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Designing Ising machines 
with higher order spin interactions 
and their application in solving 
combinatorial optimization
Mohammad Khairul Bashar  & Nikhil Shukla *

The Ising model provides a natural mapping for many computationally hard combinatorial 
optimization problems (COPs). Consequently, dynamical system-inspired computing models and 
hardware platforms that minimize the Ising Hamiltonian, have recently been proposed as a potential 
candidate for solving COPs, with the promise of significant performance benefit. However, prior work 
on designing dynamical systems as Ising machines has primarily considered quadratic interactions 
among the nodes. Dynamical systems and models considering higher order interactions among the 
Ising spins remain largely unexplored, particularly for applications in computing. Therefore, in this 
work, we propose Ising spin-based dynamical systems that consider higher order (> 2) interactions 
among the Ising spins, which subsequently, enables us to develop computational models to directly 
solve many COPs that entail such higher order interactions (i.e., COPs on hypergraphs). Specifically, 
we demonstrate our approach by developing dynamical systems to compute the solution for the 
Boolean NAE-K-SAT (K ≥ 4) problem as well as solve the Max-K-Cut of a hypergraph. Our work 
advances the potential of the physics-inspired ‘toolbox’ for solving COPs.

The minimization of the Ising Hamiltonian using dynamical systems such as coupled electronic1–5 and photonic 
oscillators6–8 has received substantial attention in recent years9,10. A significant driving force behind the effort to 
realize a so-called ‘Ising machine’ is that the solution to the Ising model can be mapped to many computationally 
intractable problems in combinatorial optimization (e.g., MaxCut, Traveling Salesman Problem (TSP) among 
others)11–18. Consequently, this creates the possibility of realizing Ising machine-inspired custom accelerators 
that can offer the possibility of significant performance benefits. However, dynamical system formulations that 
have been used to ‘solve’ the Ising model typically consider only pair-wise coupling; examples include, oscillator 
Ising machines, coherent Ising machines etc. From an application standpoint, while these characteristics capture 
quadratic interactions, the dynamical systems and their supporting computational models cannot be applied 
directly to solve problems that require higher order interaction among the spins19,20. Therefore, the objective of 
this work is two-fold: (1) define dynamical systems that model higher order (> 2) interactions among the Ising 
spins; and (2) map the resulting dynamics to relevant computational problems. We consider two examples: 
computing the solutions for the NAE-K-SAT (Not-All-Equal SAT) problem and the Max-K-Cut of a hypergraph. 
Our motivation behind selecting these two combinatorial optimization problems was that their objective func-
tions directly map to the solution of the higher order Ising models, and therefore, help illustrate the principle of 
how dynamical systems for the higher order Ising models can be used in combinatorial optimization. Also, we 
emphasize here that presently our focus is on defining the Ising machine dynamics that capture the higher order 
interactions, and not on the physical implementation of the higher order interactions.

The general form to represent higher order interactions among the Ising spins can be expressed as,

where J(2)ij  represents the pairwise interaction coefficient between two Ising spins. The first term on the right-hand 

side ( −
∑

i,jJ
(2)
ij sisj ) is usually considered when describing quadratic/pairwise interactions among Ising spins 

(1)H = −
∑

i,j
J
(2)
ij sisj −

∑

i,j,k
J
(3)

ijk sisjsk −
∑

i,j,k,l
J
(4)

ijkl sisjsksl . . . .

OPEN

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA. *email: 
ns6pf@virginia.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36531-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9558  | https://doi.org/10.1038/s41598-023-36531-4

www.nature.com/scientificreports/

s = {−1, 1}n ; the Zeeman term which considers the interaction of spins with an external magnetic field has been 
neglected here. Considering the higher order interactions among the spins can help describe the objective func-
tions of several combinatorial optimization problems (COPs) as illustrated here with the example of the NAE-K-
SAT problem (without the need for problem decomposition). The NAE-K-SAT problem is a constrained version 
of the Boolean Satisfiability (SAT) problem where the objective is to find an assignment for the variables of the 
given Boolean expression (in the conjunctive normal form) such that: (a) at least one variable in every clause is 
TRUE (i.e., the clause is satisfied; standard SAT constraint); (b) at least one variable in every clause is FALSE21; 
the NAE-K-SAT problem is considered here since it directly maps to the general form of Eq. (1), as illustrated 
further on. Using an approach inspired by SAT, the NAE-K-SAT problem can be expressed as computing an 
assignment for the variables such that Y(= C1.S1 ∧ C2.S2 ∧ · · · ∧ CM .SM) = 1. Here, Ci ≡ (x1 ∨ x2 ∨ x3 . . . xN ) , 
and Si ≡ (x1 ∨ x2 ∨ x3 . . . xN ) (i.e., Si and Ci have the same variables but in opposite forms). Traditionally, when 
considering only pairwise interactions among the Ising spins, mapping such problems can entail significant 
pre-processing including the use of auxiliary variables that can significantly increase the size of the problem that 
must be eventually solved20,22–25 using the dynamical system.

Results
NAE‑4‑SAT.  To illustrate how we can map the NAE-K-SAT problem to higher order interactions among the 
Ising spins, we first consider the example of the NAE-4-SAT problem where each clause of the NAE-4-SAT prob-
lem consists of 4 literals, expressed in the general form as 

(

xi ∨ xj ∨ xk ∨ xl
)

.
(

xi ∨ xj ∨ xk ∨ xl
)

≡
(

xi ⊕ xj
)

∨
(xi ⊕ xk) ∨ (xi ⊕ xl) ∨

(

xj ⊕ xk
)

∨
(

xj ⊕ xl
)

∨ (xk ⊕ xl) , where x ∈ {0, 1}n ( x is a set of Boolean variables). 
K = 4 is specifically chosen here since it is the lowest K where higher order interactions among the Ising spins are 
required to formulate the objective function for the problem (shown in Table 1). To formulate the problem in 
terms of Ising spins, we utilize the following property among the Boolean variables and the spins 

(

xi ⊕ xj
)

≡ 1−sisj
2

 . 
Here, the logic level 0 (1) corresponds to an evaluation of − 1(1) of the expression on the right-hand side, respec-
tively. Furthermore, the complement of the logical OR among the XOR terms ( 

(

xi ⊕ xj
)

∨ (xi ⊕ xk) ∨ · · · ∨ (xk ⊕ xl) ) 

can be expressed as, 
(

1−
(

1−sisj
2

))

.

(

1−
(

1−sisk
2

))

. . .

(

1−
(

1−sksl
2

))

 . Simplifying the above expression yields 
(

1+sisj
2

)(

1+sisk
2

)(

1+sisl
2

)

. . .

(

1+sksl
2

)

≡ 1

8
(1+ sisj + sisk + sisl + sjsk+sjsl + sksl + sisjsksl) . It can be observed 

that besides the second order interaction terms, the resulting expression also contains a 4th order interaction term 
among the spins. Consequently, the objective function for the NAE-4-SAT problem, over M clauses, can be for-
mulated as the minimization of

Table 1.   Objective functions for the NAE-K-SAT problem expressed using Ising spins. We note that constants 
and scalars have not been shown here in the expression for the single clause as well as for the objective 
function.

K Expression for a single clause & objective function for the NAE-K-SAT

2

Expression for a single clause:
(

xi ∨ xj
)

.
(

xi ∨ xj
)

≡ sisj

Objective function:
H = −

∑M
m=1

∑N
i,j,i<j

(

−cmicmjsisj
)

≡ −
∑M

m=1

∑N
i,j,i<j Jij si sj

Where Jij = −cmicmj. It can be observed that when the variables appear only in the normal form i.e., cmi ≥ 0 , the expression represents 
the solution to the archetypal MaxCut problem

3

Expression for a single clause:
(

xi ∨ xj ∨ xk
)

.
(

xi ∨ xj ∨ xk
)

≡ sisj + sisk + sjsk

Objective function:
H = −

∑M
m=1

∑N
i,j,i<j

(

−cmicmjsisj
)

4

Expression for a single clause:
(

xi ∨ xj ∨ xk ∨ xl
)

.
(

xi ∨ xj ∨ xk∨xl
)

≡ sisj + sisk + sisl + sjsk + sjsl + sksl + sisjsksl

Objective function:
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�M

m=1






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�







5

Expression for a single clause:
(

xi ∨ xj ∨ xk ∨ xl ∨ xm
)

.
(

xi ∨ xj ∨ xk∨xl∨xm
)

≡ sisj + sisk + sisl + sism + sjsk + sjsl + sjsm + sksl + sksm + sl sm + sisjsksl + sisjsksm + sisjsl sm + sisksl sm + sjsksl sm
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Here, cmi = 1(−1) , if the ith variable appears in the mth clause in the normal (negated) form; cmi = 0 if the 
ith variable is absent from the mth clause. Using the same approach, we derive such expressions for a few other 
values of K in the NAE-K-SAT problem in Table 1. Details of the derivation of the objective function for NAE-
5-SAT are shown in Supplementary 1.

Constructing a dynamical system for the NAE‑K‑SAT problem.  We now aim to formulate the dynamical sys-
tem and the corresponding energy function for the NAE-K-SAT problem. The dynamical system, defined by 
−
(

∇φE
)

i
= dφi

dt  , is designed such that the ground state of the ‘energy’ function (more precisely, the Lyapunov 
function) must correspond to a global optimum of the objective function. To construct this system, we draw 
inspiration from the dynamics of coupled oscillators under second harmonic injection which effectively forces 
the oscillator states to assume a binary phase value of 0 or π (details of the second harmonic injection can be 
found in work by Wang et al.26). Without loss of generality, we assume that one spin state (say, s = +1 ) is rep-
resented by phase 0 while the other spin state ( s = −1 ) is represented by the phase angle π. Subsequently, the 
second order interaction terms among the Ising spins sisj can be represented by cos(φi − φj) . When the spins 
are in opposite states i.e., si = 1(−1); sj = −1(1) , sjsj ≡ cos

(

φi − φj

)

= −1 , whereas when the spins are in the 
same states i.e., si = 1(−1); sj = 1(−1) , sjsj ≡ cos

(

φi − φj

)

= 1 . Similarly, the higher order interactions can be 
modeled as shown in Table 2.

The equivalence between the higher order terms and the corresponding energy term is shown in Table 3.
Using the above relationships developed in Table 1, the energy functions for the NAE-K-SAT problem can 

be formulated as shown in Table 4. The corresponding dynamics 
(

dφi
dt

)

 , shown in Table 4, can be obtained from 

the dynamical system equation dφidt = −
(

∇φE
)

i
 . The second harmonic term in the energy function 

(

−Cs
2

∑N
i=1 cos(2φi)

)

 is added to ensure that the oscillator phases effectively binarize to {0,π} . The energy con-
tribution of this term is minimized ( = −N Cs

2
 ) at the binary phase points φ ∈ {0,π} . Consequently, by using the 

appropriate strength of the second harmonic injection ( Cs ), we can ensure that the energy function reaches its 
minimum for φ ∈ {0,π} . We have borrowed this approach from prior work on oscillator-based Ising machines 
(with second order interactions)26.

Furthermore, using the dynamical system equation dφidt = −
(

∇φE
)

i
 , we can also show that for the energy 

functions described in Table 4, dEdt ≤ 0 i.e., they are Lyapunov functions.

Figure 1 shows an illustrative example of the NAE-4-SAT problem computed using the proposed dynamical 
system. Details of the simulation used to simulate the illustrative NAE-4-SAT problem are described in Sup-
plementary 4.

Max‑K‑Cut on a hypergraph.  In the prior section, we exploited the binary nature of the Ising spins (along 
with higher order interactions among them). We now ‘extend’ the definition of the ‘spin’ in order to facilitate 
the design of computational models for an even broader spectrum of COPs that would benefit from the use 
of > 2 states for each node/spin. To facilitate this, we express the possible states of a spin as reiθk , where r = 1 , 
and θk = 2πk

K  ; k = 1, 2, . . .K − 1 . When K = 2 , the possible states are within {1, −  1}, which represents the 
traditional definition of an Ising spin. In contrast, when K > 2 , the ‘spin’ assumes K configurations, represented 
as complex quantities (e.g., for K = 3 , the possible states are 1 , ei

2π(1)
3 , ei

2π(2)
3  ). While we have utilized this con-

cept for solving combinatorial problems on graphs (i.e., problems with quadratic objective functions)18, here we 

(2)HNAE−4−SAT = −
�M

m=1















N
�

i, j
i < j

�

−cmicmjsisj
�

+
N
�

i, j, k, l
i < j < k < l

�

−cmicmjcmkcmlsisjsksl
�















(3)
dE

dt
=

N
∑

i=1

∂E

∂φi
.
dφi

dt
=

N
∑

i=1

(

−
dφi

dt

)

dφi

dt
= −

N
∑

i=1

(

dφi

dt

)2

Table 2.   Equivalent energy function for modeling higher order interactions among Ising spins. The second 
harmonic signal included as a part of the dynamics (not shown here) helps force φ to {0,π}.

Order Ising interaction Equivalent formulation for constructing dynamical system

2 sisj cos
(

φi − φj
)

3 sisjsk cos
(

φi − φj + φk
)

4 sisjsksl cos
(

φi − φj + φk − φl
)

5 sisjsksl sm cos
(

φi − φj + φk − φl + φm
)

6 sisjsksl smsn cos
(

φi − φj + φk − φl + φm − φn
)
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explore this concept for hypergraphs (that entail higher order interactions) by considering the example of solv-
ing the Max-K-Cut of a hypergraph.

Computing the Max-K-Cut on a hypergraph is defined as the challenge of partitioning the nodes of a hyper-
graph into K partitions in a manner that maximizes the number of hyperedges having nodes that lie in at least 
two sets created by the partitions27. The Max-K-Cut problem and its comparison with the archetypal MaxCut 
problem are illustrated in Fig. 2a,b for the case of a graph and a hypergraph, respectively.

To develop the objective function for the problem, each hyperedge of the graph can be expressed as 

hm =
∏N−1

i=1

∏N
j=i+1

(

1− cmicmj

(

1−Re
(

sis
∗
j e

if (�θij )
)

2

))

 , where sj = 1eiθj ; θj can assume any of the following values 

from 2πkK  ; k = 1, 2, . . .K − 1 enforced by the higher order harmonic injection. cmj = 1(0) if the jth node belongs 
(does not belong) to the mth hyperedge. We note that the ′i′ represents the imaginary number 

√
−1 whereas ′i′ 

refers to the index.

f (�θij) is designed such that Re
(

sis
∗
j e

if (�θij)
)

= −1(1) , if the nodes i and j are placed in different (same) sets, 
and essentially rewards (penalizes) the system in terms of energy, respectively. Additional details about the design 
and properties of f (�θij) have been presented in our prior work18. Consequently, if the hyperedge satisfies the 

(4)

f
�

�θij
�

= lim
σ→0

K−1
�

k=1









�

(2k − 1)π −
2kπ

K

�

.e

−





�

�θij−
2kπ
K

�2

2σ2





+
�

2kπ

K
− (2k − 1)π

�

.e

−





�

�θij+
2kπ
K

�2

2σ2













Table 3.   Equivalence between the higher order Ising spin interaction terms and the equivalent energy 
function.

Second order interactions ( si .sj)

sisj si .sj φiφj cos
(

φi − φj
)

− 1 − 1  + 1 ππ  + 1

− 1 + 1 − 1 π0 − 1

 + 1 − 1 − 1 0π − 1

 + 1 + 1  + 1 00  + 1

Third order interactions ( si .sj .sk)

sisjsk si .sj .sk φiφjφk cos
(

φi − φj + φk
)

− 1 − 1 − 1 − 1 πππ − 1

− 1 − 1 + 1  + 1 ππ0  + 1

− 1 + 1 − 1  + 1 π0π  + 1

− 1 + 1 + 1 − 1 π00 − 1

 + 1 − 1 − 1  + 1 0ππ  + 1

 + 1 − 1 + 1 − 1 0π0 − 1

 + 1 + 1 − 1 − 1 00π − 1

 + 1 + 1 + 1  + 1 000  + 1

Fourth order interactions ( si .sj .sk .sl)

sisjsksl si .sj .sk .sl φiφjφkφl cos
(

φi − φj + φk − φl
)

− 1 − 1 − 1 − 1  + 1 ππππ  + 1

− 1 − 1 − 1 + 1 − 1 πππ0 − 1

− 1 − 1 + 1 − 1 − 1 ππ0π − 1

− 1 − 1 + 1 + 1  + 1 ππ00  + 1

− 1 + 1 − 1 − 1 − 1 π0ππ − 1

− 1 + 1 − 1 + 1  + 1 π0π0  + 1

− 1 + 1 + 1 − 1  + 1 π00π  + 1

− 1 + 1 + 1 + 1 − 1 π000 − 1

 + 1 − 1 − 1 − 1 − 1 0πππ − 1

 + 1 − 1 − 1 + 1  + 1 0ππ0  + 1

 + 1 − 1 + 1 − 1  + 1 0π0π  + 1

 + 1 − 1 + 1 + 1 − 1 0π00 − 1

 + 1 + 1 − 1 − 1  + 1 00ππ  + 1

 + 1 + 1 − 1 + 1 − 1 00π0 − 1

 + 1 + 1 + 1 − 1 − 1 000π − 1

 + 1 + 1 + 1 + 1  + 1 0000  + 1
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Table 4.   Objective functions, corresponding energy expressions, and system dynamics for NAE-K-SAT 
problems for K = 2, 3, 4, and 5. We note that while the form of the expressions for K = 2 and K = 3, as well as 
K = 4 and K = 5 are similar, the coefficients ( cmi ) are different. C is the strength of coupling among the nodes 
whereas Cs represents the strength of the second harmonic injection.

K Objective function, equivalent energy function, and dynamics

2 and 3

Objective function:
H = −

∑M
m=1

∑N
i,j,i<j

(

−cmicmjsisj
)

Energy function:
E = C

∑M
m=1

[

∑N
i,j,i<j cmicmjcos

(

φi − φj
)

+ 1

]

− Cs
2

∑N
i=1 cos(2φi)

Dynamics:
dφi
dt = C

[

∑M
m=1

∑N
j=1 cmicmjsin

(

φi − φj
)

]

− Cssin(2φi)

4 and 5

Objective function:

H = −
�M

m=1







�N
i, j
i < j

�

−cmicmjsisj
�

+
�N

i, j, k, l
i < j < k < l

�

−cmicmjcmkcmlsisjsksl
�







Energy function:

E = C
�M

m=1







�N
i,j,i<j cmicmjcos

�

φi − φj
�

+
�N

i, j, k, l
i < j < k < l

cmicmjcmkcmlcos
�

φi − φj + φk − φl
�

+ 1






− Cs

2

�N
i=1 cos(2φi)

Dynamics:

dφi
dt = C

�M
m=1







�N
j=1 cmicmjsin

�

φi − φj
�

+
�N

i �= j �= k �= l
j < k < l

cmicmjcmkcmlsin
�

φi − φj + φk − φl
�






− Cssin(2φi)

Figure 1.   Evolution of (a) phases ( φ ); (b) energy; (c) number of satisfied NAE-4-SAT clauses for an illustrative 
NAE-4-SAT problem (20 variables and 50 clauses) computed using the proposed dynamical system.
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criterion for the Max-K-Cut i.e., that the nodes that are connected by it belong to at least two sets, the correspond-
ing hm assumes a value of 0 , else hm = 1 . Subsequently, the objective function for the problem, which entails 
maximizing the number of such hyperedges, can be expressed as minimizing H , where,

Figure 2.   Illustrative example showing MaxCut and Max-K-Cut (K=3) on (a) graph; and (b) hypergraph. 
In case of hypergraph, ei denotes the ith hyperedge. Max-K-Cut (K = 2, 3, 4) solutions computed using the 
proposed dynamical system for an illustrative hypergraph. Evolution of phases ( φ ), energy and the Max-K-Cut 
solution, respectively for (c–e) K = 2; (f–h) K = 3; (i–k) K = 4.
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As an example, considering a hypergraph where the maximum number of nodes connected by a hyperedge 
is 3, the objective function for the Max-K-Cut problem can be expressed as:

where,

For a hypergraph with hyperedges having more than 3 nodes, the objective function entails the use of higher 
order interactions among the spins.

To formulate a dynamical system for minimizing the above objective function, we express Re
(

sis
∗
j e

if (�θij)
)

 

as cos
(

�θij + f
(

�θij
))

 . Furthermore, we restrict the configuration space of θ to 2πkK  where k = 1, 2, . . .K − 1 , 
by injecting the Kth harmonic (of sufficient strength) which lowers the energy at specific phase points, as 
described in prior work18. The resulting energy function can be described as,

We note that φ has been used to express the energy function for the dynamical system instead of θ which 
represents the configuration space of the ‘extended spin’. The corresponding dynamics for which the function in 
Eq. (8) is a Lyapunov function are given by:

In the derivation of Eq. (9b), we exploit the fact that ∂f (�φij)
∂φi

= 018. Furthermore, using Eq. (9a), it can be 

shown that dEdt = −
∑N

i=1

(

dφi
dt

)2

≤ 0 (similar to Eq. (3)).
We now evaluate our proposed model on a representative hypergraph. We consider a hypergraph where each 

hyperedge has 3 vertices. The corresponding dynamics for this case can then be written as,

Figure 2c–k also shows the computed Max-K-Cut (for K = 2, 3, and 4) for a hypergraph instance (with 10 
nodes, and 20 hyperedges). The illustrative problem has a maximum of 4 nodes per hyperedge. Details of the 
simulation used to simulate the illustrative Max-K-Cut problem are described in Supplementary 4.

(5)H =
M
�

m=1

hm ≡
M
�

m=1

N−1
�

i=1

N
�

j=i+1



1− cmicmj





1− Re
�

sis
∗
j e

if (�θij)
�

2









(6)

H =
M
�

m = 1, i �= j �= k
cmi , cmj , cmk �= 0



1− cmicmj





1− Re
�

sis
∗
j e

if (�θij)
�

2









�

1− cmicmk

�

1− Re
�

sis
∗
ke

if (�θik)
�

2

��



1− cmjcmk





1− Re
�

sjs
∗
ke

if (�θjk)
�

2









(7)

f
�

�θij
�

= lim
σ→0

2
�

k=1









�

(2k − 1)π −
2kπ

3

�

.e

−





�

�θij−
2kπ
3

�2

2σ2





+
�

2kπ

3
− (2k − 1)π

�

.e

−





�

�θij+
2kπ
3

�2

2σ2













(8)E = A

M
∑

m=1

N−1
∏

i=1

N
∏

j=i+1

(

1− cmicmj

(

1− cos(�φij + f (�φij))

2

))

−
As

K

N
∑

i=1

cos(Kφi)

(9a)
dφi

dt
= −

∂E

∂φi

(9b)

dφi

dt
=

A

2

M
�

m=1

N
�

j=1,j �=i



cmicmjsin
�

�φij + f
�

�φij
�� hm

�

1− cmicmj

�

1−cos(�φij+f (�φij))
2

��



−Assin(Kφi)

(10)

dφi

dt
=

A

2

M
∑

m=1

[

cmicmjsin
(

�φij + f
(

�φij
))

(

1− cmicmk

(

1− cos
(

�φik + f (�φik)
)

2

))

(

1− cmjcmk

(

1− cos
(

�φjk + f
(

�φjk
))

2

))

+ cmicmksin(�φik + f (�φik))

(

1− cmicmj

(

1− cos(�φij + f (�φij))

2

))(

1− cmjcmk

(

1− cos(�φjk + f (�φjk))

2

))]

− Assin(Kφi)



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9558  | https://doi.org/10.1038/s41598-023-36531-4

www.nature.com/scientificreports/

Conclusion
In this work, we develop computational models for Ising machines that consider higher order interactions 
(beyond quadratic/pairwise) among Ising spins. Our approach enables the direct formulation of analog com-
puting models for many COPs that entail such interactions without the need for problem decomposition and 
reduction. Furthermore, using the combination of higher order interactions along with ‘expanding’ the number 
of ‘spin’ states to greater than 2, we can directly map and solve an even broader class of problems on hypergraphs. 
This has been summarized in Fig. 3. While the focus of the present work was to develop dynamical systems as 
higher order Ising machines, evaluating the scalability of this approach i.e., its ability to solve larger graphs will 
be crucial to its eventual success and utility. As the graph sizes increase, the role of local minima in the high 
dimensional phase space becomes increasingly important. The system dynamics may get trapped in such minima 
resulting in sub-optimal solutions. Furthermore, identifying the optimal range for the parameters ( C and Cs ) in 
larger systems may also become more challenging. Eventually, these factors will also ascertain the performance 
benefits of this approach over traditional digital algorithms used to solve such problems. A systematic study to 
evaluate the scalability of this approach and its comparison with digital methods will be undertaken in the future. 
In the context of the broader effort focused on developing dynamical system-inspired models for solving hard 
COPs, this work expands on the potential of physics-inspired solvers to accelerate COPs.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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