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Gut‑microbiota in children 
and adolescents with obesity: 
inferred functional analysis 
and machine‑learning algorithms 
to classify microorganisms
Margherita Squillario 1,7, Carola Bonaretti 2,7, Alberto La Valle 3,7, Eddi Di Marco 2, 
Gianluca Piccolo 4,5, Nicola Minuto 3, Giuseppa Patti 4,6, Flavia Napoli 6, Marta Bassi 4,6, 
Mohamad Maghnie 4,6, Giuseppe d’Annunzio 6* & Roberto Biassoni 2,7

The fecal microbiome of 55 obese children and adolescents (BMI‑SDS 3.2 ± 0.7) and of 25 normal‑
weight subjects, matched both for age and sex (BMI‑SDS − 0.3 ± 1.1) was analysed. Streptococcus, 
Acidaminococcus, Sutterella, Prevotella, Sutterella wadsworthensis, Streptococcus thermophilus, 
and Prevotella copri positively correlated with obesity. The inferred pathways strongly associated 
with obesity concern the biosynthesis pathways of tyrosine, phenylalanine, tryptophan and 
methionine pathways. Furthermore, polyamine biosynthesis virulence factors and pro‑inflammatory 
lipopolysaccharide biosynthesis pathway showed higher abundances in obese samples, while the 
butanediol biosynthesis showed low abundance in obese subjects. Different taxa strongly linked with 
obesity have been related to an increased risk of multiple diseases involving metabolic pathways 
related to inflammation (polyamine and lipopolysaccharide biosynthesis). Cholesterol, LDL, and 
CRP positively correlated with specific clusters of microbial in obese patients. The Firmicutes/
Bacteroidetes‑ratio was lower in obese samples than in controls and differently from the literature we 
state that this ratio could not be a biomarker for obesity.

During the past decades, the prevalence of childhood obesity has dramatically increased worldwide. In most 
developed countries (the U.S. at first), being overweight or obese is the most common chronic disease in child-
hood and adolescence and represents a serious public health problem. It has been reported that obesity affects 
nearly 107.7 million children and adolescents  worldwide1. Several factors have been identified as potential risk 
factors for pediatric obesity and type 2 diabetes: early nutritional and epigenetic mechanisms, maternal malnu-
trition and microbiota  assessment2.

The adverse consequences of obesity include several conditions, like insulin resistance and type 2 diabetes 
 mellitus3. Both increase the risk for cardiovascular and cerebrovascular morbidity and mortality, which shorten 
life expectancy.

Different articles describe the microbiome of obese children and adolescents, sometimes with conflictual 
results. These articles are rather heterogeneous on the procedures for studying the microbiome, ranging from cul-
ture technique and PCR targeting only a limited number of taxa to Next-Generation sequencing (NGS)4–7. More-
over, it is known that the microbiome could be affected by different drugs such as Metformin and  Liraglutide8,9. 
Most articles used on NGS are based on the PCR amplification of a single polymorphic region of the 16S-ribo-
somal subunit gene. Part of the generated conflicting results may also depend on the variegated criteria used to 
classify the obese population enrolled in the analysis. Indeed, previously published results are based on adult or 
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pediatric populations considering a mix of obese and overweight patients selected based on BMI alone or BMI 
z-score, but few on BMI-SDS in pediatric cohorts. In the present study, the fecal microbiome was assessed using 
NGS technology, and the children/adolescent patients were grouped based on BMI-SDS. Since it is known that 
the analysis of a single or of a couple of 16S-hypervariable regions did not give an exhaustive representation of 
the  microbiome10, we opted for the NGS-sequencing of 7 out of the 9 polymorphic 16S-regions.

Results
Microbiome analysis and the Firmicutes/Bacteroidetes ratio. The 16S-mapped reads obtained from 
all analyzed microbiome samples were 211,854 ± 56,420 and resulted in the identification of 1797 ± 400 opera-
tional taxonomic units (OTUs) in the simple obese patients (OB-G), 1761 ± 509 OTUs in the obese with com-
plications (OBc-G) samples and 1747 ± 602 OTUs in normal weight Healthy Donors (nwHD) used as controls. 
A visual analysis of the Firmicutes and the Bacteroidetes phyla abundances and their Firmicutes/Bacteroidetes 
(F/B) ratio indicated that the samples from obese patients had always a lower F/B-ratio value than the group 
of nwHDs, indicating that F/B ratio is not a biomarker for obesity, differently from what proposed by some 
 authors11,12. These data are confirmed both by the analysis of the consensus of seven 16S-polymorphic regions 
(F/B-ratio: Obese:1.2 ± 0.8 vs nwHD:1.6 ± 1.8, respectively) and by analyzing the V4-region alone (F/B-ratio: 
Obese:0.9 ± 0.7 vs nwHD:1.2 ± 1.3, respectively). It is to be stressed that the V4 region is the most studied 16S 
polymorphic region reported in the literature on metagenomics.

Alpha and beta diversity analysis. Different alpha diversity profiling indices have been used that esti-
mate either the community richness (Chao1-index) or richness and evenness (Shannon or Simpson indexes). 
It is important to highlight that none of the analyzed alpha diversity indexes reached statistical significance in 
the comparison between the complete case series of obese patients (55 fullOB) and the 25nwHD. In detail, the 
trend of Chao1 mean values were slightly higher in pathological samples (143.2 ± 22.3) rather than in nwHDs 
(141.5 ± 30.1) (Supplementary Fig. 1a). Simpson (Si) and Shannon (Sh) indexes behaved in the opposite way, 
where both were slightly higher in nwHDs (Si: 0.946 ± 0.014–Sh: 5.057 ± 0.320) rather than fullOB (Si: 0.87 ± 0.10–
Sh: 2.83 ± 0.45) (Supplementary Fig. 1a). The Bray–Curtis index used for beta diversity analysis clearly showed 
statistical significance (PERMANOVA p < 0.02) in the comparison between fullOB and nwHDs, thus indicating 
a difference in microbiome composition between patients and normal weight controls (Supplementary Fig. 1b).

Comparative analysis: fullOBvsnwHD. The specific associations between taxa present in fullOB and 
nwHD were analyzed using the  Calypso13,14 package which considers the sparsity (i.e., a dataset with many 
values equal to zero) and the compositional origin of microbiome data. Specifically, we used the sparse Partial 
Least Squares-Discriminant Analysis (sPLS-DA)14 that associates the importance of a specific taxon to describe 
a group of samples (Fig. 1). The results indicated that among the first 5 genera ordered for importance, 3 of 
them showed a positive correlation with fullOB (Streptococcus, Acidaminococcus and Sutterella with importance 
scores of 0.40, 0.39, and 0.36, respectively). The relative abundance analysis, using 4 different algorithms within 
MicrobiomeAnalyst, and the sparse correlation for compositional data (SparCC) analysis confirmed this result 
(Fig. 2a and Supplementary Table 1). A positive correlation with fullOB was found for Sutterella wadsworthensis 
and Streptococcus thermophilus, both characterized by 10 times higher abundances in obese patients compared 
to nwHD (EdgeR  log2 fold change values 3.4795 and 3.7707 respectively with p-value < 0.01; see Supplementary 
Table 1). Prevotella genus and PrevotellA we correlated with full rather than nwHD (Fig. 2a and Supplementary 
Table 1). The Microbial Dysbiosis index (MD-index) for this comparison is 1.5764 (EdgeR  log2 fold change val-
ues 3.3504 and 3.3511 respectively with p-value < 0.05; see Fig. 2a) indicating a high imbalance (dysbiosis) in the 
microbial flora of obese patients compared to controls (nwHD).

Comparative analyses: OB‑G vs nwHD and OBc‑G vs nwHD. The analysis of the more relevant 
genera using supervised Random-Forest indicated that Streptococcus was a genus tightly linked to OB-G, fol-
lowed by Sutterella, Clostridium, and Lactobacillus (Fig. 2b and Supplementary Table 2). The species that showed 
a positive association with OB-Group of samples were Sutterella wadsworthensis and Blautiaproducta(OBB 
error:0.322; Sensitivity: 0.64 and 0.70 of Specificity; see Supplementary Table 2). Both the Sutterella genus and 
the Sutterella wadsworthensis species have confirmed a stronger  association with OB-G rather than OBc-G, 
considering the number of different methods reaching statistical significance and also the result of the relative 
abundance analysis (Fig. 2b,c. Supplementary Tables 2 and 3 EdgeR  log2 fold change 3.7642 and 4.6938 with 
p-value < 0.05 and Supplementary Table 3 EdgeR  log2 fold change 2.9930 and 4.1985 with p-value < 0.05). The 
same was true for the Streptococcus genus (EdgeR  log2 fold change 2.6028 with p-value < 0.05)and their descend-
ent species (i.e., S. australis, S. salivarius and S. thermophilus. EdgeR  log2 fold change 2.4211, 2.1653 and 5.0708 
with p-value < 0.05) that were better described in the OB-Gpatients (Supplementary Table 2). Random-forest’s 
supervised analysis indicated that the genera Lactobacillus, Gemminger (OBB error 0.413; Sensitivity: 0.61 and 
0.56 of Specificity), and the species Coprococcus comes and Bacteroides massiliensis (OBB error 0.37; Sensitivity: 
0.64 and 0.61 of Specificity) showed higher "mean decrease accuracy" and thus a positive association with the 
OBc-G patients (Supplementary Table 2). More in detail, in relative abundance analysis the Bacteroides massil-
iensis showed a statistically significant value only in the comparison between OBc-G and nwHD (Supplementary 
Table 3  EdgeRlog2 fold change 2.9527 with p-value < 0.05), but not in the comparison between OB-G and nwHD 
(Supplementary Table 2). On the contrary, Coprococcus comes showed a positive association with both OB-G and 
with OBc-G group of patients (Supplementary Tables 2–3.  EdgeRlog2 fold change 2.1999 and LDA: 2.16, both 
with p-value < 0.05).
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It is to be noted that some Bacteroides genera behave in opposite ways, indeed Bacteroides fragilis, Bacteroides 
plebeius, and Bacteroides thetaiotaomicron (EdgeR  log2 fold change 3.7523, zero-inflated Gaussian fit: 0.0189 and 
EdgerR  log2 fold change 2.1903 with p-value < 0.05) showed higher abundances in OB-G patients compared to 
nwHD. While, on the contrary, Bacteroides faeces and Bacteroides massiliensis (EdgeR  log2 fold change 3.1409 
and 2.9527 with p-value < 0.05) showed a positive association with OBc-G compared to nwHD (Supplemen-
tary Tables 2–3). The MD-index behaves in opposite ways in the OB-G and OBc-G correlation networks with 
respect to nwHD. Indeed, MD-index computed for OB-G was 1.3993, showing high dysbiosis, while in OBc-G 
was-0.2786 (Fig. 2b,c, respectively) which still underlinesa dysbiosis but much less evident for OB-G samples.
Indeed, in the group of obese patients without any complication (OB-G), there was a slightly unbalanced over-
representation of some genera concerning the microbiome of control subjects. Whereas in obese patients with 
complications, some genera were underrepresented concerning controls (nwHD).

Supervised Random Forest analysis and normal weight healthy donors (nwHD). We applied 
the Random Forest machine-learning  algorithm15 to identify taxa able to discriminate between patients with 
obesity and normal-weight donors with good classification performances. We already described the correlations 
between specific taxa and the OB-G or OBc-G. Here we closely analyzed taxa that classify the normal-weight 
healthy donor group. Alistipes genus (Supplementary Tables 1, 2: zero inflated-Gaussian fit of 0.0027 and 0.0015), 
different Alistipes species (Supplementary Table 1: A. finegoldii, A. sp. and A. senegalensis Edge R  log2 fold change 
−  1.4927 and −  1.6049 with p-value < 0.05 and zero-inflated Gaussian fit: 0.0376. Supplementary Table  2: A. 
indistinctus and A. senegalensis. EdgeR  log2 fold change − 2.3560 with p-value < 0.05 and 0.0025 of zero-inflated 
Gaussian fit. Supplementary Table 4: A. onderdonkii. OBB error: 0.262 or 0.319; Sensitivity: 1.00 or 0.65 and 0.72 
or 0.77of Specificity), and the Bifidobacterium longum (Supplementary Table 1: EdgeR  log2 fold change − 2.6775 
with p-value < 0.01. Supplementary Table 2: EdgeR  log2 fold change − 2.095 with p-value < 0.05. Supplementary 
Table 4: OBB error: 0.356 or 0.319; Sensitivity: 0.61 or 0.65 and 0.66 or 0.77 of Specificity) were strongly associ-
ated with nwHD. In addition, the genus Akkermansia (Supplementary Table 1: zero-inlated Gaussian fit: 0.0025. 
Supplementary Table 2: OBB error: 0.386; Sensitivity:0.57 and 0.65 of Specificity) and its descendants Akkerman-

Figure 1.  The sPLS-DA results between fullOB (blue) vs nwHD (red) associated fecal microbiome. Loading plot 
from the sPLS-DA applied to the data to discriminate in the microbiome the Obese (fullOB) patient’s associated 
taxa from the ones linked to controls (nwHD). Colors indicate the classes in which the median is maximum for 
each significant taxa (red) for regular weight Healthy Donors (nwHD) and blue for Obese (fullOB). The negative 
and positive values indicate positive and negative associations (importance) identified among the statistically 
significant identified taxa.
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Figure 2.  SparCC correlation networks. Taxa are connected by an edge when their correlation meets the 
p-value (< 0.05) and the correlation thresholds (0.3). The edge size reflects the magnitude of the correlation. 
These networks show significant positive (red edges) or negative (blue edges) Pearson correlations. The size of 
the rounded area for each node represents the abundance of that taxon, and the colors show the proportion of 
the associated group. (a) Green for normal-weight Healthy Donors (25 subjects) and orange for the complete 
case seriesof obese patients (55 cases). The MD-index was 1.5764, computed at the genus level for comparing 
the microbiome of obese patients over the normal weight controls. (b) Green for normal-weight Healthy Donors 
(25 subjects) and orange for the obese patients (34 cases) with no additional complication. The MD-index was 
1.3993. (c) Green for normal-weight Healthy Donors (25 subjects) and orange for the obese with complication 
patients (21 cases). The MD-index was − 0.2786. In the analysis of the microbiome of plain obese patients (OB-
G) compared with the microbial flora present in controls, there is a slightly unbalanced overrepresentation of 
some genera in the Obese samples rather than in control subjects. Whereas obese patients with complications 
showed an unbalance due to an underrepresentation of some genera confronted with the same population of 
controls (nwHD). Note that the MD index of a Eubiotic state is equal to 1.
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sia muciniphila (Supplementary Table 1a: zero-inlated Gaussian fit: 0.0376. Supplementary Table 2: OBB error: 
0.281; Sensitivity: 0.70 and 0.74 of Specificity) were mainly associated with nwHD (Supplementary Tables 1 and 
4). Among Blautiaspecies, a different behavior was observed for Blautiawexlerae since it appeared closely linked 
to nwHD rather than obese samples (Supplementary Table 4: EdgeR  log2 fold change − 3.1199 and p-value < 0.01. 
Supplementary Table 2: OBB error: 0.281; Sensitivity: 0.70 and 0.74 of Specificity) and other Blautiaspecies (B. 
faecis was linked to nwHD see Supplementary Table 1c, while B. producta was linked to Overall Severe Obese, 
see Supplementary Table 2) (Supplementary Tables 3 and 4).

Correlation analysis of taxa clusters with physiological parameters. In the analysis of taxa 
related to samples of OBc-G, we found interesting positive correlations between some clusters of species and 
the total cholesterol, LDL levels (Fig. 3a,c and Supplementary Table 5a) and CRP (Fig. 3a,b and Supplementary 
Table  5a,b). Specifically, the increase of the species enclosed in Cluster 5 is significantly associated with the 
increase of both total cholesterol and LDL levels (Pearson correlation factor (PC): 0.68 and 0.74 with adj-p-
value < 0.05); seemingly the increase of the species enclosed in Clusters 18 (Fig. 3a) and 14 (Fig. 3b), is signifi-
cantly associated with the increase of CRP, which is a marker of inflammation (PC: 0.59 with adj-p-value 0.04). 
On the contrary, Glycemia (0′, 60′ and 120′) showed a negative correlation with the species of clusters 20 (PC: 
− 0.83, − 0.71, − 0.81 with adj-p-values < 0.05), 21 (PC: − 0.93, − 0.72, − 0.89 with adj-p-values < 0.05) (Fig. 3a) 
and 11 (PC: − 0.91, − 0.75, − 0.88 with adj-p-values < 0.05) (Fig. 3b). In the comparisons of the species analyzed 
entirely versus the same species analyzed after the feature reduction (Fig. 3a vs. b), we found common species (i) 
positively associated with CRP and (ii) negatively associated with glycemia (0′, 60′, 120′): specifically, we found 
(i) Alistipes indistinctus, Clostridium innocuum, Desulfovibrio piger Prevotella ruminicola and Prevotella in com-
mon between clusters 18 and 14, while (ii) Acidaminococcus fermentans, Clostridium cocleatum and Clostridium 
ramosum  in  common between clusters 20–21 and cluster 11 (see Supplementary Table 5a,b).While the con-
nection of Alistipes indistinctus and Clostridium innocuum with obesity or with clinical parameters related to 
obesity is not known in the literature, Desulfovibriopiger, Prevotella ruminocula and Prevotella species specie are 
already known to be associated with inflammation, insulin-resistance, hyperglycemia and type 2-diabetes16. It is 
important to highlight that Desulfovibrio piger (Clusters 6 for OB-G and Clusters 14, 18 for OBc-G) showed that 
the increase of the abundance of this species is always associated with the increase in the value of some clinical 
parameters critical for obesity (such as TRG for OB-G and CRP for OBc-G, respectively).

Interestingly enough, in the clusters of taxa found negatively correlated with glycemia (Fig. 3d,e, and Sup-
plementary Table 5d,e) we found that the family Oxalobacteraceae and two genera descending from it, namely 
Herbaspirillum and Oxalobacter, were already known to be associated with a decreased of insulin-resistance 
and  glycemia17.

Finally, in the analysis performed on the nwHD group, BMI-SDS showed a negative association with five 
species, enclosed in Cluster 19 (PC: − 0.64 with adj-p-value = 0.05) (Fig. 3f and Supplementary Table 5f). This 
data strongly suggests that BMI-SDS could represent the most sensible clinical parameter to correctly classify 
children and adolescents as normal weight, overweight, and obese subjects and that the species belonging to this 
cluster could be considered protective against obesity.

Inferring functional (metabolic) pathways characterizing OB‑G and OBc‑G. At least 20 dif-
ferent metabolic pathways, inferred with PICRUSt2 and present in the  MetaCycdatabase18, showed statistical 
significance in the comparison between OB-G vs nwHD (Fig. 4a). Different pathways involved in amino acid 
biosynthesis showed a positive correlation with obesity in pediatric patients. Thus, pathways involving the phe-
nylalanine (PWY-6628) and the tyrosine (PWY-6630) aromatic amino acids were among the entries with the 
highest statistical importance. In addition, tryptophan (PWY-6629) and methionine biosynthesis (HSERMET-
ANA-PWY and HOMOSER-METSYN-PWY) showed higher abundances in OB-G, while an additional path-
way (PWY-5345) for methionine biosynthesis showed an opposite behavior. More, different pathways involved 
in polyamine biosynthesis known to play a role in bacterial pathogenicity and biofilm formation showed higher 
abundances in the microbiome of OB-G. Among them, the POLYAMINSYN3-PWY is the one showing the 
higher importance of all pathways analyzed by Random-Forest analysis (mean decrease accuracy 0.006). Oth-
ers like POLYAMSYN-PWY and the pro-inflammatory  lipopolysaccharide19 pathway (LPSSYN-PWY) showed 
higher abundances in OB-G compared to lean subjects. More, the second in order of importance in the Random-
Forest analysis (mean decrease accuracy 0.004) was the super-pathway of (R,R)-butanediol biosynthesis (P125-
PWY) which was overabundant only in nwHDs.

Obesity in adolescents is often associated with clinical complications such as insulin resistance, hyperglyce-
mia, dyslipidemia, and hypertension, which together are termed "metabolic syndrome". Regarding this issue, 
we found 3 pathways more abundant in OBc-G with respect to nwHD: PWY-341 (glycolysis V), PWY-5532 
(adenosine nucleotides degradation), and PWY-6478 (GDP-d-glycero-alpha-d-manno-heptose biosynthesis) 
(Fig. 4b). The heptose-sugars are components of bacterial cell surface common in the pro-inflammatory lipopoly-
saccharide (LPS)20.

Discussion
Microbiome studies might be hampered by different technical problems related to the methods used for their 
 analysis21 not evident to the average readers. The 16S gene is structured in nine variable regions useful to define 
microbial  taxonomy22–24. Primer pairs design is to hybridize in the conserved sequence regions, so it is clear that 
the choice of their sequence directly influences the taxa composition of the microbiome under analysis. Less 
important but still relevant in the microbiome definition might be the use of different 16S-ribosomal sequence 
reference databases. More, additional parameters show only marginal effects in the resulting microbiome 
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a

b

Figure 3.  Heatmaps of the correlations between taxa clusters and physiological parametersusing WGCNA. 
The heatmaps show the results of the multivariate clustering analysis considering the physiological parameters 
and the unadjusted p-values. The red rectangles highlight those correlations that remained statistically 
significant after the correction for multiple hypotheses with Benjamini–Hochberg. The colored bar aside from 
the heatmaps shows the color change associated with different Pearson correlation coefficients: the red color 
indicates positive correlations while the blue color indicates negative correlations. The “sel-specie” refers to the 
feature reduction step performed before the WGCNA analysis considering the most relevant specie found in our 
previous analysis (see “Methods” section).
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c

d

Figure 3.  (continued)



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11294  | https://doi.org/10.1038/s41598-023-36533-2

www.nature.com/scientificreports/

composition. Indeed methods of clustering the 16S sequences, bioinformatic pipeline, and the parameters used 
in the analysis might slightly modify the microbiome  composition21. All these issues might be potential biases 
to complicate the comparison of microbiome biomarker (taxa or Firmicutes/Bacteroidetes-ratio) composition 
in different publications, even for the same pathology. Due to the not ideal primer pairs design that usually 
targets a single 16S variable region, it is likely to have bacterial taxa in the analyzed microbiome might be under-
represented. Thus, to overcome these problems, a possibility is to increase the number of the variable regions 
to be studied and to use different 16S-ribosomal sequences reference databases, bioinformatic pipelines, and 

e

f

Figure 3.  (continued)
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parameters, thus improving the definition of biomarkers associated with the pathological microbiome. Our aim 
was not only an academical re-analysis of taxa associated with obesity but with the introduction of the analysis 
of multiple 16S-variable regions in the microbiome analysis together with the use of rarely used bioinformatic 
pipelines and parameters try to define which biomarkers were still associated with the obese patients. We believe 
that comparing the biomarkers defined using different primer pairs, chemistry, and methods with the ones 
already shown in published reports indicates the taxa that are more strictly associated with the pathology.

The relative abundance analysis using the complete cohort of fecal samples of obese patients (fullOB) com-
pared to nwHD confirmed that Acidaminococcus, Sutterella, Streptococcus, Prevotella, Lactobacillus, and some 
Bacteroides species correlated with obesity, as shown by different published articles (see a meta-analysis)25. 
Indeed, the Acidaminococcus genus was reported to be significantly associated with obesity in adult Hispanic 
 subjects26 and with pro-inflammatory  diets27. In our data, Acidaminococcus was better associated with the group 
of patients with Severe Obesity (OB-SO-G) (Supplementary Table 4). Therefore, it was not astonishing that others 
have found such an increase in patients with type 2 diabetes (T2D)28. Sutterella genus was already described to 
correlate positively with obesity in obese Chinese  children29, but others found the opposite in  adults30. In line 
with this data, Sutterella wadsworthenis was reported to be positively associated with insulin  resistance31. Our 
data showed taxa strongly associated with the microbiome of Obese patients (fullOB, OB-G, and OBc-G) in 
the comparisons with the fecal flora of normal weight control subjects (nwHD) (Supplementary Tables 1–4).

Streptococcus genus was already shown to be correlated in adult cases with  BMI32. In this study, Streptococcus 
descendant like S.thermophilus was found to be associated with obesity also in our data. These also indicated 
a positive Prevotellaassociation between and its descendants in obesity. Indeed, the role of the Prevotell and 
Prevotella copri in obesity is still debated since beneficial and detrimental roles in health have been described 
for both  taxa33,34. Prevotellaceae and the genus Prevotella have been associated with inflammation and insulin 
 resistance25,35. It is also of note that Prevotellacoprishowed to be associated with an altered glucose metabolism 
leading to glucose intolerance and reduced insulin sensitivity due to the presence of the  LeuBgene31. It is also 
known that Bacteroides and Prevotella genera have a negative correlation with serum leptin levels and a positive 
correlation with GHrelin serum  levels36. Since leptin is known to inhibit hunger while GHrelin increases the 
drive to eat, the effect of these taxa on obesity is  consistent36. Indeed, the leptin sensitizer butendiol (produced 
in P125-PWY pathways) was found to have a lower abundance in our simple-obese patients than in controls. 
Thus, the mechanism inducing obesity relative to the P125-PWY might induce a less efficient regulation of 
appetite by  leptin37.

Obesity has been related to an increased risk of multiple diseases involving oxidative stress and  inflammation38, 
and Prevotella species have been already described as being more abundant in obese patients with an inflam-
matory  condition26. Along this line, in our obese patients with complications, at least ten different species were 
found to correlate positively with standard CRP levels, a marker of chronic inflammation. Among them, we 

Figure 4.  Heatmaps of the significant inferred pathways identified with PICRUSt2. (a) Heat-map of the 
comparisons group of Obese with no complication (OB-G) vs controls (nwHD) and (b) group of Obese with 
complication (OBc-G) vs controls (nwHD).
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found Prevotella ruminicola, Prevotella sp., the genus Mitsuokella and Desulfovibriopiger. Indeed, Desulfovibrio 
descendant species are known to produce endotoxins and favor alteration of gut permeability leading to the 
induction of pro-inflammatory  responses39–41. Thisalso applies to the genus Collinsella, which we have shown with 
greater abundance in severely obese  patients39. Furthermore, in our data, Bacteroides correlated with obesity, as 
described by others who have found a higher abundance in obesity and a positive correlation with  BMI42. Some 
authors have found an inverse correlation between obesity and Bacteroides  thetaiotamicron43 compared to us. 
This discrepancy is intriguing since this specie is known to produce high amounts of small-chain fatty acids 
(acetate and propionate), and the overproduction of acetate is known to induce hepatic de novo lipogenesis and 
increase  adiposity44.

Our data showed that descendant species belonging to the Gordonibacter genus have a positive correlation 
with plasma levels of total and LDL cholesterol. Along this line, species belonging to this genus were already 
known to have a positive association with total cholesterol plasma  level45.

A recent report showed that different taxa belonging to the Phylum of the Firmicutes were found in the 
microbiome of adult obese or overweight  patients30. Also, our data showed that Firmicutes descendants Acidami-
nococcus spp., Lachnospiraceae, Mitsuokella, Ruminococcus spp., Streptococcaceae, and Streptococcus are among 
the taxa that shared higher abundance values in obese patients. One exception is represented by the Odorib-
acter genus, although belonging to Firmicutes, which showed a higher relative abundance in normal-weight 
healthy (nwHD) donors. Indeed, the fact that this genus associates better with nwHDs is not surprising due 
to the anti-inflammatory potential of this  microorganism46. Although the Firmicutes/Bacteroidetes-ratio was 
believed to be a biomarker for  obesity11,12, its role in this condition was found to be  contradictory47 since some 
studies reported a positive correlation between F/B-ratio and the BMI  values48, others, like our work, found no 
correlation or showed an opposite  trend48–51 and essentially a dominance of the Bacteroides genus in  obesity52. 
About the inferred metabolic pathways associated with obesity, it is interesting to point out that the abundance 
of aromatic amino acids (tyrosine, phenylalanine, and tryptophan) has already been reported to be associated 
with obesity and insulin  resistance48. In particular, tyrosine was shown to be the more prevalent amino acid 
associated with insulin resistance in obese  children53. Tryptophan has also been implicated in the pathogenesis 
of metabolic disorders such as  obesity54. Indeed increased levels of tryptophan have been linked to over-nutrition 
and might be responsible for obesity-related inflammation  pathways55. Pro-inflammatory conditions are even 
supported by the pathways LPSSYN-PWY lipopolysaccharide and PWY-6478, both involved in LPS synthesis and 
 assembly19. These pathways, along with PWY-341 (glycolysis V), are known to play a central role in promoting a 
pro-inflammatory environment that supports the production of inflammatory mediators by macrophages, thus 
contributing to insulin resistance. Furthermore, pyruvate, the final product of glycolysis, is metabolized into 
acetyl-CoA, which is essential for cholesterol and lipid  synthesis56. All these conditions are linked to obesity and 
its complications. In addition, it was shown that the transfer of stools from lean donor recipients into metabolic 
syndrome patients increased insulin sensitivity of the latter and the abundance of 16 different taxa, including 
Oxalobacter formigenes. This is in line with the negative correlation found between fasting plasma glucose and 
Taxa Cluster 1, 2, and 3 shown in Supplementary Table 3a17.

The main limitation of our study is not many pediatric patients enrolled compared to the number of obese 
subjects in our region.The major strengths include: (i) the mono-centric recruitment, with strict patients selec-
tion; (ii) the use of BMI-SDS to define pediatric obesity (in detail, all overweight patients have been excluded); 
(iii) similar protocols of selection have been used for classifying regular weight healthy donors; (iv) the analysis 
of multiple 16S-polymorphic regions to define taxonomy and also (v) the use of different algorithms to analyze 
the microbiome composition among different groups. Furthermore,it is important to highlight thatour results 
have not been influenced by the use of drugs known to interfere with microbiota composition, such as metformin 
and  liraglutide8,9.

Methods
Patients. Patients were stratified into different groups based on the BMI-SDS values obtained comparing 
WHO growing curves corrected for sex and month age following the references shown https:// www. who. int/ 
tools/ growth- refer ence- data- for- 5to19- years/ indic ators. https:// www. who. int/ tools/ growth- refer ence- data- for- 
5to19- years/ indic ators. The patients were defined as overweight if the BMI-SDS values had a standard deviation 
(SD): >  + 1 SD <  + 2; obese when >  + 2 SD <  + 3, and severely obese SD: >  + 3. Monogenic or syndromic obesity 
were ruled out in all patients. Thus, we evaluated the fecal-microbiome of a total of 55 obese children and ado-
lescents (fullOB) recruited at Giannina Gaslini Institute in Genoa, Italy, between February 2016, and October 
2021 (mean age 13.1 ± 2.9, median 13.0, 36% female; BMI-SDS 3.2 ± 0.7). Inclusion criteria were: Caucasian 
subjects living in Northern Italy, personal history negative for acute or chronic gastrointestinal diseases, and/
or antibiotics or probiotics administration in the previous month. All patients were negative for autoimmune 
disease screening (i.e celiac and thyroid diseases). Among these fullOB samples, 32 patients were grouped based 
on BMI-SDS as severely obese (mean age 13.5 ± 3.5, median 13.6, 34% female; BMI-SDS 3.6 ± 0.5), while 22 of 
them were grouped as obese (mean age 13.2 ± 2.4, median 12.9, 36% female; BMI-SDS 2.6 ± 0.2) (see Tables 1, 2).

We differentiated patients with simple obesity (OB-G), regardless of grade, from patients who had complicated 
obesity (OBc-G), regardless of grade, but who had at least three out of five of these characteristics HDL < 5th cen-
tile, triglyceride values above the 95th centile, blood pressure systolic and/or diastolic above 90° centile, impaired 
fasting glycemia, impaired glucose tolerance after 2 h from the meal, hepatic Steatosis (see Table 1). It is also 
noted that patients in the OBc-G have on average a higher ultrasensitive CRP than patients with uncomplicated 
obesity. More in detail, as reported in Table 1, 34 patients had a diagnosis with simple obesity (OB-Group, OB-G) 
(mean age 12.6 ± 2.9, median 12.4, 35% female, BMI-SDS: 3.3 ± 0.7), while 21 classify as Obese with complications 
(OBc-G) (mean age 14.0 ± 2.8, median 13.9, 38% of them of the female gender, BMI-SDS: 3.1 ± 0.7). It is also to 

https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators
https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators
https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators
https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators
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be stressed that among the 34 simple-obese (OB-G) patients, 22 were classifiable as severely obese (OB-SO-G) 
(BMI-SDS: 3.6 ± 0.5), while 12 were obese (OB-O-G) (BMI-SDS: 2.6 ± 0.20). While among the 21 obese with 
complication (OBc-G) patients, 10 of them were severely obese with complications (OBc-SO-G) (BMI-SDS: 
3.7 ± 0.3), and the rest were obese with complications (OBc-O-G) (BMI-SDS: 2.5 ± 0.28) (see Table 1). As a 
control, we have analyzed the metagenome of fecal samples from 25 normal-weight subjects (nwHD) matched 
both for age and sex (mean age 12.1 ± 3.0, median 12.7, 40% female, BMI-SDS: − 0.3 ± 1.1).Written informed 
consent was obtained by patients and caregivers.

Research was performed in accordance with the Declaration of Helsinki.
The study was approved by the local Ethical Committee of Liguria Region (approval letter, enclosed) and by 

Giannina Gaslini Institute (authorization letter enclosed).

Fecal microbiota analysis. DNA extraction from fecal samples was performed as  reported57 and it was 
used for the 16S amplification reaction performed with Ion 16S™ Metagenomics Kit (Thermo-Fisher Scientific). 
This method allows the PCR-amplification of 7 out of 9 informative 16S polymorphic  regions58. Then up to 16 
differently bar-coded libraries were automatically loaded onto an Ion-520-chip by the Ion-Chef and sequenced 
by the GeneStudio-S5-system (Thermo-Fisher Scientific). Data analysis was performed with the Ion-Reporter™ 
suite (v 5.18.0.2) using the curated-Greengenes (v13.5) and the MicroSEQ ID 16S-rRNA reference library 
(v2013.1) databases using standard parameters.

Data analysis. Compositional/functional profiling and comparative-analysis of microbiome data were per-
formed with Microbiome  Analyst  and Calypso web-tools13,14,59,60. All p-values have been adjusted to correct 
for multiple hypotheses, using Benjamini and Hochberg false discovery rate (FDR < 0.05), unless differently 
specified. Sparse Correlations for Compositional data (SparCC)61 was applied after data-filtering to remove low-
quality or uninformative features to study the network of correlation among taxa from the microbiome of obese 
patients and nwHD controls. In addition, we computed the Microbial Dysbiosis index (MD-index) as the loga-
rithm of the sum of all taxa that increase their abundance over the sum of all taxa that decrease  it57. WGCNA 
identified groups of taxa, or modules that were present across a set of clinical conditions, computing a similar-
ity measure, such as Pearson’s correlation coefficient, to calculate the relationship between pairs of taxa. These 
relationships are then used to construct a weighted network of taxa clustered to identify highly interconnected 
microorganisms, which are assumed to have a similar biological function or to be commonly regulated. For 
all the analysis Pearson’s correlation coefficients were computed and its associated p-values were corrected for 
multiple comparisons using False Discovery Rate (FDR).The Multivariate clustering methodology based on the 
weighted correlation network analysis (WGCNA) was used to verify correlations of taxa clusters with the clinical 
parameters characterizing OB-G,OBc-G and  nwHD62. In particular, we considered the following list of clinical 
parameters: sex, age (in months), BMI, BMI-SDS, serum levels of total HDL, LDL and cholesterol, triglycer-
ides (TRG), glycemia-0’, glycemia-60’, glycemia-120’ during oral glucose tolerance test, glycated-HbA1c, total-
insulin, ultrasensitive CRP (C-reactive protein), liver steatosis by ultrasound. For the normal weight healthy 
control group, namely nwHD we considered a subselection of the above-mentioned clinical parameters, which 
are sex, age, BMI and BMI-SDS. The red and blu colors in the WGCNA heatmaps indicate respectively the iden-
tified positive or negative Pearson correlations: a positive correlation means that the abundance increase of that 
specific cluster(s) of taxa is associated with the increase of a specific clinical or metabolic parameter while a nega-
tive correlation is associated with a decrease of that specific clinical or metabolic parameter. Furthermore, for the 
species of OB-G and OBc-G samples groups we proceed with the analysis of the complete data set, but also with 
a manual selection of the species (indicated by the label “sel-specie”), namely a feature reduction, considering 
only those species that we found relevant in both supervised random forest and relative abundance analyses. The 
metagenome functional content was predicted using  PICRUSt263 from the biom file, to get the KEGG Orthology 
(KO) terms table and the inferred  MetaCycpathways18. These data were analyzed with the Shotgun-data-profil-
ing module of Microbiome Analyst to identify a list of the most significant pathways able to discriminate cases 
(OB-G or OBc-G) from controls (nwHD). The abundance of the pathways between the groups was also analyzed 
with the Wilcoxon test and the statistically significant pathways were clustered, considering the Pearson cor-
relation measureand plotted using Morpheus tool (Morpheus, https:// softw are. broad insti tute. org/ morph eus).

Informed consent. Informed consent was obtained from all individual participants or their fami-
lies included in the study.

Data availability
Raw 16S rRNA gene reads were deposited at the short read archive (SRA_BioProject ID PRJNA794317).

Received: 30 November 2022; Accepted: 5 June 2023
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