the nodes in the LSCC had farm label (92.2%; 
85.1–99.5 %) and a small fraction presented other labels (combined or not with another label), such as trade 
(7.9%; 4.4–13.1%), collection point (4%; 2.6–6%), and abattoir (3.7%; 2–5%).

Computed from the yearly network snapshots, the node  ranges22 in the Austrian pig trade network are dis-
played in Supplementary Fig. S3. Overall, nodes belonging to a LSCC exhibited longer ranges together with a 
broader range distribution (7299.71 ± 3529.6 compared to other (non-LSCC member) nodes (363.93 ± 130.21 . 
Nodes not belonging to a LSCC showed both short and long ranges. The shortest range over all yearly snapshots 
was one, however, long-range nodes showed decreasing node range between 2015 (max. = 11,547) and 2021 
(max. = 6593).

No cycle was detected in the network.

Trends in the pig trade network. The monthly time series of the number of nodes and edges showed a 
steadily decreasing trend from 2015 until the second semester 2019 followed by a slight uptrend until winter 
2020, before both trends decreased again (Fig. 4a,b). Similarly, the monthly time series of the number of pig 
trades exhibited a negative trend over the study period, showing, however, downward (2015–2016, 2018, first 
semester 2021) and upward (2017, 2019–2021) short-term trends (Fig. 4c).

The monthly number of edges and nodes showed marked and correlated seasonal bimodal patterns over 
the period 2015–2021, with a first peak in May and a second one in October, whereas January-February and 
July–August exhibited the lowest node and edge activities. On the contrary, the volume of traded pigs showed 
little monthly variations except a seasonal sharp decrease in February (Fig. 4, Supplementary Fig. S4). Further-
more, at a more granular level, the weekly time series of nodes, edges, and volume of traded pigs, exhibited a 
strong week-end effect, with a growing activity from Monday to Friday and a lower activity on Saturday and 
Sunday. The weekly time series of the movements of animals intended for slaughter (excluding other types of 
movement) exhibited an opposite weekly pattern (Supplementary Figs. S5–S7).

The average daily number of nodes, edges, and volume of traded pigs did not show any significant difference 
between months neither for domestic (p-value = 0.33, 0.25, 0.86, respectively)nor slaughter-type movements 
(p-values = 1).

Dynamic community detection. The number of trade communities in the Austrian pig movement net-
work showed little variations among the yearly snapshots, with 10–13 communities detected annually (Fig. 5). 
The median trade community size was also relatively stable, varying between six and nine districts per commu-
nity (min. = 1; max. = 19). The pairwise comparison of the community topology between year 2015 (reference) 
and each other subsequent year showed that the trade community structure did not change significantly during 
the seven years. This result was supported by the year-over-year comparison of the trade community structure 
(Table 3). The Kruskal-Wallis test was used to compare the average matching values in both series (2015 as ref-
erence and year-over-year comparison) and confirmed that there were no significant difference over the study 
period (p-value = 0.68 and 0.63, respectively).

As observed in Fig. 5, a trade community may consist of districts from different federal states (e.g. black 
dashed-line representing the federal state boundaries on top of the purple colored community in 2015). While 
some communities divided some federal states, others bridged over two of them. Moreover, some communities 
have a very dynamic behavior, i.e. a community may “loose” some member districts or “merge” partially with 
another community. For example, the three central communities detected in 2017 (colored in blue, purple, and 
green) formed one single community in 2018 (green), which then split into two communities (2019) and latter 
re-assembled (2020).

Discussion
This study aimed to explore, for the first time, the network of pig movements in Austria using methods derived 
from social network analysis and reveal its dynamic structure. Below, we provide an epidemiological perspective 
on this network, which suggests alternative, network-based applications to the monitoring and management of 
infectious diseases.
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We evidenced that the spatial distribution of the pig farms in Austria was heterogeneous, with two federal 
states, Upper Austria and Styria, accounting for almost half (46%) of all farms with trading activity in the 
country, whereas the pig farming system was largely dominated by small-sized farms of four pigs or less. Spatial 
heterogeneity influences the size and duration of an infectious disease  outbreak73. Typically, the risk of farm-to-
farm transmission increases with the farm density (independently of livestock movements) whereas farms with 
higher animal density are more susceptible to  outbreaks74,75. Additionally, our findings showed that the Austrian 
pig production was shifting toward fewer holdings and trades, while the volume of animals produced did not 
exhibit a correlated decrease, which indicates that the farm and batch size are becoming larger. Although this 
information looks trivial, knowing precisely the spatial distribution of farms and animals is necessary to assess 
the potential impact of interventions and plan resource allocation for surveillance and control of infectious 
 diseases76. It is also important to understand how shifting production patterns toward intensification (i.e. fewer 
but larger farms) may influence disease risk on a long term.

The topology of the pig trade network, unfolded in the yearly aggregated snapshots, suggested sparse con-
nectivity, along with a great proportion of nodes exhibiting either an in- or out-degree equal to zero, and the 
absence of cycle. The topology also revealed the small size of the yearly LSCC. These findings reflect the typical 
pyramidal pig farming system in Austria, with its tree-like, hierarchical structure and unidirectional animal flow, 
where batches of pigs move sequentially from a compartment (i.e. production stage) to the next one, till the end 
of the production chain (i.e. from farrowing to finishing and then to slaughterhouse). The pyramidal pig farming 
system can also be found in other countries, e.g. in  Denmark20,  France24, and the United  States62. Furthermore, 
we proved that holdings showed a strong tendency for tradings with other holdings located in the same federal 
state whereas a smaller proportion of movements covered long-distances.

The yearly patterns of pig movements in Austria showed the topology of a scale-free network, with a large 
heterogeneity in the node degrees (i.e. number of connections for each pig holding), unveiling the presence of 
few highly connected nodes (hubs). Holdings with a high out-degree and/or high betweenness can act as super-
spreaders and should be targeted with priority i) in disease surveillance programs (farm sentinels) in order to 
achieve cost-effective and efficient early disease detection, and ii) in control interventions (e.g. node removal 
to increase the fragmentation of the network and minimize the number of exposed holdings)16,20,77–80. From an 
epidemiological perspective, the in-degree and betweenness of a holding indicate its vulnerability to infection 
(from another holding) and pig holdings showing a high in-degree can be considered as super-receivers. On the 
other hand, the out-degree of a node reflects its capacity to spread pathogens. Enhancing biosecurity in highly 
connected premises (hubs), that act as “gatekeepers”, would greatly reduce the structural risk and favor timely 
detection of pathogens (early warning)38,81. These findings would certainly need further empirical verification 
through field testing, especially to assess their practical applicability and real-world implications.

The domestic swine holdings of Upper Austria, Styria, and eastern Lower Austria showed a higher connectiv-
ity (i.e. greater relative proportion of holdings belonging to the LSCC) and longer node ranges. We demonstrated 
that the LSCC, which is a standard proxy to assess the lower bound of an outbreak final  size12, was distributed 
over several federal states, which may increase the risk of multi-state  outbreak6. These findings indicate a higher 
structural vulnerability of Upper Austria, Styria, and eastern Lower Austria to infectious disease outbreaks, 

1 - 5

5 - 15

15 - 25

25 - 40

40 - 100

Number of pig farms per 
5-km diameter hexagon

Carinthia Styria

Burgenland

Lower
Austria

Vienna

Upper
Austria

Salzburg
Tyrol

Vorarlberg

Figure 1.  Spatial density of pig farms with recorded movements in Austria in 2021. The black lines represent 
the administrative borders of the federal states.
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compared to other federal states. Reinforcing surveillance and biosecurity in pig holdings located in these high-
risk regions will probably limit epidemic spread and reduce outbreak sizes.

Overall, the absence of small-world like structure, the low average degree of the nodes, and the rare long-range 
movements favor the network resilience to  epidemics82 and supports the hypothesis that, at national scale, the 
size of an infectious disease outbreak in the Austrian pork production chain would be  limited81,83. This statement 
is supported by the relatively small size of the LSCC and the relatively high diameter of the network (e.g., the 
reported diameter of the German pig trade network was  1822).

The analysis of seven successive years of pig movement data underlined recurrent patterns and seasonal 
behaviors in trade activities. Especially, our results confirmed a greater activity in spring (during the Easter 
holidays) and autumn (before Christmas) whereas the lowest activity occurred in winter, consistent with other 
European  countries33,79,84. Temperatures play a role on animal health in general, as well as on the maintenance, 
seasonal pattern, and transmission of infectious pathogens, especially respiratory  pathogens85,86, within livestock 
trade  networks75,87. Seasonal patterns in the network activities, linked with the swine breeding and production 
cycle, consumer demand as well as climatic conditions should be considered when planning surveillance activi-
ties and responding to an outbreak.

The trade communities covered geographic areas of various sizes and their limits did not correspond to the 
federal state administrative boundaries. Trade communities reflect connection preferences between pig holdings, 
i.e. pig production zones. Community structure greatly influences disease  dynamics88 and represents a useful 
epidemiological tool to delineate compartments or zones that could be used in preventive veterinary medicine, 
e.g. to design geographically-targeted surveillance strategies as well as control and eradication  programs42,89. The 
implementation of a community-based approach to disease control (i.e. not based on administrative bounda-
ries) would preserve commercial exchanges, have a lower impact on the pig production chain, and therefore 
would probably be cost-effective. We argue that disease management at sub-national level can be relevant, yet 
this compartmentalization approach should be further investigated. Indeed, the InfoMap algorithm generates 
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disjoint communities, i.e. in our case, a district belongs to one and only one  community67. Yet in real-world 
networks, communities have important overlapping and may present nested  structures90,91. Detecting overlap-
ping districts may unveil “bridges” between pig trade communities, which may be crucial for both epizootic and 
endemic disease control efforts.

The yearly structure of the Austrian pig trade network as well as its communities were rather stable over the 
seven-year study period. These results support the use of retrospective movement data, as well as previously 
established analytical frameworks and results, to quickly respond to emergency situations that may occur in the 
network (e.g. infectious disease outbreak or disaster). The network stability and specific tree-like structure pre-
sent also a major advantage for planning a simple, network-based targeted surveillance strategy, e.g. by using a 
static network analysis  approach22. Nonetheless, estimation of the outbreak size requires a time-resolved analysis, 
where the time window for data aggregation largely depends on the dynamics of the network (e.g. seasonality) 
and characteristics of the disease (e.g. incubation period, R0)92, especially in the early phase of an  epidemic11. In 
this study, we described a network which edges are weighted based on the trade frequency. In the future, it will 
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Figure 3.  Degree distributions of the Austrian pig trade network for the year 2021. The cumulative frequencies 
of the node (a) in-degree, (b) out-degree, and (c) total degree distributions are represented on a log–log 
scale. Each degree distribution was approximated as a power law (dashed lines) using a maximum likelihood 
 approach97, with α , i.e. the law’s exponent, equals to 2.81, 1.68, and 2.12, respectively.
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be interesting to compare it with a network where edge weights refer to batch size and study how this influences 
the risk of infectious disease introduction in farms and propagation in the network.

Although comparing pig trade network properties between countries is challenging due to, e.g. differences in 
the period covered by the data, algorithms used, country size, and economic considerations, evaluating disparities 
and similarities in national pig trade structure and patterns can help identifying countries that may be more vul-
nerable to disease  introduction93, while contextualizing our results within a European framework. Surprisingly, 
the Austrian pig movement network did not exhibit a small-world effect, which is usually observed in livestock 
networks presenting a lot of large commercial farms, such as in Germany, France, or Denmark, which also exhibit 
a denser network and, on average, higher degree  centrality21,22,24,93. In contrast, the Austrian pig trade network 
showed similarities with the North Macedonian, Georgian, and Bulgarian pig movement networks, which are 
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similarly weakly connected and involve a majority of small-scale  holdings93–95. Also, the proportion of nodes 
included in the LSCC of the Austrian pig trade network was comparable to the one reported for the North Mac-
edonian network (1.03–4.08%)95, but larger than the proportion reported for Bulgaria (0.15%), France (0.60%), 
Italy (0.14%), and Spain (0.18%)93. However, its density was closer to the density reported for the French network 
( 6.1× 10−5 ) whereas the shortest path length was closer to the one reported from Italy (11.2)93.

Our analysis has several limitations. First, the geo-coordinates of the holdings were randomized within a 5 km 
radius, which could have resulted in erroneous assignment of holdings located near administrative boundaries 
to a nearby federal state or district during the state/district attribution process in QGIS. However, we believe 
this had a very limited impact on our results as the number of affected holdings is small. Second, because the 

Figure 5.  Maps of the detected trade community based on the yearly aggregated networks of pig movements 
in Austria, 2015–2021. Blue lines represent the district administrative boundaries; black dashed lines represent 
federal state boundaries. Colors represent communities. We used the InfoMap  algorithm67 that allows no 
overlap, i.e. a district can belongs to one community only.
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reporting is mandatory, we assumed that there was no missing data. Therefore, holdings found with no movement 
record during the entire study period or part of it may be small farms producing pigs for self-consumption or 
holdings which activity status in the system is outdated (this type of error cannot be tracked). Third, we found 
that pig movements in Austria were dominated ( 60%) by movements intended for slaughter, which we did not 
include in the main analysis because we considered that they have a limited impact on infectious disease  spread21. 
This is true when pigs from one farm are sent directly to the slaughterhouse in a clean and disinfected vehicle. 
While we have assumed that the data accurately reflected the pig trade patterns, it is important to acknowledge 
that truck sharing is common, which may impact the network topology, e.g. by increasing its  connectivity83,96 
and modifying its community structure. Moreover, truck contamination enhances the risk of disease propaga-
tion; this is especially true for diseases that can survive outside of an animal and spread through fomites (e.g. 
FMD, ASF), unless very strict biosecurity measures at farm gate are  enforced69. Transport itinerary data is not 
available in the database of the Veterinary Authorities and is therefore not used for epidemic management and 
control. For this reason, we believe our analysis reflects the best possible outcome that could be achieved with 
the available data. Certainly, the additional use of transportation itinerary data (i.e. truck movements) could 
improved or refined the analysis of this network and would advance our understanding of the risk of disease 
spread via direct (direct trade) and indirect (truck sharing) contact between holdings.

Overall, this study advances our understanding of the complex structure of the pig trade network in Austria 
and provides useful epidemiological information to designing cost-effective infectious disease control plans. Our 
findings highlight that when designing epidemiological surveillance activities and implementing disease control 
measures in the pig trade network in Austria, several components should be considered: the presence of high-
farm density and highly-connected pig holdings, the seasonality of the network, and the presence of communities.

Data and code availability
The metadata and R code used to produce the results of this study are publicly available in Figshare at: https:// 
doi. org/ 10. 6084/ m9. figsh are. 21904 995. v1. The raw data that support the findings of this study are available from 
the Austrian Federal Ministry of Social Affairs, Health, Care and Consumer Protection (BMSGPK) but restric-
tions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available. Data are however available from the authors upon reasonable request and with permission 
of data owner.
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