
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9488  | https://doi.org/10.1038/s41598-023-36576-5

www.nature.com/scientificreports

Application of ensemble model 
in capacity prediction of the CCFST 
columns under axial and eccentric 
loading
Jing Wang 1, Ruichen Lu 2* & Ming Cheng 2

Understanding the load-carrying capacity of circular concrete-filled steel tube (CCFST) columns 
is crucial for designing CCFST structures. However, traditional empirical formulas often yield 
inconsistent results for the same scenario, causing confusion for decision makers. Additionally, simple 
regression analysis is unable to accurately predict the complex mapping relationship between input 
and output variables. To address these limitations, this paper proposes an ensemble model that 
incorporates multiple input features, such as component geometry and material properties, to predict 
CCFST load capacity. The model is trained and tested on two datasets comprising 1305 tests on CCFST 
columns under concentric loading and 499 tests under eccentric loading. The results demonstrate that 
the proposed ensemble model outperforms conventional support vector regression and random forest 
models in terms of the determination coefficient (R2) and error metrics (MAE, RMSE, and MAPE). 
Moreover, a feature analysis based on the Shapley additive interpretation (SHAP) technique indicates 
that column diameter is the most critical factor affecting compressive strength. Other important 
factors include tube thickness, yield strength of steel tube, and concrete compressive strength, all of 
which have a positive effect on load capacity. Conversely, an increase in column length or eccentricity 
leads to a decrease in load capacity. These findings can provide useful insights and guidance for the 
design of CCFST columns.

Concrete-filled steel tube (CFST) is an infill element consisting of an outer steel tube and a core of filled concrete1. 
The most commonly used CFST columns are circular concrete-filled steel tube (CCFST) and rectangular con-
crete-filled steel tube (RCFST) columns, a layout that optimizes the use of steel and concrete materials. It makes 
the complementary action between steel tubes and filled concrete more effective than conventional reinforced 
concrete and steel structural elements. On the one hand, the CFST system has mechanical advantages over 
reinforced concrete or pure steel members due to the restraining effect of the steel pipe on the filled concrete, 
which increases the strength and greatly improves the ductility of ordinary concrete2–7. On the other hand, the 
concrete core restrains the inward deformation of the steel tube, retarding the local buckling of the steel tube 
and enhancing the local stability of the steel tube, thus enhancing the overall stability of the column8,9. These 
synergistic effects lead to an increase in strength characteristics over the respective individual parts. Due to the 
advantages of high strength, resilience, good seismic energy absorption performance, and high fire resistance, 
CFST columns are widely used in high-rise buildings, bridges, and other structures10,11.

Compressive strength is the main mechanical property of CFST. Since the accurate design of CFST has an 
important influence on the stability of the structure, studying different techniques to analyze their compressive 
strength can provide a better understanding of their behavior. Currently, the experimental method and the finite 
element method are the two mainstream methods for predicting the performance of CFST components12,13. 
Although physical experiments provide valuable data and observations, the labor and material consumption 
of repeated tests are considerable. The finite element method can reduce the number of tests to some extent by 
computer simulation, but the results of finite element analysis depend largely on the skill level of the modeler 
due to the complex material properties, contact relations, boundary conditions, etc. Moreover, finite element 
methods often require high computer configurations14. With increasing interest and laboratory testing, some 
countries have established equation-based design standards based on extensive experimental results, such as ACI 
318 (ACI 2014)15, Eurocode 4 (CEN 2004)16, AISC 360 (AISC 2016)17, and Chinese codes (GB 50936–2014 and 
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GB/T 51446–2021)18,19. Design codes are currently the preferred method for predicting compressive strength 
due to their convenience and practicality. However, it’s important to note that although many existing design 
standards can estimate strength, they have specific scopes of application. Additionally, different codes across 
countries may produce varying outputs under different code models, which can raise questions about the accu-
racy of the predictions and lead to poor decision-making by designers and engineers. Furthermore, the actual 
columns’ material strength, geometry, cross-sectional length, and slenderness may exceed the applicability of 
these standards, potentially putting the structure at risk if they are used to calculate strength. Moreover, empiri-
cal formulas are typically explicit equations with a limited nonlinear relationship between inputs and outputs. 
In contrast, machine learning models can capture a more precise and complex mapping relationship between 
inputs and outputs in an implicit functional form.

For this reason, some intelligent methods need to be explored to achieve an accurate and fast output of predic-
tion results. The development and application of machine learning techniques provide new insight to solve this 
problem20. It is foreseen that using machine learning to predict component performance will not only provide 
a reference for actual design but also save significant resources by making full use of completed experimental 
data and reducing the need for further testing21,22. Moreover, machine learning is based on patterns between 
large amounts of experimental data and is much less dependent on the users themselves. In recent years, many 
scholars have used machine learning algorithms such as artificial neural network (ANN), gene expression pro-
gramming (GEP), back-propagation neural network (BPNN), fuzzy logic, etc. for the prediction of the ultimate 
bearing capacity of CFST based on the acquired datasets, and achieved good results23–32. For instance, researchers 
have employed a hybrid machine learning approach, combining artificial neural networks (ANN) with particle 
swarm optimization (PSO) algorithm, to predict the compressive strength of CCFST columns. The accuracy of 
this method has been demonstrated to surpass that of existing design codes and empirical formulas33,34. Ahmadi 
et al.35 used the ANN model to analyze the compression capacity of CCFT short columns under short-term axial 
loading, and the prediction results showed that the mean relative error of the proposed equation was 13.2%, 
indicating good accuracy. Hou et al.36 employed BPNN, genetic algorithm (GA)-BPNN, radial basis function 
neural network (RBFNN), Gaussian process regression (GPR), and multiple linear regression (MLR) models 
with diameter, length of the column, steel tube thickness, steel yield strength, and concrete compressive strength 
as input variables to develop prediction models for 2045 sets of CCFST data. The results showed that the devel-
oped GPR model reached higher accuracy and wider applicability than the existing design standards, and can 
reliably predict the strength of CCFST. Muhammad et al.37 achieved good accuracy R2 = 0.949 for ultimate axial 
capacity using the GEP model on 227 sets of CCFST columns, and the prediction accuracy was better than the 
design codes and formulas proposed by other scholars. To obtain models with higher prediction accuracy, Quang 
et al.38 employed a gradient tree boosting algorithm to predict the strength of the CFST column. Compared with 
random forest, support vector machine (SVM), decision tree, and deep learning, the model proposed achieved 
higher prediction accuracy.

In general, machine learning provides an innovative method for predicting the strength of CFST columns. 
Although some studies have been investigated with good results and progress, more work needs to be done for 
the two following reasons. (1) The current research is mainly focused on the compressive strength of CCFST 
under axial loading condition. Studies on the behavior of CCFST columns under different loading conditions 
are relatively few. A systematic and in-depth study of the mechanical properties of CCFST under different 
cross-sectional shapes and loading conditions is necessary. (2). The number and type of samples in the database 
have a significant impact on the applicability and accuracy of the mechanistic model. An extensive literature 
review can further supplement the number of test samples and the corresponding parameter ranges to build a 
more comprehensive test database. Additionally, the application of ensemble model in capacity prediction of 
the CCFST columns is relatively few.

The main objective of this study is to develop an ensemble model that can accurately predict the compres-
sive strength of CCFST under various loading conditions. As depicted in Fig. 1, the input parameters consist of 
geometric features and material properties. For CCFST, these specific input variables include diameter (D), the 
thickness of tube (T), length of the column (L), yield strength of steel tube (fy), concrete compressive strength 
(fc), top eccentricity (et), bottom eccentricity (eb). In light of the successful application of the Extreme Gradient 
Boosting model (XGBoost) in other regression problems39, this model was selected for prediction in this study. 
Additionally, two other commonly used machine learning models, support vector regression (SVR)40 and random 
forest (RF)41, were also employed to determine the optimal prediction model for the studied topic.

Extreme gradient boosting model
XGBoost makes some algorithmic improvements on the basis of the GBDT gradient boosting tree, which has 
the advantages of being fast, effective, able to handle large-scale data, and supporting multiple languages. The 
basic idea is that tree by tree is added to the model, and each CRAT decision tree is added in such a way that the 
overall effect is improved. the objective function of XGBoost (as shown in Eq. 1) contains two parts: training 
error and regularization.

where l is the loss function to measure the error between the model prediction and the true value, and Ω is the 
regularization term to measure the complexity of the model and avoid overfitting. The loss function is subjected 
to a second-order expansion of Taylor’s formula, which leads to Eqs. (2–3).

(1)objt =

n∑

i=1

l(yi)+�(ft)
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The basic model in this paper is a regression tree, and the complexity of the tree is jointly determined by the 
number of leaf nodes, the weight of each leaf node, and the penalty factor (as shown in Eq. 6).

where γ is the penalty coefficient, T is the number of nodes of the leaves, and w is the weight of each leaf. The 
objective function is transformed into Eq. (7) by ignoring the constant term and expanding the loss function 
and the regular term.

Dataset description
To build an accurate strength model for the CFST column, a comprehensive experimental database is required, 
where 1305 tests on CCFST columns under concentric loading (Dataset 1), and 499 tests on CCFST columns 
under eccentric loading (Dataset 2) were collected42. These data sets are from different laboratory experiments, 
although the experimental conditions may not be identical, resulting in data sets with their limitations. However, 
the data volume is large and the datasets are rich in sources, which are highly representative. More experimental 
details and descriptions of the test equipment and test conditions involved in these experimental data can be 
found in Reference43. The distributions and mathematical characteristics of these different data sets are shown 
in Fig. 2 and Table 1, respectively. From Fig. 2, it can be found that there is a positive correlation between the 
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Figure 1.   Schematic diagram of CCFST columns under axial and eccentric loading.
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column diameter and the bearing capacity. The larger the column diameter is, the larger the compressive bearing 
capacity is. Similarly, the greater the thickness of the steel tube, the stronger the restraint on the internal core 
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Figure 2.   Distribution of the two datasets.
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concrete, the more difficult it is for the concrete to deform laterally, and the bearing capacity increases. However, 
it can be seen that the distribution of the ultimate bearing capacity is relatively discrete, especially for CCFST 
under axial loading, the distribution of bearing capacity (45.2–46,000 kN) is very discrete. This poses a potential 
difficulty to the accurate prediction of the results.

Further, the Pearson linear correlations between the input and output variables were calculated and plotted 
as shown in Fig. 3. As can be seen from Fig. 3, the correlation coefficient between the input and output variables 
in the other data sets did not exceed 0.8, except for the correlation coefficient between diameter and compres-
sive strength in Dataset 1, which was 0.91. This implies that to achieve an accurate prediction of compressive 
strength, it is crucial to establish complex nonlinear correlations between multiple input variables and output 
compressive strength.

Results and analysis
The collected databases were randomly divided into training datasets (80%) and test datasets (20%). It should 
be noted that all inputs were normalized to the range [0,1] in order to avoid scaling effects. During the training 
process, the grid search method was used to find the optimal hyperparameters, and the tenfold cross-validation 
method was employed to reduce the deviation generated by random sampling of the training set.

For comparison to assess the validity and reliability of the proposed models, random forest and the SVR 
model were also used for the same training and test sets. Compared to the SVR and RF models, which have 
fewer hyper-parameters, the tuning process of the XGBoost model is more time-consuming. However, in terms 
of prediction performance, the extra effort is certainly worth it. The correlation between the predicted results 
of the three models and the experimental values under different cases is shown in Fig. 4. It can be seen that the 
scatter between the predicted and actual values of the three machine learning models is mostly concentrated 
within ± 20% for both the training and test sets. However, the comparison of the three models is difficult to obtain 
from Fig. 4. For visual comparison, Table 2 lists the error metrics between the predicted results and the actual 
values of the different models. From Table 2, it can be found that the XGBoost model achieves higher correlation 

Table 1.   Statistical results of dataset.

Dataset Variable Unit Min Max Median Mean SD Kurtosis Skewness

1

D mm 44.45 1020 127 157.53 103.38 21.3 3.78

T mm 0.52 16.54 4 4.38 2.51 3.01 1.47

L mm 152.35 5560 660 1034.51 992.13 4.09 2.04

fy MPa 178.28 853 326 336.6 89.71 8.54 2.15

fc MPa 9.17 193.3 41.5 52.31 32.84 3.88 1.83

N kN 45.2 46,000 1308 2352.26 3957.33 40.15 5.49

2

D mm 76 600 133 141.72 55.95 16.11 2.81

T mm 0.86 16 4.5 4.16 1.97 10.24 2.16

L mm 284.5 4956 1700 1757.78 1030.15 0.41 0.82

fy MPa 185.7 517 320 325.9 59.06 0.31 0.54

fc MPa 18.4 184 42.2 51.39 26.89 7.58 2.33

et mm 4 300 27.9 39.33 33.93 13.72 2.88

eb mm -100 300 25 34.16 36.26 11.8 2.36

N kN 66.72 5288 480.2 748.94 805.62 11.78 3.06
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Figure 3.   Pearson correlation coefficient of variables.
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coefficients and smaller error metrics in both training and test set predictions. This is mainly because XGBoost 
works by combining multiple weak base models into one strong model, using a process called boosting. Boosting 
involves iteratively training a series of decision trees, where each new tree aims to correct the errors made by the 
previous trees. This iterative process continues until a stopping condition is met, resulting in an overall model that 
is much more accurate than any individual tree. Therefore, the XGBoost model is able to capture more complex 
patterns and dependencies in the data, leading to improved prediction accuracy.
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Figure 4.   Correlation between predicted results and actual values of different models under different cases.

Table 2.   Evaluation indices of the prediction results of the three models.

Model Evaluation indexes

Dataset 1 Dataset 2

Training Test Training Test

SVR

R2 0.997 0.996 0.988 0.982

MAE 136.082 162.977 63.043 88.884

RMSE 207.608 275.212 83.602 149.849

MAPE (%) 11.236 15.346 14.377 16.691

RF

R2 0.997 0.995 0.989 0.980

MAE 151.464 174.605 57.859 74.254

RMSE 228.251 289.435 80.311 135.276

MAPE (%) 12.479 14.349 12.733 16.760

XGBoost

R2 0.997 0.996 0.989 0.989

MAE 139.726 162.435 53.969 70.725

RMSE 211.573 274.209 79.475 101.035

MAPE (%) 11.433 13.923 10.496 13.805
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Figure 5 shows the prediction error distribution of the models in the test set in detail. For the three machine 
learning models, approximately 50% of the test sets have a relative prediction error of 10% or less, and 80% of 
test sets have relative error distribution within 20%. Figure 6 shows the test set prediction error statistics for each 
model under different working conditions. For the XGBoost model, its average relative errors of prediction for 
the test set under the two working conditions are 13.923%, and 13.805%, respectively. The average relative errors 
are smaller than those of the corresponding SVR and random forest models, and the relative errors are all within 
15%, which meets the requirements of engineering applications.

Feature importance analysis
The study of the importance and degree of influence of design parameters on the bearing capacity is an important 
guide for the design of CFST. For this reason, the Shapley additive explanation (SHAP) method is introduced in 
this section to analyze the influence of design parameters on the output44,45. As shown in Fig. 7, a high feature 
value greater than 0 indicates that the variable is positive for the axial compression bearing capacity, and when the 
high feature value is less than 0, it indicates that the corresponding variable is negative for the bearing capacity. 
Taking CCFST under eccentric loading as an example, the cross-sectional dimension parameter D is the most 
important design parameter under the current data set. For several other input variables, the characteristic 
importance of their parameters under the current data set is ranked from top to bottom. In addition, it can be 
concluded that all the parameters except et, L, and eb, are positive for the bearing capacity, and their increase 
will increase the bearing capacity.

Conclusions
To further deepen the mechanical behavior of CCFST, this paper proposed an ensemble model to predict the 
strength of CCFST columns under axial and eccentric loading. The main conclusions are as follows.
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1.	 The proposed ensemble model can accurately establish the complex relationships between geometry, material 
properties, and compressive strength for different types and different loading conditions of CCFST columns.

2.	 The average relative prediction errors of the proposed models for their test sets are 13.923%, and 13.805%, 
respectively. The average relative errors are all smaller than those of the conventional SVR and RF models, 
and the relative errors are all within 15%, which shows a high prediction accuracy. The proposed model can 
be used as an alternative to the commonly used design codes to estimate the compressive strength of CFST 
columns.

3.	 The results show that, among the input parameters considered in this study, the cross-sectional dimension (D) 
has the greatest influence on the compressive strength of CCFST columns, followed by the top eccentricity 
(et), concrete compressive strength (fc), length of the column (L), bottom eccentricity (eb), and thickness of 
the steel tube (T). The yield strength of the steel tube (fy) has the least effect. Therefore, designers should pay 
close attention to the column diameter when designing CFST columns.

4.	 In addition, the results indicate that the top and bottom eccentricities (et and eb) and the length of the column 
(L) have negative effects on the compressive strength of CCFST columns, while the other geometric param-
eters and material properties have positive effects. This information can help designers adjust the selection 
of parameters in real time to achieve the best combination of design parameters for CCFST columns based 
on bearing capacity.

Although this research demonstrates the potential and accuracy of the ensemble learning model for predict-
ing CCFST load carrying capacity, future research should focus on exploring the prediction effectiveness of 
additional machine learning models to determine the optimal prediction model. Additionally, since the dataset 
used in this study comes from a series of specific laboratory experiments, further verification and research are 
needed to assess the generalization ability of the proposed model for other similar datasets. Finally, different 
design parameters have varying effects on bearing capacity, and therefore it is necessary to develop an interactive 
graphical user interface (GUI) to assist structural designers in achieving automatic output of bearing capacity for 
a given input. Such a tool could aid in understanding load carrying capacity under different parameter combina-
tions in real-time, facilitating the correction and guidance of CCFST column design.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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