
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9753  | https://doi.org/10.1038/s41598-023-36560-z

www.nature.com/scientificreports

A reinforcement learning approach 
to airfoil shape optimization
Thomas P. Dussauge 1,2,3*, Woong Je Sung 1,2,3, Olivia J. Pinon Fischer 1,2,3 & 
Dimitri N. Mavris 1,2,3

Shape optimization is an indispensable step in any aerodynamic design. However, the inherent 
complexity and non-linearity associated with fluid mechanics as well as the high-dimensional 
design space intrinsic to such problems make airfoil shape optimization a challenging task. Current 
approaches relying on gradient-based or gradient-free optimizers are data-inefficient in that they 
do not leverage accumulated knowledge, and are computationally expensive when integrating 
Computational Fluid Dynamics (CFD) simulation tools. Supervised learning approaches have addressed 
these limitations but are constrained by user-provided data. Reinforcement learning (RL) provides 
a data-driven approach bearing generative capabilities. We formulate the airfoil design as a Markov 
decision process (MDP) and investigate a Deep Reinforcement Learning (DRL) approach to airfoil 
shape optimization. A custom RL environment is developed allowing the agent to successively modify 
the shape of an initially provided 2D airfoil and to observe the associated changes in aerodynamic 
metrics such as lift-to-drag (L/D), lift coefficient (Cl) and drag coefficient (Cd). The learning abilities 
of the DRL agent are demonstrated through various experiments in which the agent’s objective-
maximizing L/D, maximizing Cl or minimizing Cd-as well as the initial airfoil shape are varied. Results 
show that the DRL agent is able to generate high performing airfoils within a limited number of 
learning iterations. The strong resemblance between the artificially produced shapes and those found 
in the literature highlights the rationality of the decision-making policy learned by the agent. Overall, 
the presented approach demonstrates the relevance of DRL to airfoil shape optimization and brings 
forward a successful application of DRL to a physics-based aerodynamics problem.

As demand for air travel continues to grow, so are concerns regarding the environmental impacts of aviation. For 
aircraft, aerodynamic drag represents the main source of energy  losses1. As such, its reduction could represent a 
20 to 25% decrease in fuel  burn2 and lead to fewer emissions. An optimization process leading to an increase in 
the aerodynamic efficiency of aircraft components is needed. Here, we focus on the optimization of airfoil shapes.

Relying on fluid mechanics, aerodynamic related problems exhibit non-linearity and are complex in  nature1,3. 
Specifically, the problem at hand involves generating airfoils that achieve a desired performance. Formally, air-
foil inverse design is described as the prediction of airfoil shapes based on given desired performance  metrics4, 
making our problem an inverse design problem. Solving inverse problems is generally more difficult due to the 
non-injective nature of the physical  phenomena3. In simpler terms, for a given desired performance, multiple 
shapes can  exist5. Since there is a potentially infinite number of airfoil shapes, the problem is characterized by 
high-dimensionality. All together, airfoil shape optimization is a challenging  task6–8. In exploring the associated 
high-dimensional design space, current approaches iteratively evaluate the performance of a large number of 
airfoils through either physical testing (wind tunnel testing) or numerical simulations (Computational Fluid 
Dynamics or CFD). With numerical simulations, a gradient-based or gradient-free optimizer is used to guide the 
search towards the optimal shape. However, these approaches are limited due to the high dimension of the design 
space to be explored as well as the prohibitive computational cost of running a large number of high-fidelity 
aerodynamic  simulations9. Moreover, both gradient-based and gradient-free approaches are data-inefficient since 
they do not utilize the knowledge gained from previous  experiments3. To cope with this, supervised machine 
learning approaches to computational aerodynamic problems have been developed and have proven successful in 
addressing these  limitations10. In particular, a data-driven approach to the problem at hand could help alleviate 
the high complexity associated with the underlying  physics10. However, since these methods rely on provided 
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datasets, performance is dependent on their quality and found solutions are constrained by the designer’s  input3. 
Hence, a data-driven approach bearing some creativity when exploring the design space is needed to successfully 
address the airfoil shape optimization problem.

In this work, we present a novel approach to the airfoil shape optimization problem based on Deep Reinforce-
ment Learning (DRL). Reinforcement learning (RL) is a paradigm of machine learning focused on the discovery 
of optimal  control11,12. Hence, by interacting with a provided environment, an artificial agent learns the best 
behavior to adopt within this environment by trying to maximize some notion of cumulative  reward12. In this 
context, by modeling the airfoil shape design as a Markov decision process (MDP), RL can address the limita-
tions of past approaches. Although RL has proven extremely successful in addressing game-based problems, we 
demonstrate here that this approach is also suited for an aerodynamics problem traditionally addressed from 
a physics-based perspective. Given certain flow conditions, the goal here is to train an artificial agent to gener-
ate an optimal airfoil that maximizes a specific aerodynamic objective by modifying the shape of an initially 
provided airfoil.

Previous work has focused on a RL approach to the airfoil shape optimization problem. However, past stud-
ies were limited by discrete action  spaces11, limited design space  exploration7 or the need for transfer learning, 
enhancing the learning  process8. Here, we show that provided a custom environment, an RL-based agent is able 
to effectively explore a high-dimensional design space for multiple aerodynamic objectives. We also investigate 
the impact of shape parametrization on the learning process and benchmark our DRL approach to a classical 
simplex method. Finally, the artificially produced shapes are compared to existing airfoils: the strong geometric 
resemblance found emphasizes the rationality of the policy learned by the agent.

The background associated with the airfoil shape optimization problem as well as the limitations of past and 
current approaches is presented in “Background” section. Section in “Problem definition” provides a clear defini-
tion of the problem at hand and identifies the gaps the presented research aims to address. Finally, the investigated 
DRL approach is detailed in Section IV and results are brought forward in section “Results”.

Background
Airfoil shape optimization has been an active research topic since the  1960s7. Numerous techniques have emerged 
to address this problem and are currently widely used. These methods can be broadly classified into gradient-
based and gradient-free optimization methods. Recently, the use of new techniques based on supervised machine 
learning have proven successful in solving non-linear and high-dimensional problems, making them suited for 
aerodynamic  problems1,13–15. Moreover, such data-driven approaches stem from the need for more data-efficient 
methods, which leverage knowledge from past  experiments3. However, supervised learning methods are limited 
because they rely on user-provided  datasets3. A reinforcement learning approach can address these limitations 
and provide a data-driven approach to a high-dimension exploratory problem. Such approach to the airfoil shape 
optimization problem remains limited, as suggested by the  literature6–8,11. However, it has been demonstrated 
that when coupled with deep neural networks, RL exhibits unprecedented efficiency in learning the optimal 
control of complex dynamic  systems1, which makes this approach a promising candidate to address the airfoil 
shape optimization problem.

Current airfoil shape optimization techniques. Current aerodynamic shape optimization schemes 
rely on (i) a solver or response surface equations (RSE) that capture the physics of the tested shape, and (ii) an 
optimizer to guide the search towards the optimal shape within the design space. This process is represented 
in Fig. 1. The aerodynamic solver can either be a physics-based tool, having a low or high degree of fidelity, or 

Figure 1.  Current airfoil shape optimization workflow (modified  from8).
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surrogate models of these tools, which can help decrease computational costs and run times. Coupled with the 
aerodynamic solver is an optimizer which encapsulates the optimization problem.

Two main optimization approaches have emerged to tackle the airfoil shape problem. Gradient-based methods 
rely on calculating the gradient ∇xJ of a cost function J with respect to its design variables x to guide the search 
towards a global optimum. For airfoil shape optimization, the cost function J can be a metric of interest associ-
ated to the airfoil, such as the lift-to-drag ratio L/D, and the design variables are control points that describe the 
airfoil 2D shape. Significant research has been conducted on gradient-based methods applied to aerodynamic 
problems. A detailed comparison of these methods can be found  in16,17. Within gradient-based methods,18 
introduced the adjoint method in fluid dynamics, demonstrating that computational cost is independent of the 
number of design variables. Further research has led to the discrete adjoint  method19,20, which is widely used 
in fluid dynamic optimization. Hence, advantages of gradient-based optimization in addressing airfoil shape 
optimization are low computational costs in large design  spaces2,7,8 and a track record of successful implementa-
tions in  aerodynamics2,6. However, some drawbacks exist to this approach, such as a tendency to converge on 
local optima and a high sensitivity to the starting  point6–9,21, bad efficiency for non-linear cost  functions7 and 
the need for continuous shapes (the gradient of the shape must exist in all points)2.

Gradient-free methods address some of these issues: they are better at finding the global  optimum2 and are 
well suited for complex optimization tasks (non-linear and non-convex functions)2,7. Within gradient-free meth-
ods, Genetic Algorithms (GA) modified for aerodynamic optimization have been developed to tackle the limita-
tions of gradient-based  methods22,23. The benefits of gradient-free methods come at the cost of more complex 
methods having higher computational costs (compared to gradient-based approaches), poor constraint handling 
abilities and limitations on the number of design variables  handled2, resulting in low convergence speeds when 
coupling gradient-free methods with high-fidelity  solvers6,8,9. For instance,17 demonstrates the computational 
expense of using the NSGA-II genetic algorithm for RANS-based optimization. To mitigate this expense, inves-
tigations of parallel deployment of GAs for airfoil optimization have been conducted, as presented  in24. Despite 
its computational cost, there have been applications of GAs to airfoil shape optimization, such as optimization 
of laminar flow regions over an airfoil using Multi-Island GA (MIGA)  in25. Finally, another class of gradient-free 
methods, namely Particle Swarm Optimization (PSO), has been applied to airfoil shape optimization, as presented 
 in26–28. Table 1 summarizes the advantages and disadvantages of both gradient-based and gradient-free methods.

Additionally, recent studies have also tackled the impact of airfoil parametrization on optimization efficiency, 
demonstrating that a deep-learning approach to airfoil parametrization improves optimization  efficiency9.

Hence, there is a compromise between using gradient-based and gradient-free approaches which lies on the 
trade-off between computational cost and (i) the ability to handle complex non-linear functions and (ii) the 
effectiveness at finding a global optimum. Coupling any of these techniques with a high-fidelity solver results 
in prohibitively low convergence speeds. Moreover, for both gradient-based and gradient-free approaches a 
new optimization problem is posed with each new search. To increase computational efficiency, data-driven 
approaches which utilize the knowledge accrued from past experiments must be  investigated3. In this context, 
machine learning based methods may address these limitations.

Machine learning for shape optimization. Learning is critical in any design  process29 and areas where 
artificial intelligence can be useful in design are  plenty30. Here, we are interested in the design of optimal airfoils. 
Innovative techniques based on machine learning (ML) have proven successful at addressing aerodynamic opti-
mization and allowed for increased predictive and control  capabilities10. Though the knowledge associated with 
these techniques is not recent, their application is, owing to increased computational capabilities and available 
data. Indeed, most machine learning techniques rely on large sets of data and sufficient computational power 
to allow an intelligent agent to learn. Deep neural networks (DNN) in particular, are well suited for non-linear 
problems of high-dimensionality since they are universal approximators and can in theory solve any problem 
represented by a  function1. As an example, DNNs have been applied to predict turbulent flows, proving to be 
more accurate than RANS (Reynolds-averaged Navier-Stokes) models in some  cases13. The literature is rich with 
illustrations where machine learning methods, when coupled with current airfoil shape optimization methods, 
have surpassed other gradient-based and gradient-free approaches in terms of complexity of the tasks learned 
and learning  speeds1. It is worth noting that most successful implementations of machine learning approaches 

Table 1.  Gradient-based versus gradient-free methods.

Gradient-based Gradient-free

Advantages
Low-computational cost Good at finding global optimum

Widely used method in aerodynamics Well suited for complex functions (non-linear)

Drawbacks

Poor efficiency for non-linear function

Convergence on local optima High computational cost

Sensitive to starting point Limitation on number of design variables

Requires continuous function Low convergence speed when coupled with CFD

Inability to use past optimum data Inability to use past optimum data

Popular Finite difference method Multi-objective Genetic Algorithms (MOGA)

Algorithms Adjoint method Multi-objective Particle Swarm Optimization (MOPSO)
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for airfoil design reside in infusing ML to specific portions of the optimization workflow, and should not be 
viewed as a complete replacement to current state-of-art airfoil  optimization31, but rather as an alternative 
approach to the optimizer (Fig. 1).

There have been successful implementations of supervised neural network (using labeled data to predict the 
label of unlabelled data) together with gradient-based and gradient-free techniques to the airfoil shape optimi-
zation problem.  In14, a generative adversarial network (GAN) is used to reduce the dimensionality of the airfoil 
shape optimization problem resulting in a reduced number of evaluations required to find the optimal solution 
compared to other algorithms.  In15, a conditional generative adversarial network (CGAN, semi-supervised 
learning) was used to train an artificial agent to generate realistic airfoil shapes having specified aerodynamic 
characteristics such as lift-to-drag ratio. These findings demonstrate the relevance of machine learning at solving 
complex aerodynamic problems and more specifically their relevance to the airfoil shape optimization problem.

However, the machine learning techniques illustrated above rely on extensive datasets from which they 
learn. From this, two issues can be mentioned: (i) such substantial data is not always available, depending on 
the problem at hand, and (ii) found solutions are constrained by the provided dataset i.e., the learned behavior 
will reflect from the data, meaning that no radically different behavior (unthought of by human intuition) can 
be produced by this type of  learning3. Another paradigm of machine learning, namely reinforcement learning, 
which does not rely on user-provided data, can alleviate these issues.

Markov decision processes and reinforcement learning. The field of machine learning is currently 
comprised of three paradigms: supervised, unsupervised and reinforcement learning. In a supervised setting, 
learning is performed on a training set of labeled examples provided by a knowledgeable external supervisor 
with the goal of predicting the label of unlabeled inputs. Unsupervised learning is used to find the structure 
hidden within a collection of unlabeled  data12. In reinforcement learning (RL), an artificial agent is tasked with 
learning the optimal behavior to follow within an environment by trying to maximize some notion of cumula-
tive reward which is given after taking an action in this  environment1,6,7,12. In comparison to supervised and 
unsupervised learning, reinforcement learning does not require large sets of user-provided data for its learning 
process. Rather, the agent gathers experience by interacting with the provided environment, and exploits the 
obtained knowledge to improve its behavior. The agent interacts with the environment through three signals of 
information: (i) an observation of the current state of the environment, (ii) an action performed by the agent 
on the environment, justified by the observation, and (iii) a reward given to the agent after taking said action 
(shown in Fig. 2).

Reinforcement learning became popular through its application to widely played games. For example, 
AlphaGo is an algorithm that was trained through RL and achieved superhuman proficiency at playing the game 
of Go32. In this example, the environment is the board grid and the observation is the current placement of the 
game pieces on the board at a given time. The action of placing a game piece at a given position on the board 
is followed by an increase or decrease in the probability of winning the game, which represents the immediate 
reward of the previously taken action. The classic Atari 2600 video games have also been used to experiment with 
 RL33. The agent obverses the state of the game in the same way a person would observe the video game screen and 
selects an action to perform on the joysticks and buttons available (up/down, right/left, shoot/shield). Follow-
ing this action, a reward based on the increase or decrease in the game score is given to the agent. RL has been 
applied to these particular games because they provide adequate frameworks for its successful implementation. 
More generally, RL is agnostic to the details of the environment and is applicable to any time-dependent process 
satisfying a state/action/reward interface. Such an interface is defined as a Markov decision process (MDP).

A finite MDP is defined by a 4-tuple (S, A, P, R) in which S represents the finite set of all possible states the 
environment can be in, A is the finite set of all actions the agent can take, P is the state transition probability 
matrix and R is the set of all possible rewards. At a given time-step i, the agent observes the environment that 
is in state si ∈ S , chooses an action ai ∈ A to perform on the environment, which transitions to state si+1 with a 
probability p(si+1, |si , ai) awarding the agent a reward Ri+1 = r(si , ai , si+1)

12,34. The choice of the agent to take 
action ai when the environment is in state si is dictated by a policy πi : S → A . The goal is to find the optimal 
policy which will maximize the agent’s cumulative reward over the long run. In this context, RL methods are 
used to approximate an optimal policy, details of which are provided here after.

Figure 2.  Reinforcement Learning Framework (adapted  from7,12).
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The sequence of state-action defines the trajectory τ followed by the agent:

The agent’s goal is to maximize the cumulative reward it receives over the trajectory. The expected cumulative 
reward at time-step t is defined  as12:

where T is the total length (in terms of iterations or time steps) of the game, Ri is the immediate reward received 
at time step i and γ ∈ [0, 1] is a discount factor taking into account the impact of future rewards on the current 
expected reward. In order to maximize the cumulative reward, the agent must learn the optimal behavior when 
in a given state, defined as the policy π , which maps a state to probabilities of selecting each possible action when 
in that state. The way in which the agent approaches this optimal behavior can be classified into two  methods7,12.

(1) In value-based methods, the agent learns how to best estimate a value function, which gives the expected 
reward when starting in state s and following the policy π after. By selecting the action having the highest 
value, the agent follows the optimal policy. Two value functions can be defined, namely:

 (i) The state-value function for policy π , which gives the expected return when starting in state s and 
following the policy π after

 (ii) The action-value function for policy π , which gives the expected return when starting from s, taking 
action a and thereafter following π

The Bellman equation provides a relationship between the value of a given state and the values of 
its successor states. For the state-value function, this equation is written as:

The optimal state-value function, denoted as v∗ is defined as

and has an associated Bellman equation, the Bellman optimality equation

Solving this last equation yields the optimal state-value function, which in turn yields an optimal 
 policy12 (there can be more than one optimal policy). It is worthwhile to note that one of the main 
approaches used in finding the optimal policy through value-based methods is Q-learning, which 
relies on estimating the optimal action-value function q, yielding breakthrough results when com-
bined with deep neural networks  in33.

(2) In policy-based methods, the optimal policy is sought by directly optimizing the policy π without estimat-
ing an optimal value function. This class of methods offers advantages over the value-based approach: (i) 
better capabilities in handling high-dimensional action spaces, (ii) suited for both continuous and discrete 
action spaces (where value-based methods perform poorly on continuous action spaces), and (iii) smoother 
convergence properties (convergence on local minima is however possible)6,7. Similarly to value-based 
methods, a function based on the expected cumulative reward over the whole trajectory is needed to evalu-
ate the performance of a given policy:

Optimal parameters θ∗ of the policy which maximize J(θ) are sought, such that:

Calculation of the gradient of J(θ) and further details on how the optimal policy parameters are found is 
not given here, but can be found  in6.

In summary, airfoil shape optimization is an iterative process and as with any design process, learning can 
be performed from a series of observations/experiences29. Moreover, due to the complexity of the underlying 
physics of the problem at hand, a data-driven approach should be pursued allowing to explore high-dimensional 
design spaces, while not relying entirely on user-provided data and having some exploratory behavior. Here, we 
approach airfoil design as a series of time-dependent states/actions/rewards, best described as a Markov decision 

(1)τ = (s0, a0, s1, a1, ...)

(2)Gt =

T∑

k=0

γ kRt+k+1

(3)vπ (s) = Eπ (Gt |st = s)

(4)qπ (s, a) = Eπ (Gt |st = s, at = a)

(5)vπ (s) =
∑

a

π(a|s)
∑

s′ ,r

p(s′, r|s, a)[r + γ vπ (s
′)]

(6)v∗ = max
π

vπ (s)

(7)v∗ = max
a

∑

s′ ,r

p(s′, r|s, a)[r + γ v∗(s
′)]

(8)J(θ) = Eτ∼πθ [G(τ )]

(9)θ∗ = arg max
θ

Eτ∼πθ [G(τ )]
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process. Under these conditions, reinforcement learning is a relevant and promising approach to solving the 
MDP associated with the airfoil shape optimization problem. It is important to emphasize that the novelty of 
the approach presented hereafter resides in formulating the airfoil design process as a Markov decision process, 
leading to the relevant use of Deep Reinforcement Learning to successfully train an artificial agent capable of 
guiding the design of optimal airfoil shapes.

Reinforcement learning for shape optimization. The theory behind reinforcement learning (RL) is 
not new, as interest in this particular paradigm of machine learning started around  197912. The application of RL 
has traditionally been limited to low-dimensional problems. However, when combined with deep neural net-
works (DNN) and exploiting the feature extraction capabilities of the latter, deep reinforcement learning (DRL) 
exhibits remarkable efficiency at tackling high-dimensional  problems6. This stems from the fact that artificial 
neural networks are universal function approximators and can be used in the context of RL to efficiently approxi-
mate an optimal policy. As fluid mechanics exhibit high-dimensionality and non-linear behaviors, DRL appears 
as a suitable candidate for solving complex problems within this particular  field1. Nonetheless, applications of 
DRL to fluid mechanics remain limited, as noted  by6  and7. To the best of our knowledge, only three applications 
of RL to the airfoil shape optimization problem have been published.

In11, RL is applied to the problem of morphing airfoils, i.e., in-flight shape modification of the airfoil to best 
meet performance targets at a given flight regime. Morphing of the airfoil is permitted through three degrees 
of freedom, namely chord, thickness and camber of the airfoil, leading to a shape that corresponds to specified 
goal requirements such as achieving values for the lift coefficient Cl, drag coefficient Cd and moment coefficient 
Cm. Q-learning is used to learn the optimal change in shape policy and it is shown that an optimal policy can 
be learned after 3000 episodes having a 100% success rate (the produced shape meets all performance targets). 
However, the presented approach does have limitations. The agent’s degrees of freedom are the airfoil’s chord and 
overall camber and thickness, and not local camber and thickness at a selected chordwise position. Addition-
ally, the changes permissible are discrete (i.e., the action space is discrete), which justifies the use of Q-learning 
since it can only handle discrete action spaces. As a result, this approach is also limited by the limitations of 
value-based methods, which perform poorly on high dimensional design spaces. Moreover, boundaries are set 
for the acceptable change in airfoil thickness and camber: the agent is negatively rewarded if exploring beyond 
those limits. Overall, in this approach the exploratory freedom available to the agent is relatively low. We believe 
an approach bearing localized and continuous changes to the airfoil shape would allow to fully explore the high 
dimensional design space associated with the problem at hand and leverage the full generative capabilities of RL.

A DRL approach to aerodynamic shape optimization of missile control surfaces is presented  in8. The goal is 
to find the missile configuration having the highest possible lift-to-drag ratio, under both aerodynamic and geo-
metric constraints, with the geometry having to be tested through CFD. The research presents a novel approach 
to this optimization problem, based on reinforcement learning and transfer learning. A first neural network is 
trained through RL using a low-fidelity aerodynamic solver. This allows for the neural network to quickly learn 
an optimal policy. The network parameters are then transferred over to another neural network which is trained 
using a higher fidelity solver. The novelty of this approach lies in the use of transfer learning, where the knowledge 
from one trained DNN (trained on the low-fidelity solver) is transferred over to another untrained DNN (the 
DNN based on the high-fidelity solver) through sharing of network parameters. This leads to reduced compu-
tational times: a decrease of 62.5% in CFD calls (high-fidelity solver) is observed, compared to a non-transfer 
learning approach. Although this research is not focused on airfoil shapes, the described RL approach for an 
aerodynamic optimization problem is worth acknowledging. More specifically, this research is not concerned 
with intrinsic airfoil parameters such as thickness and camber, but rather with higher level geometry parameters 
such as chord length, sweep and span of the missile’s wing tip. The impact of the positioning of these wing tips on 
the missile’s overall aerodynamic performance is investigated. Finally, these design variables have fixed bounds, 
thus limiting the exploratory capabilities of the proposed approach.

In7, a neural network is trained through DRL by interacting with a CFD-based environment (FeniCs) and 
is able to produce optimal 2D airfoil shapes at given flight conditions. Actions are taken by the DRL agent to 
move a finite number of points (between 2 and 4 points) to describe the airfoil shape. The reward is based on the 
achieved lift-to-drag ratio as well as the area of the shape described by the points. The research demonstrates 
that the agent is able to generate wing-like optimal shapes within 3000 episodes. The relatively low number 
of points that describe the airfoil as well as imposed restrictions on their positions in the 2D plane limits the 
generative capabilities of the detailed approach. Moreover, a single aerodynamic objective (lift-to-drag ratio) is 
investigated in this approach: it would be interesting to compare the learning abilities and generated airfoils of 
a DRL approach for different aerodynamic objectives.

In addition to being relevant to solving MDP-formulated problems, reinforcement learning-based optimi-
zation has been shown to outperform other traditional (Gradient Descent, Momentum, Conjugate Gradient, 
L-BFGS) and supervised methods, in terms of convergence speed and/or final objective  value35,36. Hence, given 
the documented suitability of a RL-based approach to our problem, a custom RL environment for airfoil design 
is proposed.

In summary, previous studies have investigated the application of RL to aerodynamic shape design. However, 
they suffer from the following limitations, namely (i) limited exploratory freedom due to restricted action spaces, 
and (ii) learning is performed under a single aerodynamic objective. In the present research, these limitations 
are addressed by providing a continuous action space to the agent, increasing its overall generative freedom. 
Furthermore, by varying aerodynamic objectives, we demonstrate the robustness of the learning agent. The 
innovation of the present research resides in demonstrating that through an MDP approach to airfoil design, 
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and provided a suitable DRL environment, an artificial agent is able to learn the optimal policy within a high 
dimensional design space, guiding the design of optimal airfoils under varying aerodynamic objectives.

Problem definition
Airfoil shape optimization is a complex, non-linear and high-dimensional inverse problem relying on an itera-
tive process to explore the design space. Current approaches have limitations. Gradient-based techniques lack 
robustness while gradient-free techniques are too computationally expensive when coupled with high-fidelity 
aerodynamic solvers; both are data-inefficient since do not leverage knowledge of previous experiments. Super-
vised machine learning approaches address some of these limitations but are constrained to the provided data. 
By representing the design of airfoils as a Markov decision process, a reinforcement learning methodology can 
be applied to address the limitations of past approaches. Specifically, by exploiting the capabilities of deep neural 
networks, DRL is able to (i) tackle non-linear problem of high-dimensionality while (ii) staying agnostic to details 
of the problem at hand. While DRL appears to be an innovative and promising approach to the airfoil shape 
optimization problem, the review of the literature presented in Section II highlights the following limitations: (i) 
a lack of exploratory freedom provided to the agent due to restricted action-spaces, and (ii) learning performed 
under limited aerodynamic objectives.

The present research brings forward a Markov decision process formulation of airfoil shape optimization, for 
which a Deep Reinforcement Learning approach appears most promising. The artificial agent trained through 
DRL learns the optimal policy that leads to best performing airfoils by directly modifying the airfoil shape. In 
order to fully leverage the exploratory capabilities of RL, considerable freedom is granted to the agent through 
an unrestricted action-space and large design space. Our approach allows the agent to successively modify the 
thickness and camber of the airfoil at selected chordwise positions, using continuous values. Hence, the only 
limitation in our approach is the potential non-convergence of highly unconventional shapes in the aerody-
namic solver evaluating the agent-generated airfoils, which represents a physics-based limitation. Moreover, to 
demonstrate the learning abilities of the agent, the target aerodynamic metrics (lift-to-drag ratio, lift coefficient 
and drag coefficient), which serve as a basis for the reward, are varied as well as the starting shape that the agent 
initially observes. Different shape parametrizations are also explored, emphasizing the importance of shape 
parametrization for the given problem. The following sections discuss in more detail the DRL approach proposed 
and its implementation for the airfoil shape optimization problem.

Approach
In the following section, we present the DRL environment that is developed to address the airfoil shape optimi-
zation problem as well as the artificial agent that is chosen. The built environment shares the main features of 
any reinforcement learning environment presented in Fig. 2. Here, an artificial agent interacts with an environ-
ment through three information signals (observation-action-reward) to create the most optimized airfoil shape 
at given flight conditions. Although describing airfoil design as an MDP provides some degree of formalism 
(requiring a states/actions/rewards approach), a DRL environment cannot simply be used as a plug-and-play or 
black-box tool. Rather, the DRL environment must be tailored to best fit this particular design problem. As such, 
this research investigates various action spaces and shape parametrizations possible, and results are presented 
using a custom DRL environment.

Agent and environment. The agent starts by observing an airfoil shape represented by a finite number of 
points: this constitutes the current state of the environment. The agent then chooses to perform an action on this 
environment by modifying the airfoil shape. Following this action, the modified shape is run in a low-fidelity 
aerodynamic solver (Xfoil) to evaluate the performance of the airfoil shape, such as the the lift coefficient Cl, the 
drag coefficient Cd and lift-to-drag ratio L/D. These performance metrics serve as a basis for the reward: if the 
lift-to-drag ratio increases compared to the previous unmodified shape, the agent receives a positive reward, 
signaling the agent of its positive behavior, and receives a negative reward if this ratio decreases, punishing the 
agent for its poor behavior. This observation/action/reward cycle is repeated for a given number of iterations 
forming an episode. At the end of an episode, a general score can be calculated to estimate the agent’s overall 
performance, based on the accrued performance metrics of the modified airfoils at each cycle (sum of the L/D 
at each cycle for example). The agent’s interactions with the environment over one cycle are depicted in Fig. 3.

Holistic airfoil aerodynamic metrics were used as the basis for the reward (such as lift coefficient Cl, the drag 
coefficient Cd and lift-to-drag ratio L/D) instead of local flow solutions (such as Cp), because (i) local flow condi-
tions tend to be solver-specific, hindering the generalization capabilities of the proposed approach, and (ii) the 
solver used here (XFOIL) does not easily output such local conditions. Hence, to ensure sufficient generalization 
of the proposed approach, and to simplify the development of the RL environment, holistic airfoil aerodynamic 
metrics were chosen over local flow conditions to calculate the reward. Training of the RL agent is however 
specific to given flow conditions.

Using the proposed environment and under fixed Mach, Reynolds and angle of attack conditions, three 
exploratory tasks were carried out to demonstrate the learning ability of the agent:

• Task 1: Starting with a symmetric airfoil (NACA0012) having L/D = 0 , the agent must (i) modify the airfoil 
shape to achieve highest L/D, (ii) modify the airfoil shape to achieve highest Cl, (iii) modify the airfoil shape 
to achieve highest endurance C3/2

l /Cd , and (iv) modify the airfoil shape to achieve lowest Cd.
• Task 2: Starting with a high-performance airfoil (having high L/D), the agent must modify the airfoil shape 

to achieve highest L/D.
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• Task 3: Starting with a low-performance airfoil (having low L/D) the agent must modify the airfoil shape to 
regain high L/D.

Action space and reward. The observation provided by the environment to the agent is a n-set of points 
describing the airfoil shape. Different approaches regarding the action space were considered.

A first point-by-point approach was considered. As illustrated in Fig. 4a, the agent can select any point 
individually and move it following a 3-set of actions: (i) choice of a point within the (x, y) plane, (ii) choice of 
a translation amount u, and (iii) choice of a direction of modification θ . The main issues encountered with this 
approach is that it can lead to problematic modified shapes. For instance, a point located on the extrados could 
be moved in such a way that after modification it would be located under the intrados, thus leading to a “crossed” 
or tangled shape. Imposing limitations on the movements of the points results in added complexity as well as 
decreases the generalization capability of our overall approach. This has led us to consider a second approach.

In a second approach illustrated in Fig. 4b, the airfoil shape is described by a set of x coordinates at which 
are associated local thickness and camber. The agent is given a 3-set of actions: (i) choice of a specific x position 
along the airfoil’s chord line, (ii) a change in thickness at the selected x position, and (iii) a change in camber 
at the selected x position. This airfoil shape description and associated action space leads to an increase in the 
number of realistic airfoils produced.

The immediate reward r is based on the change in the performance metric of interest associated to a given 
shape. More precisely, we define the reward as the difference in the metric between two successive shape changes, 
for example changes in L/D:

If the change in the shape leads to an increase in L/D or Cl compared to the previous shape, the agent receives 
a positive reward. When the metric of interest is Cd, the reward is based on a decrease in the drag coefficient.

In the event where the aerodynamic solver (i.e., XFOIL) does not converge due to too abrupt geometric 
changes brought to the airfoil, the agent receive a very negative reward (differing by an order of magnitude when 
compared to the above reward), punishing the agent for its poor decision. As a result, geometric abnormality 
constraints are imposed through the convergence (or non-convergence) of the aerodynamic solver. Other, more 
complex, geometric abnormality constraints for airfoil shape optimization have however been implemented.  In37, 
a GAN-based abnormality scoring method is devised and used to filter out unrealistic airfoil shape, improving 
convergence and increasing the efficiency of the aerodynamic shape optimization problem at hand.

(10)r = L/Dcurrent − L/Dprevious

Figure 3.  Custom RL environment for Airfoil Shape Optimization.

Figure 4.  Two Explored Action Spaces.
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Airfoil shape description. The 2D airfoil shape that the artificial agent observes and seeks to optimize is 
represented by a finite set of control points in the (x, y) plane. However, transforming this set of control points 
into a representative airfoil that can be run in an aerodynamic solver calls for a shape parametrization, which is a 
critical step in any aerodynamic shape optimization  process38. More specifically, in our given problem, an agent 
is tasked with bringing certain modifications to the control points describing the airfoil shape to increase the 
airfoil’s performance. Inherent to the learning process, a first exploratory phase happens during which the agent 
can take actions leading to points being moved to positions from which the resulting shape is unusual, even non 
airfoil-like (see Fig. 5).

A smoothing process by which a curve that tries to best fit the control points is used to represent the shape 
resulting from the control points available to the agent. A wide range of airfoil parametrization approaches are 
explored and compared  in2,38. It is shown that many of these approaches are equivalent to a particular class of 
parametrization, namely Béziers curves and B-Splines. Previous work has demonstrated the advantages of this 
class of parametrization towards airfoil representation.  In39, it is shown that Béziers splines only require few vari-
ables, hence making them a candidate for efficient airfoil definition. However, only limited local control of the 
curve can be achieved, as bringing a modification to any point defining a Béziers spline modifies the curve as a 
 whole2. It is demonstrated  in40 that more complex airfoil definitions can be achieved through B-Splines, which 
allow for local changes when modifying a single point. As a result, B-Splines exhibit noteworthy advantages 
for our research over other parametrizations: (i) they allow for highly localized shape changes, (ii) the increase 
in the number of control points does not increase the degree of the curves, and (iii) they offer more flexibility, 
hence can more accurately fit a desired geometry while remaining numerically stable. In our present research, 
three parametrization approaches were investigated, differing in the number of control points and number of 
splines used to describe the shape.

First parametrization. In Task 1 of our research, each episode starts with a symmetric NACA0012 airfoil. The 
set of points describing this airfoil was taken from the UIUC Airfoil Coordinates Database41. This particular air-
foil counts 131 points. The resulting airfoil shape is given by a single B-Spline parametrized by these 131 points, 
which can then be run in an aerodynamic solver (Xfoil here). When the agent modifies the airfoil by moving 
control points, the B-Spline representation of these points changes accordingly. The main issue observed when 
using a single B-Spline is that there is no guarantee that the leading and trailing edges of the airfoil shape will stay 
at fixed positions. This stems from the fact that the B-Spline is only guaranteed to go through two anchor points, 
which are the first and last points describing the shape i.e., the two most extreme points at the trailing edge, as 
illustrated in Fig. 6a. Keeping the leading and trailing edges at fixed positions ( (x = 0, y = 0) and (x = 1, y = 0) , 

Figure 5.  Abrupt Shape Changes Performed by the Agent During Exploration.

Figure 6.  Investigated approaches for the airfoil shape description.
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respectively) is needed to ensure that we are comparing airfoils at a fixed angle of attack ( α = 0 in this case). To 
address this, we chose to investigate another parametrization based on two B-Splines.

Second parametrization. Using two B-Splines each describing the extrados and intrados of the airfoil (Fig. 6b), 
we are able to keep the leading and trailing edges at fixed positions. This ensures that the performance of the 
produced airfoils can be compared since all are at constant angle of attack. However, another issue was identi-
fied in this second approach that originates from the large number (131 points) of control points used. Due to 
the large number of control points, when the agent chooses to modify the thickness and camber at a selected x 
coordinate, because of the weight of the unchanged neighboring points, the modification poorly reflects on the 
resulting B-Spline shape. To put it in simpler terms, the action of the agent on the control points is not reflected 
on the B-Spline representing the airfoil shape. One way to address this issue is to propagate the agent’s action to 
neighboring points, as illustrated in Fig. 6c. However, this has a major drawback on the agent’s learning: propa-
gating the action masks the direct impact of the agent’s selected action.

Third parametrization. To address both of the issues observed previously, we chose to describe the shape using 
a reduced number of points of approximately 12 control points. The consequence of this is that the agent has a 
reduced number of points from which to choose, thus decreasing the degree of freedom and dimension of the 
action space, but makes the impact of the agent’s action more interpretable by the agent, leading to enhanced 
learning. In this third parametrization, we use composite Bézier curves, which are a series of connected quad-
ratic Bézier curves defined by the control  points42. These curves allow for the resulting shape to be sufficiently 
smooth, thus increasing the convergence rate of the aerodynamic solver, even in cases where the agent’s action 
leads to unusual shapes. The 12 control points are extracted from the previous 131, originating from the UIUC 
NACA0012  file41 and selected to be evenly spaced. Two close points are selected to describe the rounded lead-
ing edge and sharp trailing edge. This third parametrization was selected moving forward and is illustrated in 
Fig. 6d.

Emulator–aerodynamic solver. For the agent to evaluate the impact of its action on the airfoil, the modi-
fied shape must be run in an aerodynamic solver to obtain the aerodynamic properties of the modified airfoil 
shape. In the present research, we chose Xfoil as the aerodynamic solver. Xfoil is an interactive program devel-
oped at MIT for the analysis of subsonic 2D  airfoils43. It handles both viscid and inviscid flows and provides lift, 
drag, pitching moments and other aerodynamic parameters associated with a given airfoil. The choice of Xfoil 
over other solvers is guided by its relatively low-fidelity allowing for quick run times. In turn, this allows the 
agent to maximize its interaction with the environment by testing airfoil shape modifications quickly. However, 
Xfoil exhibits some limitations for our present study: (i) poor convergence for unconventional airfoil designs, 
and (ii) convergence is history-dependent and sensitive to the initial shape. The former leads to very low con-
vergence rates during the agent’s initial learning phase, where exploration is high and the agent produces highly 
unusual airfoil shapes. The latter is mitigated by running the solver on a series of gradually modified shapes 
between two successive agent actions.

Selecting the DRL agent. As mentioned, deep reinforcement learning trains an artificial neural network 
(ANN) to learn the optimized behavior within a given environment by interacting with the environment through 
a set of observation/action/reward signals. The ANN or DRL agent are used interchangeably hereafter. Different 
DRL algorithms have been developed over time. Revealing the power of DRL, Deep Q Networks (DQN) have 
been applied to the classic Atari 2600 games and have achieved human-level performance at these  games33. DQN 
has then been perfected into Double Deep Q Networks (DDQN), achieving even higher  performance44. Both 
DQN and DDQN are value-based methods and apply to discrete action  spaces33. Policy-based methods, such as 
the deterministic policy gradient (DPG)  algorithms45 and deep DPG (DDPG)46 have been developed in parallel. 
Being policy-based methods, DPG and DDPG can address both continuous action and state spaces and exhibit 
better stability and convergence properties compared to  DQN1. Finally, Proximal Policy Optimization  (PPO47) 
has demonstrated higher efficiencies in the policy gradient algorithm class.

In our present research, the action space is composed of three actions: (i) choice of x ∈ [0, 1] , (ii) choice of 
a continuous value by which to change the local thickness, and (iii) choice of a continuous value by which to 
change the local camber. Hence, we chose to use the PPO method for the learning of our DRL agent for its abil-
ity to handle continuous action spaces, but also because it exhibits quicker learning speeds than other policy 
gradient methods and is less complex  mathematically1.

Deep reinforcement learning framework. Now that we have formalized the observation, action and 
reward for our given problem, we need to provide the selected DRL agent with a custom reinforcement learn-
ing environment. This environment is similar to video game-based environments such as the classic Atari 2600 
widely used to test and benchmark DRL  agents33. In our case, the DRL agent observes a set of control points 
defining an airfoil shape instead of a video game screen and can choose to modify the thickness and camber 
at a selected chordwise position in the same way that it would take actions on the joysticks of the video game. 
The modified shape is then run in Xfoil to get the associated performance metrics, which serve as a basis for the 
reward attributed for the taken action. The given reward is comparable to a change in the game score in video 
game-based environments.

We chose to develop this custom reinforcement learning environment in Python for several reasons. First, 
Python is currently an extremely widespread programming language, having an extensive community provid-
ing high-quality documentation. It is also a high-level object oriented language, making it accessible for rapid 
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engineering and scientific applications. Secondly, numerous machine learning packages are distributed in Python 
and make it the most represented language in the machine learning community. For example, TensorFlow, an 
open-source software developed at Google Brain, has a Python library that provides users with a range of machine 
learning tools with a focus on the implementation and training of deep neural  networks48. Finally, Python was 
selected for the ease to integrate Xfoil into the reinforcement learning environment.

Several toolkits for building a custom reinforcement learning environment exist. Gym, developed by OpenAI, 
is a Python-based open-source toolkit that provides an abstraction for a custom environment around a common 
interface, defined by four core  functions49:

• Initialization: initialize the environment and define the observation and action spaces.
• A Step function: given an action chosen by the agent, it dictates how the environment is modified and gives 

the associated reward.
• A Reset function: resets the environment when the end of an episode is reached.
• A Render function: provides visualizations of the environment. These visualization can come in the form of 

numerical values keeping track of the observation/action/reward set or a visual representation of the envi-
ronment (such as the screen of the video game).

It is important to understand that Gym provides a template for the environment, not the DRL  agent49. The DRL 
agent (here chosen as the PPO algorithm) will have to interact with the Gym environment through the observa-
tion/action/reward signals sent from and to the environment itself, as illustrated in Fig. 3.

Multiple libraries implementing RL and DRL algorithms have been developed. In this research, we choose 
the Stable Baselines library (created at Inria/ENSTA ParisTech) for our DRL  agent50. This choice was motivated 
by Stable Baselines’ (i) ease to integrate with Gym-based custom environments, (ii) state of the art RL methods, 
including PPO, and (iii) a well-developed documentation and community.

To summarize, a custom RL environment was developed for the airfoil shape optimization problem, along 
the guidelines of a Gym environment, and an off-the-shelf implementation of the PPO agent was used to learn 
the optimal policy within our provided environment.

Results
In the following section, we present the learning capabilities of the DRL agent with respect to optimizing an airfoil 
shape, trained in our custom RL environment. Different objectives for the DRL agent were tested, gathered into 
three tasks. In Task 1, the environment is initialized with a symmetric NACA0012 airfoil and successive tests were 
performed in which the agent must (i) maximize the lift-to-drag ratio L/D, (ii) maximize the lift coefficient Cl, 
(iii) maximize endurance C3/2

l /Cd , and (iv) minimize the drag coefficient Cd. In Task 2, the environment is ini-
tialized with a high performing airfoil having high lift-to-drag ratio and the agent must maximize this ratio. The 
goal is to test if the learning process is sensitive to the initial state of the environment and if higher performing 
airfoils can potentially be produced by the agent. In Task 3, the environment is initialized with this same higher 
performing airfoil, but has been flipped along the y axis. Under this scenario, we investigate the impact of initial-
izing the environment with a poor performing airfoil on the agent and determine if the agent is able to modify 
the airfoil shape to recoup a high lift-to-drag ratio. Overall, these tasks demonstrate the learning capabilities of 
the DRL agent to meet specified aerodynamic objectives.

Flow conditions. Since we are interested in evaluating the drag of the agent-produced airfoils, the viscous 
mode of Xfoil is used. In viscous flow conditions, Xfoil only requires the user to specify a Reynolds number (Re) 
and an airfoil angle of attack α . In all tasks, the flow conditions specified in Xfoil were kept constant. A zero-
degree angle of attack and Reynolds number equal to  106 were selected to define the design point for the flow 
conditions. The decision to keep the airfoil’s angle of attack at a fixed position is motivated by the interpretability 
of the agent’s policy. A less constrained problem, in which the agent can modify the angle of attack, would sig-
nificantly increase the design space, leading to less interpretability of the agent’s actions. Additionally, the angle 
of attack is chosen to be fixed at zero in order to easily compare the performance of agent-generated shapes with 
those found in the literature. The Reynolds number was chosen to represent an airfoil shape optimization prob-
lem at speeds under the transonic flow  regime15. Hence, given the relatively low Re number chosen, the flow is 
incompressible over the airfoil, although Xfoil does include some compressibility corrections when approaching 
transonic regimes (Karman-Tsien compressibility correction,43). All airfoils are thus compared at zero angle of 
attack.

DRL agent parameters. Two parameters relating to the PPO algorithm in Stable Baselines can be set, 
namely the discount factor γ and the learning rate. The discount factor impacts how important future rewards 
are to the current state: γ = 0 will favor short-term reward whereas γ = 1 aims at maximizing the cumulative 
reward in the long run. The learning rate controls the amount of change brought to the model: it is a hyperpa-
rameter tuning the PPO neural network. For the PPO agent, the learning rate must be withing [5× 10−6, 0.003] . 
A study of the effects of the discount factor and learning rate on the learning process was conducted. This study 
shows that optimal results are found when using a discount factor γ = 0.99 and learning rate equal to 0.00025.

Environment parameters. In building our custom environment, we have set some parameters to limit the 
generation of unrealistic shapes by the agent. These parameters help take into account structural considerations 
as well as limit the size of the action space. For instance, we define limits to the thickness of the produced shape. 
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If the generated shape (resulting from the splines represented by the control points) exhibits a thickness over or 
under a specified limit value, the agent will receive a poor reward. Regarding the action space, we set bounds for 
the change in thickness and camber. This allows the agent to search in a restricted action space thus eliminating 
a great number of unconverged shapes resulting from actions bringing changes to the airfoil shape that are too 
extreme. These parameters are given in Table 2. Moreover, the iterations parameter is the number of times Xfoil 
is allowed to rerun a calculation for a given airfoil in the event the solver does not converge. Having a high itera-
tions number increases the convergence rate of Xfoil but also increases run times.

Task 1. The environment is initialized with a symmetric airfoil having L/D = 0 , Cl = 0 and Cd = 0.0054 
at α = 0 and Re = 106 . In a first experiment, the agent is tasked with producing the highest lift-to-drag air-
foil, starting from the symmetric airfoil. During each experiment, the agent is trained over a total number of 
iterations (defined as the total timestep parameter), which are broken down into episodes having a given length 
(defined as the episode length parameter). The DRL agent is updated (i.e., changes are brought to the neural net-
work parameters) every N steps. At the end of an experiment, several results are produced. Figure 7a displays the 
L/D of the airfoil successively modified by the agent at the end of each episode.

In Fig. 7a, each dot represents the L/D value of the shape at the end of an episode and the blue line represents 
the L/D running average value over 40 successive episodes. The maximum L/D obtained over all episodes is also 
displayed. Settings regarding the total number of iterations, episode length and N steps for the experiment are 
given above the graph. It can be observed from Fig. 7a that starting with a low L/D during early episodes, the 
L/D at the end of an episode increases with the number of episodes. Though significant variance in the L/D at 
the end of an episode can be seen, with values ranging between L/D = −30 and L/D = 138 , the average value 
however increases and stabilizes around L/D = 100 . This increase in L/D suggests that the agent in able to learn 
the appropriate modifications to bring to the symmetric airfoil resulting in an airfoil having high lift-to-drag 
ratio. We are also interested in tracking a score over a whole episode. Here, we arbitrarily define this score as 
the sum of the L/D of each shape produced during an episode. For instance, if an episode is comprised of 20 
iterations, the agent will have the opportunity to modify the shape 20 times thus resulting in 20 L/D values. 
Summing these values corresponds to the score over one episode. If the agent produces a shape that does not 
converge in the aerodynamic solver, a value of 0 is added to the score, thus penalizing the score over the episode 
if the agent produces highly unrealistic shapes. The evolution of the score with the number of episodes played 
is displayed in Fig. 7b.

Figure 7b shows the significant increase in the average score at end of episode, signaling that the agent is 
learning the optimal shape modifications. We can then visualize the best produced shape over the training phase 
in Fig. 8.

In Fig. 8, the red dots are the control points accessible to the agent. The blue curve describing the shape is 
the spline resulting from these control points. It is interesting to observe that the optimal shape produced shares 
the characteristics of high lift-to-drag ratio airfoils, such as those found on gliders, having high camber and a 

Table 2.  Environment parameters.

Minimum allowable change in local thickness 90%

Maximum allowable change in local thickness 110%

Lower bound for local change in camber − 0.005

Upper bound for local change in camber 0.005

Minimum allowed thickness (over whole shape) 0.03

Maximum allowed thickness (over whole shape) 0.15

Figure 7.  Learning curves for max L/D objective starting with a symmetric airfoil.
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drooped trailing edge. Finally, we run the trained agent on the environment over one episode and observe the 
generated shapes in Fig. 9. Starting from the symmetric airfoil, we can notice the clear set of actions taken by 
the agent to modify the shape to increase L/D. The experiment detailed above was repeated by varying total 
timesteps, episode lengths and N steps.

We then proceed to train the agent under different objectives: maximize Cl, maximize endurance and mini-
mize Cd. Associated learning curves and modified shapes can be found in Figures 10, 11, 12, 13.

For the minimization of Cd objective, the environment is initialized with a symmetric airfoil having Cd = 
0.0341. This change in initial airfoil, compared to the previously used NACA0012 is justified by enhanced learn-
ing visualizations.

Similarly, the results show a clear learning curve during which both the metric of interest and the score at end 
of episode increase with the number of episodes. The learning process appears to happen within the first 100 epi-
sodes as signaled by the rapid increase in the score and then plateaus, oscillating around an average score value.

Figure 8.  Agent-produced airfoil shape having highest L/D over training.

Figure 9.  Trained agent modifies shape to produce high L/D.

Figure 10.  Learning curves for max Cl objective starting with a symmetric airfoil.
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Task 2. A second set of experiments was performed to assess the impact of the initial shape. The environment 
is initialized with a high performing airfoil (i.e., having a relatively high lift-to-drag ratio) and the agent is tasked 
with bringing further improvement to this airfoil. We chose this airfoil by investigating the UIUC  database41 and 
selected the airfoil having the highest L/D. This corresponds to the Eppler 58 airfoil (e58-il) having L/D = 160 
at α = 0 and Re = 106 , displayed in Fig. 14. Results for this experiments are displayed in Fig. 15.

Figure 11.  Learning curves for max C3/2

l
/Cd objective starting with a symmetric airfoil.

Figure 12.  Learning curves for min Cd objective starting with a symmetric airfoil.

Figure 13.  Trained agent modifies shape to produce low Cd starting with a low-performance airfoil.
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It is interesting to compare the learning curves and average scores achieved when starting with the symmetric 
airfoil and the high performance airfoil.

In Fig. 16, we can observe that for both initial situations there is an increase in the average score during early 
episodes followed by stagnation, demonstrating the learning capabilities of the agent. However, the plateaued 
average score reached is significantly higher when the environment is initialized with the high performance air-
foil, given that the environment is initialized in an already high-reward region (through the high-performance 
airfoil). Additionally, it was observed that a slightly higher maximum L/D value could be achieved when starting 
with the high lift-to-drag ratio airfoil. Overall, Task 1 and Task 2 emphasize the robustness of the RL agent to suc-
cessfully converge on high L/D airfoils, regardless of the initial shapes (in both experiments, the agent converges 
on airfoils having L/D > 160 ). The agent-generated airfoil for Task 2 is represented in Fig. 21a.

Task 3. For Task 3, the starting airfoil is a version of the Eppler 58 airfoil that has been flipped around the 
y axis. As such, the starting airfoil has a lift-to-drag ratio opposite of the Eppler 58 (i.e., L/D = −160 ), thus 
exhibits low aerodynamic performance. The goal for this task is for the agent to modify the shape into a high 
performing airfoil, having high L/D.

Figure 14.  Eppler 58 high lift-to-drag ratio airfoil.

Figure 15.  Learning curves for max L/D objective starting with a high L/D airfoil.

Figure 16.  Initial airfoil impact on the learning curve.



16

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9753  | https://doi.org/10.1038/s41598-023-36560-z

www.nature.com/scientificreports/

In Fig. 17, we display the learning curves associated to the score and L/D value at the end of each episode 
when the environment is initialized with the flipped e58 airfoil at the beginning of each episode. A noticeable 
increase in both the score and L/D values between episode 30 and episode 75 can be observed, followed by a 
plateau region. This demonstrates that the agent is able to learn the optimal policy to transform the poor per-
forming airfoil into a high performing airfoil by bringing adequate changes to the airfoil shape. The agent then 
applies this learned optimal policy after episode 100. Moreover, the agent is capable of producing airfoils having 
lift-to-drag ratios equivalent or higher than the Eppler e58 high-performance airfoil, signaling that the initial 
airfoil observed by the agent does not impact the optimal policy learned by the agent, but rather only delays its 
discovery (see Figs. 15 and 17).

An example of a high L/D shape produced by the DRL agent when starting with the flipped e58 airfoil is dis-
played in Fig. 18. It is interesting to notice that in this situation, the produced airfoil shares previously observed 
geometric characteristics, such as high camber and a drooped trailing edge, leading to a high L/D value. The 
trained agent is then run over one episode length in Fig. 19. By successively modifying the airfoil shape, we can 

Figure 17.  Score and L/D learning curves when starting with a low performance airfoil.

Figure 18.  Agent-produced airfoil shape when starting with low performance airfoil.

Figure 19.  Trained agent modifies shape to produce high L/D starting with a low-performance airfoil.
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observe that the agent is able to recover positive L/D values having started with a low performance airfoil. This 
demonstrate the correctness of the behavior learned by the agent.

Finally, the best produced shapes (i.e., those maximizing the metric of interest) for the different objectives 
and tasks can now be compared, as illustrated in Figs. 20 and 21.

The results presented above demonstrate that the number of function evaluations (i.e., the number of times 
Xfoil is run and converges on a new shape proposed by the agent) depends on the task at hand. For instance, 
around 2,000 function evaluations were needed in Task 2, while 4,000 are needed in Task 1 and around 20,000 
were required in Task 3. These differences can be explained by the ‘distance’ that exists between the starting 
shape and the optimal shape. In other terms, when starting with the low performing airfoil, the agent has to 
perform a greater number of successful steps to converge on an optimal shape, whereas when starting with an 
already high-performance airfoil, the agent is close to an optimal shape and requires fewer Xfoil evaluations to 
converge on an optimal shape. The number of episodes needed to reach an optimal policy, however, appears 
to be between 100 and 200 episodes across all tasks. Overall, when averaging across all tasks performed in this 
research, approximately 10,000 function evaluations were needed for the agent to converge on the optimal policy.

Having trained the RL agent on a given aerodynamic task, the designer can then draw physical insight by 
observing the actions the agent follows to optimize the airfoil shape. From the results presented in this research, 
it can be observed that high camber around the leading edge and low thickness around the trailing edge are 
preferred shapes to maximize L/D, given the flow conditions used here. Observing the various policies corre-
sponding to different aerodynamic tasks, the designer can then make tradeoffs between the different aerodynamic 
metrics to optimize. Multi-point optimization can be achieved by including in the reward multiple aerodynamic 
objectives. For example, if the designer seeks to optimize both L/D and Cl, a new definition of the reward could 
be: r = (L/Dcurrent + Clcurrent)− (L/Dprevious + Clprevious) (after having normalized L/D and Cl). However, multi-
point optimization will decrease interpretability of the agent’s actions. By introducing multiple objectives in the 
agent’s reward, it will become more difficult for the designer to draw insight from shape changes and link those 
changes to maximizing a specific aerodynamic objective.

The proposed methodology enables to reduce computational costs by leveraging a data-driven approach. 
Having learned an optimal policy for a given aerodynamic objective, the agent can be used to optimize new 
shapes, without having to restart the whole optimization process. More specifically, this approach can be used to 
alleviate the computational burden of problems requiring high-fidelity solvers (when RANS or compressibility 
are required). For these problems, the DRL agent can quickly find a first optimal solution, using a low-fidelity 
solver. The solution can then be refined using a higher-fidelity solver and a traditional optimizer. In other words, 
DRL is used in this context to extract prior experience to speed up the high-fidelity optimization. As such, our 
approach can speed up the airfoil optimization process by very rapidly offering an initial optimal solution. 
Similarly  to8, our approach can also be used directly for high-fidelity models. To accelerate convergence speeds, 
the DRL agent is first trained using a low-fidelity solver in order to rapidly learn an optimal policy. The agent is 
then deployed using a high-fidelity solver. In doing so this approach (i) reduces computational cost by shifting 

Figure 20.  Best performing agent-produced shapes under different objectives and a symmetric initial airfoil.

Figure 21.  Best performing agent-produced shapes under different objectives and an asymmetric initial airfoil.
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from a low to a high-fidelity solver to speed up the learning process, (ii) is data-efficient as the policy learned 
by the agent can then be followed for any comparable problem and, (iii) bears some generative capabilities as it 
does not require any user-provided data.

Comparing agent-generated shapes with existing airfoils. As reinforcement learning does not rely on any pro-
vided database, no preconception of what a good airfoil shape should look like is available to the agent. This 
results in added design freedom leading the agent to occasionally generate airfoil shapes that can be viewed as 
unusual to the aerodynamicist’s eye. In Fig. 22, we compare agent-produced shapes to existing airfoils in litera-
ture. The focus is not on the agent’s ability to produce a specific shape for given flow conditions and aerodynamic 
targets, but rather to illustrate the geometric similarities found on both existing airfoils and artificially-generated 
shapes. A strong resemblance between the agent-generated and existing airfoils can be observed. This highlights 
the rationality of the policy learned by the agent: having no preexisting knowledge on fluid mechanics or airfoils, 
an intelligent agent trained in the presented custom RL environment can generate realistic airfoil shapes.

We compare five existing airfoils to our agent-produced shapes in Fig. 22. In Fig. 22a and b, we compare the 
agent-produced shape to Whitcomb’s supercritical airfoil. The shared flat upper surface, cambered rear and blunt 
trailing edge can be  noticed51. We then compare agent-generated shapes to existing high-lift airfoils. Here also, 
the geometric resemblance is noticeable, notably the shared high camber.

Figure 22.  Airfoil shape comparison between agent-produced shapes and existing airfoils.
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Sensitivity analysis. One observation was made when noticing drastic decreases in the average score at the 
end of episode after a first period of increase. We believe this can be explained by the fact that when the episode 
length is large, once the agent has learned a policy allowing to quickly (under relatively few iterations) attain high 
L/D values, the average score will then decrease because the agent reaches the optimal shape before the end of 
the episode. Within the remaining iterations before the episode ends, the agent continues to modify the shape 
hoping for higher performance, but reaches a limit where the shape is too extreme for the aerodynamic solver 
to converge, resulting in a poor reward. This would explain why we can observe on Fig. 23 a rapid increase in 
the score between 0 and 25 episodes, during which the agent explores various shapes and estimates an optimal 
policy, and a strong decrease in the score following this peak during which the agent follows the determined 
optimal policy and reaches optimal shapes before the episode ends.

Benchmarking the DRL approach. The results presented above demonstrate the ability of a DRL agent to 
learn how to optimize airfoil shapes, provided a custom RL environment to interact with. We now compare this 
approach to a classical simplex method, under the same possible action conditions: starting from a symmetric 
airfoil, the optimizer must successively modify the shape by changing thickness and camber at selected x posi-
tions to achieve the highest performing airfoil in terms of L/D.

Here, the optimizer is based on the Nelder-Mead simplex algorithm, capable of finding the minimum of a 
multivariate function without having to calculate the first or second  derivatives52. In this case, the function maps 
a 3-set of actions, being [select x position, change thickness, change camber] to a -L/D value. More specifically, 
taking the 3-set of actions as inputs, the function modifies the airfoil accordingly, evaluates the modified airfoil 
in Xfoil and outputs the associated -L/D. As the optimizer tries to minimize the- -L/D value, it searches for the 
3-set that will maximize L/D. Once the optimizer finds the optimal 3-set of actions, the airfoil shape is modified 
accordingly and the optimizer is rerun on this new modified shape. This defines what we call one optimization 
cycle. Hence, the optimizer is tasked with the exact same optimization problem as the DRL agent: optimizing the 
airfoil shape to reach the highest L/D value possible by successively modifying the shape. During each optimiza-
tion cycle, the optimizer evaluates the function a certain number of times. In Fig. 24, we monitor the increase 
in L/D with the number of function evaluations.

In the three situations displayed, it can be observed that the value of L/D increases with the number of func-
tion evaluations. However, the converged L/D value is significantly lower than values obtained through the DRL 
approach. For instance, even after 500 optimization cycles (i.e., 500 shape modifications and over 30,000 func-
tion evaluations), the optimizer is unable to generate an airfoil having L/D over 70. We know that this value of 

Figure 23.  Detrimental effects of large episode lengths.

Figure 24.  Simplex method approach–L/D increase with function evaluations for different starting points.
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L/D is not a global optimum, as an L/D of at least 160 can be reached with the Eppler 58 airfoil from the UIUC 
database41. Thus, it seems that the simplex algorithm has converged on a local minimum. Furthermore, as dem-
onstrated in Fig. 24a and c, the converged L/D value found by the optimizer is highly dependent on the initial 
point. The airfoil shapes generated using the simplex method can be found in Fig. 25.

In Table 3, we compare the converged L/D values, number of iterations and run times of the simplex method 
and DRL approach. In both approaches, the agent or optimizer can modify the airfoil 60 times. Although the 
number of iterations and run time are lower for the simplex method, the converged L/D value is far lower com-
pared to the DRL approach.

This rapid simplex approach to the airfoil shape optimization problem highlights the benefits and capabilities 
of the presented DRL approach. First, the DRL approach seems less prone to convergence on local minima, as 
very high values of L/D can be achieved. Second, once the DRL agent has learned the optimal policy during a 
training period, it can be applied directly to any new situation whereas the simplex approach will require a whole 
optimization process for each new scenario encountered.

Conclusion
This research presents a Deep Reinforcement Learning (DRL) approach to the airfoil shape optimization problem. 
This approach is motivated by (i) the recent success of data-driven approaches at solving complex aerodynamic 
problems, where non-linearity and high-dimensionality are inherent, and (ii) the exploratory capabilities of 
reinforcement learning. Airfoil design is formulated as a Markov decision process, making RL a suitable candi-
date for this problem. A custom RL environment is developed integrating a low-fidelity aerodynamic solver. By 
interacting with the provided environment, the DRL agent learns how to best modify an airfoil shape to increase 
its aerodynamic performance. The research investigates the impact of different performance objectives on the 
learning process such as maximizing L/D, maximizing Cl, maximizing endurance and minimizing Cd. The impact 
of the initial airfoil observed by the agent is also investigated. Results demonstrate the learning capabilities of 
DRL in all cases. Specifically, the agent is able to learn an optimal policy within a limited number of learning 
iterations and is capable of producing airfoil shapes exhibiting remarkably high aerodynamic performance. When 
compared to a classical simplex approach, the DRL method proves more efficient at exploring the design space 
and is able to converge on higher performing airfoils.

The contributions of this research to machine learning-based approaches for airfoil shape optimization prob-
lem are twofold. First, we demonstrate that RL can successfully be applied to a physics-based problem, where 
RL is traditionally reserved to game-based tasks. We show that the generative and exploratory capabilities of RL 
can be leveraged to generate optimal airfoils, as opposed to supervised learning approaches which rely on, and 
are limited to provided data. Secondly, our approach provides the agent with enhanced action freedom, being 
able to modify the thickness and camber of the airfoil at local chordwise positions, where previous investigations 
were limited by the agent’s action space. Finally, the impact of other crucial parameters, such as the aerodynamic 
objective and the starting airfoil, are investigated.

Further efforts are needed to complement this DRL approach to airfoil shape optimization. An increased 
number of control points accessible to the agent would allow for greater flexibility and potentially higher per-
forming agent-generated airfoils. Coupling with a more robust aerodynamic solver is needed to limit the amount 
of unconverged shapes as well as provide higher fidelity regarding the calculated performance metrics. A more 
complex approach to geometric abnormality constraints could also be implemented into the proposed RL-
based optimization to improve convergence and increase the efficiency of the aerodynamic shape optimization 
task. Investigating the impact of an increased design space by adding the airfoil’s angle-of-attack to the agent’s 
action-space would also be of interest. Finally, training the DRL agent over a vast number of initial airfoils would 
increase the knowledge acquired by the agent and would further enhance the capabilities of the DRL approach.

Figure 25.  Gradient-free approach generated airfoil shapes.

Table 3.  Simplex method versus DRL approach comparison.

Simplex DRL

Converged L/D 68 171

Function Evaluations / Learning Iterations 5000 12,000

Run time (in seconds) 124 326
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The code alongside the datasets used and generated during the current study are available from the correspond-
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