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Impact of urban spatial structure 
elements on carbon emissions 
efficiency in growing megacities: 
the case of Chengdu
Tian Feng  & Bo Zhou *

Quantitative research on the impact weight and impact of regional heterogeneity of urban spatial 
structure elements on carbon emissions efficiency can provide a scientific basis and practical guidance 
for low-carbon and sustainable urban development. This study uses the megacity of Chengdu as an 
example to measure and analyze the spatial carbon emission efficiency and multidimensional spatial 
structure elements by building a high-resolution grid and identifying the main spatial structure 
elements that affect urban carbon emissions and their impact weights via the Ordinary Least Squares 
regression (OLS) and Geographically Weighted Regression (GWR). The spatial heterogeneity of the 
impact of each element is also explored. The results show that the overall carbon emission efficiency 
of Chengdu is high in the center and low on the sides, which is related to urban density, functional 
mix, land use, and traffic structure. However, the influence of each spatial structure element is 
different in the developed central areas, developing areas of the plain, mountainous developing areas, 
underdeveloped areas of the plain, and mountainous underdeveloped areas. Thus, it is appropriate to 
form differentiated urban planning strategies based on the characteristics of the development of each 
zone. The findings provide inspiration and a scientific basis for formulating policies and practice to the 
future low-carbon development of Chengdu, while provide a reference for other growing megacities.

Since opening up in 1978, China’s accelerated urban development and rapid growth of population have caused a 
surge in carbon emissions. As the main drivers of economic growth, cities consume large amounts of energy, their 
consumption exceeding 70% of the total; this figure is predicted to rise in developing nations in the  future1. There-
fore, the transition toward low-carbon urban planning is necessary to facilitate a sustainable future. This requires 
a deeper understanding of the influence of multidimensional spatial elements on urban carbon emissions.

Existing studies on low-carbon urban planning comprise multilevel elements of urban spatial structure. In 
terms of urban structure and land use, several scholars have suggested that compact and high-density city has a 
positive effect on reducing carbon emissions. Evidence from cities in both developed and developing countries 
suggests that compact cities have a positive effect on reducing transportation carbon  emissions2,3. Residential 
carbon emissions are also been shown to be closely related to urban structure and land  use4. The urban form is 
a significant factor related to overall heating energy demand and individual dwelling energy consumption for 
space  heating5. Sector-wide carbon emissions are affected by urban structure and land use as well. A study in 
Guangdong-Hong Kong-Macao Greater Bay Area shows there is a link between the spatial structure, land use, 
and carbon emission efficiency of  cities6.

Urban traffic structure is another essential influence on carbon emissions. Several studies have pointed out 
that road conditions, road network density, and transportation facilities are important factors that affect carbon 
emissions from  travel7–9. Province-level research supports that urban road density and per capita highway mileage 
are strongly connected to transportation carbon  emissions10. Neighborhood-level indicates transit accessibility, 
bus stop density, metro station density, and road network density have an impact on carbon  emissions7–9. There 
is variability in the findings of some indicators between the province-level and community-level studies, which 
suggests that different results may exist in studies at different scales.

As an important element in urban spatial structure, urban density has an obvious impact on carbon emissions. 
Population density is strongly associated with carbon  emissions11, but its impact may be influenced by different 
levels of the urbanization  process12. In addition, job density, land use density, and so on are also thought to have 
an impact on carbon  emissions9.
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Existing studies suggest that there is a relationship between different spatial structure elements and car-
bon emissions, but there are two aspects that remain less covered. First, most studies have focused on carbon 
emissions from a single sector or a single category of structural elements, thus, lacking a composite analysis 
of multilevel spatial structure, which makes it difficult to compare the influence of each category. Second, the 
studies were mostly conducted on larger urban clusters or smaller communities; thus, it is difficult to explore 
the different influence of elements in different development levels of zones within a single city. Therefore, this 
study takes all sector carbon emissions and multidimensional spatial structure elements into account, trying to 
identify the most influential spatial structure elements on carbon emissions, and explore in depth the ways in 
which each element is influenced. The study divides Chengdu into grids to fully discuss the spatial heterogeneity 
in the effect of each element by zone.

Chengdu, a fast-growing megacity, is a nationally central city in western China. The Chinese megacities 
are still continuously growing in size of population and infrastructure, causing surges in carbon emissions. At 
this stage of carbon emission surge, formulating reasonable measures to improve carbon emission efficiency is 
extremely effective in reducing carbon emissions. From the perspective of sustainable development, to maintain 
growth while also reducing their environmental footprint, megacities like Chengdu must pay attention to the 
planning process. Taking Chengdu as an example, this study explores the mechanism of how multidimensional 
spatial elements influence carbon emission efficiency in fast-growing megacities. The study broadens the scope 
of carbon emission research in the urban setting, enabling an effective layout of spatial elements for a low-
carbon urban environment by providing supporting data and theory. It can also provide a reference for other 
fast-growing megacities while promoting the low-carbon development of Chengdu in the future.

Methods
The study is divided into four sections: analysis of carbon emissions efficiency characteristics, measurement and 
analysis of urban spatial structure elements, construction of a model of the relationship between multilevel spatial 
structure elements and carbon emission efficiency, and suggestions for promoting urban green development. This 
study aims to explain the intrinsic relative relationship between the multilevel urban spatial structure elements 
and carbon emissions in different zones of Chengdu, based on objective and quantitative expressions of carbon 
emission efficiency characteristics and urban spatial elements. The study also has the objective of identifying the 
characteristics presented by the influence of different elements in spatial heterogeneity and then proposing spatial 
planning intervention measures and policies. The main methods and data sources for each part are described in 
the relative sections. All data period in this study is 2019.

Study area. Chengdu, a fast-growing city in China, is selected as the study area (Fig. 1). As the provincial 
capital of Sichuan Province, Chengdu is one of the first national historical and cultural cities in China, and 
an important central city in southwest China, which was selected as a low-carbon pilot city in China in 2017. 
Chengdu has 12 districts of Jinjiang, Qingyang, Jinniu, Wuhou, Chenghua, Longquanyi, Qingbaijiang, Xindu, 
Wenjiang, Shuangliu, Pidu and Xinjin, 5 county-level cities of Jianyang, Dujiangyan, Pengzhou, Qionglai and 
Chongzhou, and 3 counties of Jintang, Dayi and Pujiang. As of 2020, Chengdu has a total area of 14,335 square 
kilometers, a resident population of 20,937,800, and a total GDP of more than 1.7 trillion yuan. In recent years, 
Chengdu has enjoyed good economic development and has been ranked among the top ten cities in China in 
terms of total GDP since 2011.

Chengdu has a long history of development, with heterogeneity in construction and variability in urban 
structure elements in different regions, which provides an ideal sample for studying the impact of urban spatial 
structure elements on carbon emissions efficiency. As a low-carbon pilot city in China, it has comparatively suf-
ficient conditions for the practical promotion of the study results.

Analysis of carbon emission efficiency characteristics. Most existing studies estimate carbon emis-
sions through energy consumption data at the provincial, municipal, and county  levels13,14. These estimates 
lack precision in characterizing carbon emissions within cities. There are significant differences in the internal 
carbon emission levels of each unit area within a city owing to their development level  variability15. Therefore, 
to fully reflect the intra-city geographic carbon emission differences, this study developed a high-resolution 
intra-city carbon emission efficiency grid (0.1° × 0.1° grid divided by latitude and longitude, with an actual area 
of approximately 10  km × 10  km, 176 samples in total, Fig.  2) for carbon emission efficiency characteristics 
analysis. The total carbon emission data were obtained using the base point source data from the Global Energy 
Infrastructure Emissions  Database16, and the GDP data were obtained from the Chinese GDP spatial distribu-
tion dataset(1 km × 1 km) from the Resources and Environmental Science Data Center of the Chinese Academy 
of Sciences(RESDC)17.

Carbon emission efficiency generally refers to achieving higher economic growth with lower carbon dioxide 
 emissions18. In this study, carbon emission efficiency was measured and analyzed by carbon emissions per unit 
of GDP  (kgCO2/10,000 yuan) (indicated by CBN in subsequent tables and pictures). The higher the carbon 
emissions per unit of GDP, the lower the carbon emission efficiency.

Measurement and analysis of spatial structure elements. Urban spatial structure refers to the lay-
out of a city’s  components19 and is affected by the interactions of between these components.

In existing studies, several studies have pointed out that urban  density12,20–22, functional  mix23, land use 
 type24,25, and traffic  structure10,26 have an impact on the carbon emissions efficiency of cities. Since the scale of 
this study is within a single city, which is relatively smaller, the study combines 5Ds built environment elements 
raised by  Ewing27 to refine the elements for the above four categories, resulting in the 14 elements from four 
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categories in Table 1. This spatial data (roads, buildings, points-of-interest, stations, etc.) was run through AMAP 
and Bigemap and vectorized through ArcGIS.

Modeling the relationship between multilevel spatial structure elements and carbon emission 
efficiency. To model the relationship between various spatial structure elements and carbon emission, Ordi-
nary Least Squares regression (OLS) and Geographically Weighted Regression (GWR) are performed to find a 
better model.

OLS regression is mainly used for parameter estimation in linear regression, and its goal is to find the best 
functional match for the data by minimizing the squared error and can be expressed by Eq. (1):

where y is the dependent variable, x is the independent variable, β0 is the const, βn is the coefficient, ε is the 
error term.

GWR is a spatial analysis technique widely used in geography and related disciplines involving spatial pat-
tern analysis. It explores the spatial variation of a study object at a certain scale and the associated drivers by 
establishing a local regression equation at each point in the spatial range, and can be used to make predictions 

(1)y = β0 + β1x1 + β2x2 + β3x3 + · · · + βnxn + ε

Figure 1.  The location and geographic scope of Chengdu. (Note: the map on the right side is from Ministry 
of Natural Resources of the People’s Republic of China, No.GS(2019)1671, http:// bzdt. ch. mnr. gov. cn/ browse. 
html? picId=% 224o2 8b062 5501a d1301 5501a d2bfc 0266% 22; the map on left side was drawn by author with 
ArcGIS Pro, Version 3.0.2, ESRI, referring to information on Sichuan Bureau of Surveying, Mapping and 
Geoinformation, http:// scsm. mnr. gov. cn/ nbzdt. htm.)

http://bzdt.ch.mnr.gov.cn/browse.html?picId=%224o28b0625501ad13015501ad2bfc0266%22
http://bzdt.ch.mnr.gov.cn/browse.html?picId=%224o28b0625501ad13015501ad2bfc0266%22
http://scsm.mnr.gov.cn/nbzdt.htm.
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Figure 2.  The intra-city carbon emission efficiency grid of the city of Chengdu, which is a 0.1° × 0.1° grid 
divided by latitude and longitude, with an actual area of approximately 10 km × 10 km, 176 samples in total. 
(Note: ArcGIS Pro, Version 3.0.2, ESRI was used to create this figure).

Table 1.  Spatial structure elements.

Category Elements Calculation instructions Units Original data Data source Format

Urban density

Population density (pop) population per unit grid pcs Population RESDC33 Grid (1 km × 1 km with location)

Building density (bda) Total area occupied by buildings 
per unit grid m2 Building area Bigemap Shapefile (polygon with location)

POI density (poi) Total number of POI per unit 
grid (pcs) pcs POI AMAP Shapefile (point with location)

Functional mix

Land use mix (pim)
Measurement of land use mix 
based on POI categories using 
the Shannon Diversity Index

– POI AMAP Shapefile (point with location)

Land nature mix (phh)
Measuring land use assemblages 
based on land properties using 
the Shannon Diversity Index 
(SHDI)

– Land properties RESDC34 Grid (1 km × 1 km with location)

Land use type

Construction site area (cst) Construction site area per unit 
grid m2 Land properties RESDC34 Grid (1 km × 1 km with location)

Green area (gre) Green space area per unit grid m2 Land properties RESDC34 Grid (1 km × 1 km with location)

Water area (wtr) Water area per unit grid m2 Land properties RESDC34 Grid (1 km × 1 km with location)

Land patch scale (lsc) The average size of each different 
land parcel per unit grid m2 Land properties RESDC34 Grid (1 km × 1 km with location)

Traffic structure

City roads length (crd)
Total length of urban trunk 
roads, urban secondary roads 
and urban feeder roads per unit 
grid

m City road Bigemap Shapefile (line with location)

Fastway length (fsw)
Total length of urban express-
ways and elevated roads per 
unit grid

m Fastway Bigemap Shapefile (line with location)

Station density (sta) Number of bus stops and subway 
stops within the unit grid pcs Bus stop and subway station AMAP Shapefile (point with location)

Distance to the nearest transit 
station (dis)

Distance from the grid center 
point to the nearest traffic station m Transit station AMAP Shapefile (point with location)

Railway length (rlw) Total railroad length per unit grid m Railway Bigemap Shapefile (line with location)
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of future results. It has the advantage of higher accuracy because it takes into account the local effects of spatial 
objects. GWR can be expressed as shown in Eq. (2):

where yi is the dependent variable of point i,  (ui , vi) is the latitude and longitude coordinates of point i, βm(ui , vi) 
is m-th coefficient of the point i, xim is the m-th independent variable of the point i, εi is the error term of point i.

The specific steps are as follows. First, correlation analysis and OLS regression constructs were performed 
on the spatial structure elements listed in the previous section. The elements significantly influencing carbon 
emission efficiency were analyzed and screened. Subsequently, the OLS regression model was adjusted to analyze 
the relative influence, extent, and direction of each indicator on carbon emission efficiency through coefficients. 
Finally, the spatial heterogeneity of the influence of each element was clarified by further geographically weighted 
regression analysis, determining the factors and principle of change in the extent of influence.

Results and discussion
Carbon emission efficiency characterization. A high-resolution carbon emission efficiency grid of 
Chengdu city was constructed using a data overlay, and the spatial distribution of carbon emission efficiency 
in Chengdu city was obtained by grading according to natural interruption points (Figs. 3, 4). According to the 
constructed grid, the area with the highest carbon emission efficiency (lowest CBN value) is the western moun-
tainous area (the northern part of Dujiangyan and Pengzhou City, the western part of Dayi County, Chongzhou 
City, and Qionglai City), followed by central city. The southeastern (Jinyang City and Jintang County) and west-
ern plain regions (Dujiangyan City and southern Pengzhou City, Dayi County, Chongzhou City, and eastern 
Qionglai City) had lower overall carbon emission efficiency.

(2)yi = β0(ui , vi)+
∑p

m=1
βm(ui , vi)xim + εi

Figure 3.  A description of the spatial distribution of carbon emissions in Chengdu (unit: kg/km2). The color 
range spanning from blue to yellow, represents the carbon emissions from high to low. (Note: ArcGIS Pro, 
Version 3.0.2, ESRI was used to create this figure).

Figure 4.  A description of the spatial distribution of carbon emissions efficiency in Chengdu (unit: kg/10,000 
yuan). The color range spanning from blue to yellow, represents the carbon emissions from high to low. (Note: 
ArcGIS Pro, Version 3.0.2, ESRI was used to create this figure).
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The aggregate carbon emission efficiency was analyzed using the spatial distribution map of GDP (Fig. 5) and 
the topographical conditions of Chengdu. In the central urban area, the structure density is high, particularly in 
the high-tech zone. The overall demand for energy and transportation in such areas is relatively small, and the 
high per unit GDP translates to higher carbon emission efficiency. It is worth noting that the eastern part of the 
central city has a strip-like area with very high carbon emission efficiency, the Longquan Mountain Range, which 
is characterized by woodlands that are effective carbon sinks. Overall, urban high-density areas and ecological 
areas are more carbon efficient than other regions, which is consistent with the study of  Li6.

Measurement and analysis of spatial structure elements. After obtaining and adjusting the data 
related to urban density, functional mix, traffic structure, and land use type in Chengdu, the study adopted the 
spatial structure element projection based on the high-resolution grid of the city to obtain the specific grid data 
of each element. the results are shown in Fig. 6.

The highest values of population density, building density, POI density, construction site area, city road length, 
station density, and railway length appear in the center of the city, and then decrease from the central city to the 
surrounding area in different trends: the low population density appears in the southwest; low building density 
is mainly concentrated in the southeast; low POI density appears in the west and north; low construction site 
area and city road length are concentrated in the northwest and southeast; stations are mainly concentrated in 
the central city, with less coverage around; railways are more scattered in the city. Both green area and land patch 
scale are lower in the central city, with the highest values of the former in the west and north, and the latter in the 
northwest. Land use mix and land nature mix are found high in the Min Mountain area in the west and Longquan 
Mountain area in the east, while the lowest land use mix value in the north, and the lowest land nature mixture 
value in the southeast. The values of water area and distance to the nearest transit are distributed randomly.

Identification of key urban spatial structure elements affecting carbon emission effi-
ciency. Before model construction, the study performed a data cleaning and conducted a logarithmic trans-
formation of the elements with larger values to ensure the relative stability of the data. The final analysis sample 
size is 172. The results of the Pearson correlation analysis of carbon emissions per unit of GDP and each spatial 
structure element through SPSS R26.0.0.0 are presented in Table 2. The results show that, except for population 
density and bus stop density, all elements of spatial structure elements show significance at 0.01 (two-sided) level 
with carbon emissions per unit of GDP, among which green space and land patch scale are negatively correlated 
(positive correlation with carbon emission efficiency), and the remaining elements show a positive correlation 
with carbon emissions per unit GDP (negative correlation with carbon emission efficiency).

The correlation analysis mainly shows the degree of closeness between two variables, and it is not yet possible 
to identify the multivariate interactions and interdependencies. Therefore, further OLS regression analysis was 
required to examine the extent and direction of the influence of each element on carbon emission efficiency. 
Therefore, we constructed OLS regression models for the analysis (Table 3). The regression results passed the 
F-test (p < 0.05), and the adjusted R-squared was 0.555, showing a good fit.

As seen from Table 4, POI density, expressway length, and urban road length have a significant positive 
influence on carbon emissions per unit of GDP (negatively correlated with carbon emission efficiency). The 
relative weight of influence was as follows: POI density > city roads length > fastway length. This indicates that 
increasing the supply of urban roads would promote emissions, which is inconsistent with the study in traffic 
carbon  emissions10.

Population density, construction site area, station density, distance to the nearest transit station, and land 
use mix had a significant negative effect on carbon emissions per unit of GDP (positively correlated with carbon 
emission efficiency); the relative weights of impact were as follows: population density > distance to the nearest 
transit station > land use mix > station density > construction site area. The findings are generally consistent with 
the finding of former  studies7,9,11,12. However, the effect of the construction site area is different from Liu’s11, 

Figure 5.  A description of the spatial distribution of GDP in Chengdu (unit: 10,000 yuan/  km2). The color 
range spanning from blue to yellow, represents the carbon emissions from high to low. (Note: ArcGIS Pro, 
Version 3.0.2, ESRI was used to create this figure).
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which may be attributed to the flat topography, concentric type expansion, and strong transportation system of 
Chengdu, making the increase of various transportation energy consumption insignificant.

However, building density, land nature mix, green area, water area, railway length, and land patch scale did 
not affect carbon emissions per unit of GDP. Green land, considered significant in some  studies25, does not show 
significance in this study, which may be related to the size and degree of development of the city, and presumably 
because its effect has been captured by the other variables.

Spatial heterogeneity in the influence of urban spatial structure elements. The eight effective 
urban spatial structure elements identified above were regressed with OLS again. All elements were determined 

Figure 6.  Spatial distribution of spatial structure elements of Chengdu: (a) Population density; (b) Building 
density; (c) POI density; (d) Land use mix; (e) Land nature mix; (f) Construction site area; (g) Green area; (h) 
Water area; (i) Land patch scale; (j) City roads length; (k) Fastway length; (l) Station density; (m) Distance to the 
nearest transit station; (n) Railway length. The color range spanning from blue to yellow, represents values from 
high to low. (Note: ArcGIS Pro, Version 3.0.2, ESRI was used to create this figure).



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9939  | https://doi.org/10.1038/s41598-023-36575-6

www.nature.com/scientificreports/

Figure 6.  (continued)
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to be significant after regression (Table 4), and the positive and negative relationships with carbon emissions per 
unit of GDP were consistent with the results of previous regression analyses. The adjusted R-squared was 0.557.

However, the OLS regression cannot depict the spatial nonstationary characteristics of the  elements28. Exist-
ing studies has proved that the GWR model is considered more appropriate to estimate parameters in carbon 
emissions studies than other  models29. Therefore, we further performed a GWR model to examine the spatial 
heterogeneity in the influence of urban spatial structure elements. The model results are shown in Table 5. The 
adjusted R-squared was 0.7702, and the AICc was 96.8374, both better than those of the OLS regression; the 
standardized residuals from Global Moran’s I test showed a z-score of 1.081314, indicating that there is no spatial 
autocorrelation (Table 6). These results indicate that the impact of each spatial structure indicator on carbon 
emissions per unit of GDP is affected by geospatial location and that the GWR model can provide an in-depth 
analysis of the influence of each indicator based on OLS. The spatial distribution results of the GWR regression 
coefficients for each spatial structure element are provided in Fig. 7.

The results show that the influence of each spatial structure element on carbon emissions per unit of GDP 
varies significantly in different zones of the entire area.

The influence of most of the elements remains the same in terms of direction, but the intensity varies by 
region: the influence of fastway length gradually decreases from the northern mountainous region to the southern 
region; the influence of POI density decreases from the southeast to northwest; the influence of city road length 

Table 2.  Pearson correlation analysis result. *p < 0.05, **p < 0.01.

lg_cbn

lg_pop 0.153*

lg_poi 0.559**

lg_cst 0.421**

lg_gre − 0.270**

lg_wtr 0.455**

lg_lsc − 0.222**

lg_bda 0.304**

lg_rlw 0.205**

lg_fsw 0.466**

lg_crd 0.559**

lg_sta 0.153*

lg_dis − 0.530**

pim 0.479**

phh 0.207**

Table 3.  OLS regression analysis result for all elements. y:lg_cbn. *p < 0.05, **p < 0.01.

Coef Std. err t p VIF

const 4.850 0.884 5.484 0.000** –

lg_pop − 0.567 0.167 − 3.393 0.000** 3.870

lg_poi 0.333 0.067 5.006 0.000** 7.646

lg_cst − 0.053 0.019 − 2.771 0.006** 3.214

lg_gre − 0.040 0.02 − 1.922 0.056 1.695

lg_wtr 0.004 0.015 0.270 0.787 2.496

lg_lsc 0.016 0.109 0.150 0.881 1.468

lg_bda − 0.009 0.012 − 0.723 0.471 3.028

lg_rlw 0.004 0.019 0.120 0.842 1.825

lg_fsw 0.053 0.021 2.511 0.013* 2.712

lg_crd 0.174 0.037 4.744 0.000** 4.813

lg_sta − 0.144 0.053 − 2.686 0.008** 3.577

lg_dis − 0.449 0.105 − 4.288 0.000** 1.775

pim − 0.376 0.106 − 3.558 0.001** 5.629

phh 0.248 0.144 1.722 0.087 2.000

R2 0.591

AdjR2 0.555

F 16.221, p = 0.000*

AICc 150.523
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gradually decreases from the north to the east; the influence of distance to the nearest transit station gradually 
decreases from the northwest to the southeast; and the influence of land use mix decreases from the edge of the 
city to the center. Construction site area is positively correlated with carbon emission efficiency in the southeast 
but is negatively correlated in the northwest. The station density is negatively correlated in the south, with its 
influence gradually decreasing from southwest to southeast, and gradually change into positively correlated in 
the north. The population density is negative and diminishing from the northern mountains to the southern 
regions, while positive in the southwest.

Some recent studies have found that factors such as population size in different parts of China and urban 
agglomerations can have a differential impact on carbon emissions by  sector28,30,31. Sometimes positive and 
negative effects on emissions  coexisted28. The findings of this paper further suggest that, similar to larger-scale 
studies, this differential impact on carbon emissions is equally present within cities.

The differential impact is closely related to urbanization level, regional urban construction, economic devel-
opment, and  topography32. To explore more deeply the influence of urban spatial structure elements on carbon 
emission efficiency in different areas of the Chengdu megacity, we divided the city into five zones by GDP and 
topography in Chengdu: developed central area, developing area of the plain, mountainous developing area, 
underdeveloped area of the plain, and mountainous underdeveloped area (Fig. 8). We also calculated the average 
impact coefficient of different spatial structure elements in each area according to the GWR results, as shown 
in Fig. 9. It is important to note that higher carbon emissions per unit of GDP indicate lower carbon emission 
efficiency. Therefore, the effect of different spatial structure elements on carbon emission efficiency is the opposite 
of their influence on carbon emissions per unit of GDP. Based on the results, we analyzed the specific situation 
of each subdivision.

Table 4.  OLS regression analysis result for effective elements. y:lg_cbn. *p < 0.05, **p < 0.01.

Coef Std. Err t p VIF

const 4.951 0.627 7.890 0.000** –

lg_pop − 0.651 0.159 − 4.084 0.000** 3.542

lg_poi 0.351 0.060 5.871 0.000** 6.190

lg_cst − 0.044 0.018 − 2.478 0.014* 2.825

lg_fsw 0.056 0.018 3.111 0.002** 2.011

lg_crd 0.179 0.035 5.054 0.000** 4.497

lg_sta − 0.132 0.053 − 2.519 0.013* 3.424

lg_dis − 0.448 0.102 − 4.401 0.000** 1.684

pim − 0.395 0.102 − 3.885 0.000** 5.254

R2 0.577

AdjR2 0.557

F 27.828, p = 0.000*

AICc 142.148

Table 5.  GWR regression analysis result.

R2 0.7702

AdjR2 0.7035

AICc 96.8374

Sigma-squared 0.0828

Sigma-squared MLE 0.0642

Effective degrees of freedom 133.5336

Table 6.  Global Moran’s I of GWR.

GWR 

Moran’s Index 0.074611

Expected Index − 0.005848

Variance 0.005537

z-score 1.081314

p-value 0.279558
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Figure 7.  Spatial distribution of influence coefficients of spatial structure elements: (a) Population density; 
(b) Building density; (c) POI density; (d) Land use mix; (e) Land nature mix; (f) Construction site area; (g) 
Green area; (h) Water area; (i) Land patch scale; (j) City roads length; (k) Fastway length; (l) Station density; 
(m) Distance to the nearest transit station; (n) Railway length. The color range spanning from yellow to green, 
represents values from high to low. (Note: ArcGIS Pro, Version 3.0.2, ESRI was used to create this figure).
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Developed central area. The developed central area is located in the main urban area of Chengdu, which has 
the fastest economic development rate in the city. In this area, higher population density, construction site area, 
land use mix, distance to the nearest transit station, and station density have significant positive effects on carbon 
emission efficiency. Among these, population density has the most apparent effect, and construction site area 
has the weakest positive influence. Correspondingly, POI density, city road length, and fastway length have a 
negative influence on carbon emission efficiency, with the most significant effect coming from the POI density.

Within the developed central area, the urban construction land area is saturated and the industry is mainly 
tertiary. With the out-migration of primary and secondary industries, the industrial types in the centrally devel-
oped areas rely less on goods transportation and more on commuter transportation. Therefore, the construction 
land and expressway length have little influence on carbon emission efficiency, while the density of bus stops 
and the distance to the nearest transportation station have an evident effect. For low-carbon construction, opti-
mization of the urban public transportation system and decongestion of dense urban functions in the central 
developed area can focus factors for carbon reduction.

Developing area of the plain. This developing area of the plain is located in the western plain of Chengdu 
Central City. The increase in population density, construction site area, land use mix, distance to the nearest 
transit station, and density of station density resulted in a corresponding increase in carbon emission efficiency. 
Among them, the construction site area, distance to the nearest transit station, and station density had a more 
pronounced effect in the plain than in the central developed areas. Among the three elements (POI density, city 
road length, and fastway length) that had a negative influence on carbon emission efficiency, both road elements 
had a greater influence than those in the central developed areas.

Figure 8.  The city of Chengdu is divided into developed central area, developing area of the plain, mountainous 
developing area, underdeveloped area of the plain, and mountainous underdeveloped area by GDP and 
topography. (Note: ArcGIS Pro, Version 3.0.2, ESRI was used to create this figure).

Figure 9.  A chart to show the average influence coefficient of different urban spatial structure elements in each 
zone.
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The developing areas of the plain are in the stage of receiving the transfer of high-energy-consuming and 
low-output-value industries from urban centers, and the good transportation conditions owing to the developed 
road network have ushered in industrial agglomeration, causing high concentrations of carbon emissions. Such 
industrial transfer is an inevitable part of urban development; therefore, reasonably organizing the industrial 
structure, improving the utilization rate of waste energy, and reducing energy waste are the main factors to be 
addressed in the future for developing area of the plain.

Mountainous developing area. The mountainous developing area mainly includes the eastern Longquan Moun-
tain area. The elements that positively affect carbon emission efficiency in this area include population density, 
land use mix, station density, and distance to the nearest transit stop. The POI density and construction land 
area had an evident negative effect on carbon emission efficiency. Unlike in other zones, city road length and 
expressway length had no significant effects.

This area is a long-developed automotive industry zone in Chengdu, with clustered industries, and a more 
developed upstream and downstream industrial system. At present, compared to the developing area of the plain, 
it receives a lower proportion of high-energy-consuming and low-output-value industries that are moving out 
of the urban center. As a result, the industrial agglomeration caused by the transportation system is smaller. 
The area’s developed industrial base resulted in a rapid growth of population. However, affected by the terrain, 
the population is highly concentrated in a relatively flat area near the main city, and the infrastructure is under-
developed, resulting in low carbon emission efficiency. During its future development, the energy efficiency of 
industries, and optimization of the regional public transportation systems, and public service facilities should 
be the focus for higher carbon emission efficiency.

Underdeveloped area of the plain. The situation in the underdeveloped areas of the plain is similar to that in the 
developing area. Population density, station density, and distance to the nearest transit station are positively cor-
related with carbon emission efficiency, with population density having the weakest influence relative to other 
zones, and land use mix having the strongest influence relative to other zones. The POI density, fastway propor-
tion, and city road proportion are negatively correlated, and their influence are relatively weak. In addition, the 
area of construction site area had no significant influence on this zone.

Underdeveloped areas of the plain are less developed than other zones, and the overall construction and 
development are slow-paced. However, likely to experience industrial transfer in future development, this area 
should be subject to transport network improvement, concentrated construction land utilization, and improve-
ment of overall infrastructure. This underdeveloped area provides an opportunity for the application of urban 
planning strategies that can increase the population concentration and land use intensity that improve carbon 
emission efficiency.

Mountainous underdeveloped area. The construction site area, station density, distance to the nearest transit 
station, and land use mix are positively correlated with carbon emission efficiency in mountainous underde-
veloped area, and the influence of population density, construction site area, and distance to the nearest transit 
station are stronger than in other zones. The population density, POI density, fastway length, and city road length 
are negatively correlated with carbon emission efficiency in this zone.

The data show that the carbon emission efficiency of mountainous underdeveloped areas is closely related to 
transportation and that the carbon emission efficiency of zones with better transportation conditions is lower. 
This is mainly due to the inconvenience of road construction in mountainous areas, thus high-energy-consuming 
secondary industries cannot be arranged in these areas as they require developed road networks. In other zones, 
carbon emissions mainly come from the primary and tertiary industries represented by rural tourism, with rela-
tively high carbon emission efficiency. Increasing the degree of population density in mountainous areas, forming 
large-scale villager concentrations, improving infrastructure, and expanding public transportation routes and 
station settings between different zones can help carbon reduction in further development.

Conclusion
The construction of low-carbon cities is an important goal in sustainable development. The efficiency of urban 
carbon emissions is influenced by multidimensional urban spatial structure  elements19; this influence varies for 
different types of urban areas.

This study used the case of Chengdu to explore the variability of the influence of different urban spatial struc-
ture elements on carbon emission efficiency in different zones of the megacity. First, we measured and analyzed 
spatial carbon emission efficiency and multidimensional urban spatial structure elements by constructing a 
high-resolution grid. Then, we used OLS and GWR regression analyses to identify the main elements affecting 
carbon emission efficiency. Next, we discuss the spatial heterogeneity in the effect of each element by zone. The 
findings of this study are as follows.

(1) The overall carbon emission efficiency of Chengdu city is high in the center and low in the surrounding 
areas. Two of the highest values appear in the vicinity of the Longquan Mountain Range of the main urban 
area of Chengdu and the mountainous area of western Chengdu.

(2) The carbon emission efficiency in Chengdu is closely related to urban density, functional mix, land use 
type, and traffic structure. Under the combined effect of multiple elements, POI density, fastway length, 
and city road length were negatively correlated with carbon emission efficiency, while population density, 



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9939  | https://doi.org/10.1038/s41598-023-36575-6

www.nature.com/scientificreports/

construction site area, station density, distance to the nearest transit station, and land use mix were posi-
tively correlated with carbon emission efficiency.

(3) The impact of each spatial structure element shows differences in different zones of Chengdu, thus differ-
entiated development strategies are necessary for each zone to increase emissions efficiency. The developed 
central area should further optimize the urban public transportation system and decentralize the overly 
dense urban functions; the developing area of the plain should rationally organize the industrial structure, 
improve the utilization rate of waste energy, and reduce energy waste. The mountainous developing area 
should promote the energy efficiency of industries and further optimize the regional public transportation 
system and public service facilities. The underdeveloped areas of the plain should select locations to pro-
mote population concentration and intensive land use to improve the efficiency of existing carbon emissions 
and provide more adequate conditions for future development; the mountainous underdeveloped areas 
should form a relatively large concentration of villagers, carry out overall infrastructure construction, and 
expand public transport construction between the points.

The findings show that for different zones within cities, urban spatial structure elements have different impacts 
on carbon emission efficiency, for which a higher resolution grid study can effectively express and analyze. Due to 
the limitation of top-down data acquisition, this study has not yet conducted a more detailed division within the 
city, for example industrial agglomeration and residential agglomeration. For further studies, a higher-resolution 
grid can be considered for a more detailed discussion of different functional areas of the city through bottom-up 
data acquisition, which would provide more practical guidance for the specific design of the city.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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