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Full‑scale network analysis reveals 
properties of the FV protein 
structure organization
André J. Ferreira‑Martins 1,4, Rodrigo Castaldoni 1,4, Brenno M. Alencar 2, Marcos V. Ferreira 2, 
Tatiane Nogueira 2, Ricardo A. Rios 2 & Tiago J. S. Lopes 3*

Blood coagulation is a vital process for humans and other species. Following an injury to a blood 
vessel, a cascade of molecular signals is transmitted, inhibiting and activating more than a dozen 
coagulation factors and resulting in the formation of a fibrin clot that ceases the bleeding. In this 
process, the Coagulation factor V (FV) is a master regulator, coordinating critical steps of this process. 
Mutations to this factor result in spontaneous bleeding episodes and prolonged hemorrhage after 
trauma or surgery. Although the role of FV is well characterized, it is unclear how single-point 
mutations affect its structure. In this study, to understand the effect of mutations, we created a 
detailed network map of this protein, where each node is a residue, and two residues are connected 
if they are in close proximity in the three-dimensional structure. Overall, we analyzed 63 point-
mutations from patients and identified common patterns underlying FV deficient phenotypes. We 
used structural and evolutionary patterns as input to machine learning algorithms to anticipate 
the effects of mutations and anticipated FV-deficiency with fair accuracy. Together, our results 
demonstrate how clinical features, genetic data and in silico analysis are converging to enhance 
treatment and diagnosis of coagulation disorders.

Humans and other species are equipped with blood coagulation, a complex and elegant mechanism to stop 
bleeding following an injury to a blood vessel. In response to injury to the endothelial layer surrounding blood 
vessels, Tissue factor pathway inhibitor (TFPI) is produced and triggers the sequential activation of more than a 
dozen other proteins to form a stable fibrin clot1. The elements of this highly orchestrated system are vulnerable 
to perturbations that disrupt its proper functioning. Patients harboring mutations on the coagulation factor 5 
gene (F5), develop the so-called FV-deficiency, a rare coagulation disorder causing hemorrhages and uncontrolled 
bleeding. At present, there are ∼400 cases described in the medical literature, but given the difficulty of diagnosis 
and characterization of mutations even in developed countries, this number is likely much higher.

In humans, the F5 gene is located on the chromossome 1 at 1q23, with 80,000 base pairs and 25 exons encod-
ing a 7 kb mRNA2,3. The FV protein has 2224 amino acids (2196 in its mature form, after the trimming of a signal 
peptide at its N-terminus), and 5 domains (A1, A2 A3, B, C1, C2), that with the exception of the B-domain, share 
≈ 40% identify with the Coagulation factor VIII (ref.4). Apart from a small proportion of FV that is located within 
the alpha-granules of platelets5, it mainly circulates as a single-chain polypeptide of 330 kDa (ref.5).

The underlying biology of this protein is fascinating because it exerts opposing functions depending on the 
stage of its life-cycle. After the coagulation cascade is triggered, thrombin and the activated blood coagulation 
factor X (FXa) activate FV via a proteolytic cleavage that releases its B-domain. From this point onward, its acti-
vated form (FVa) and FXa form the so-called prothrombinase complex, that bind and convert prothrombin to 
thrombin6. The presence of FVa enhances this reaction more than 5-fold7, making it a key pro-coagulant factor. 
Later on, FVa is inactivated by the activated Protein C (APC), that cleaves specific portions of FVa and turns it 
into FVac, a form that associates with APC and Protein S to inactivate FVIIIa - turning FVac into anti-coagulant 
molecule8.

Patients with FV-deficiency usually do not present a bleeding phenotype as severe as those with hemophilia A 
or B. Instead, FV-deficiency is associated with bleeding in the oral mucusa, menorrhagia, and hemorrhages after 
surgical procedures - often where the disorder is diagnosed for the first time9. At present, there are no recom-
binant proteins for prophylactic treatment, instead, patients rely on fresh-frozen plasma products, bypassing 
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agents like recombinant FVIIa, or activated prothrombin concentrates (FEIBA)10–12. Although critical for routine 
therapy and pre- or post-surgery treatment, these alternatives present major drawbacks, like the risk of viral 
infections, unclear mechanism of action and difficulty in establishing appropriate treatment doses. Hence, it is 
clear that efficient and affordable therapeutic versions of FV would be beneficial to patients.

In this study, we aimed to understand the fine details of this protein and elaborate a comprehensive map 
describing the importance of every FVa residue. With this goal in mind, we created a residue interaction net-
work (RIN) of this protein, where the residues are the nodes, and two nodes are connected if they are in close 
proximity in the protein’s 3D structure. This representation can be explored by network analysis algorithms 
that are very mature and have been used to identify emerging properties of networks created by humans (e.g., 
energy grids13), as well as biological networks (reviewed in ref.14). We identified the critical residues of FV and 
pinpointed the characteristics of the residues that if mutated, lead to FV-deficiency. Moreover, together with the 
structural characteristics of this protein, we implemented a machine learning framework (ML) to predict the risk 
of FV deficiency in patients harboring single-point mutations (we called it the FV-Class). As we verified using 
the genetic profile of more than 60 patients from different countries, this system predicted with good accuracy 
the extent which mutations lead to the loss of FV function.

Together, the contributions of our study are two-fold. First, it presents in quantitative terms the importance 
of the residues of FVa, serving as a roadmap for targeted mutations aiming to improve the activity and stabil-
ity of FV, and second, the FV-Class framework is the basis of sequence based diagnosis, and demonstrates the 
feasibility of using artificial intelligence even where the input data is scarce - as is often the case for rare diseases. 
Importantly, we made the FV-Class code available to the community, anticipating that researchers will repurpose 
it to study other diseases.

Results
The FV protein network.  To study the details of the FV protein structure, we create a RIN of this protein 
using the PDB entry 7KVE as input15. We used the Rosetta software package to “relax” the side chains of all its 
residues (i.e., we searched for the rotamers orientations that minimized the overall free-energy of the structure). 
Next, we used RINerator (ref.16) to create the FV-RIN in three steps. First, hydrogen atoms were added to the 
structure to allow the identification of non-covalent interactions between residues; these non-covalent interac-
tions were identified using a probe of radius  0.25 Å rolled around the van der Waals surface of each residue. An 
edge was then established if two non-covalently bonded atoms were touched by the probe; in the last step, these 
interactions were summarized and composed the edges of the network. Additionally, the interactions between 
residues were of 3 types, i.e., side-chain - side-chain, side-chain - main-chain or main-chain - main-chain. In the 
end, the FV-RIN had 1374 nodes, 4416 edges, the distance between interacting residues was ∼5 Å and all edges 
were undirected and unweighted (Fig. 1A; Supplementary Table S1 contains the complete FV network and Sup-
plementary Figure S1 contains a comparison to a weighted version of the network).

Previous studies have demonstrated that the centrality measures of residues in a RIN play an important 
role in the identification of residues that influence protein conformation17, interaction with other proteins18 
and stability19–21. Therefore, to identify the key residues of the FV structure, we calculated for each nodes in the 
network the degree, betweenness, closeness, Burt’s constraint, Page Rank-like, KCore, and Authority Score (see 
Methods).

Interestingly, we found that although these measures were calculated based on different principles, some of 
them were correlated to each other in the FV-RIN (Fig. 1B). In practice, this indicates that for further analyses, 
it suffices to use only simple and well-studied centrality measures. The degree measures the number of neighbors 
of a given node; the betweenness quantifies how often a node is in the shortest path between all pairs of nodes; 
and the closeness is the average length of the shortest paths between a given node and all other nodes in the net-
work (Fig. 1C). In terms of protein architecture, the degree is a local measure quantifying the number of atomic 
interacting partners of a residue, and the betweenness and closeness provide global measures indicating how 
a given residue contributes to the overall stability and allosteric forces maintaining the structure in place22–24. 
Therefore, these measures can appropriately and concisely describe the FV-RIN.

Identification of critical residues.  After creating the FV-RIN and determining the most appropriate 
centrality measures to quantify the position of its residues, we aimed to group the FV amino acids according 
to their centrality characteristics (Supplementary Table S2); this should facilitate the analysis of the different 
regions of the FV protein, as well as uncover the relation between an amino acid’s position within the network 
and the disease that ensues upon a non-synonymous mutation. For this purpose, we elaborated a procedure that 
automatically identifies critical residues within 3 different criticality levels, namely, those with high degree and 
high betweenness (HDHB); low degree and high betweenness (LDHB); and low degree and low betweenness 
(LDLB). This procedure automatically divides the degree/log-betweenness space into 4 uniform bins (Fig. 2A). 
In the full FV-RIN, this technique yielded 63 residues classified as HDHB, 19 as LDHB and 34 LDLB (Fig. 2B). 
In biological terms, it means that HDHB residues are conserved, located at the core of FV, take part in multiple 
atomic interactions with other residues, and serve as bridges for long-range contacts between residues located 
far apart in the structure (Fig. 2C–D). The LDHB residues are located in an intermediate layer between the 
core of FV and its surface, and despite its low number of direct connections, they seem pivotal in maintaining 
the surface residues in place25,26. Finally, the LDLB residues are mainly surface residues, taking part in only a 
few inter-atomic interactions and not central in the protein structure organization (although they compose the 
protein’s binding sites26).
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Together, these findings indicate that the degree and the betweenness can successfully assign a quantitative 
measure to every and each residue of FV, turning the abstract concepts of ’core’ and ’surface’ into clear numerical 
values that can be used for further analyses.

Next, we wondered what are the most critical residues of the whole FV protein structure. To answer this ques-
tion, in addition to the degree and the betweenness, we added the closeness values to the analysis of criticality 
of the residues — this should quantify the importance of residues from a local (i.e. degree) as well as a global 
connectivity perspective (betweenness and closeness). We used the Pareto front to find which residues had 
the highest values in terms of degree, betweenness and closeness values (Fig. 2E); we named theses residues as 
supercritical. In the FV-RIN, 8 residues were found to meet this criteria: Met618, Phe1745, Val1814, Leu1836, 
Leu1837, Phe1872, Leu1873 and Ile1944. As Fig. 2B depicts, the supercritical residues are buried deep in the 
core and while they are relatively conserved, they are not the most conserved residues of FV, and most likely 

Figure 1.   From the protein structure to a residue network. (A) The FV protein has 5 domains that share a 
strong structural similarity to FVIII, albeit they only share ∼40% of sequence similarity4. Using the structure 
7KVE as input (ref.15), we created a residue network as an undirected unweighted graph, where the residues 
are the nodes, and two nodes are connected by an edge if they are in close spatial proximity in the three-
dimensional space (we named it FV-RIN). (B) We calculated multiple measures of centrality to quantify the 
importance of each node of the FV-RIN. These measures, based on different principles of local and global 
connectivity, displayed a moderate Spearman correlation to each other, which led us to select only a few 
well-known measures for the analyses. (C) The degree is simply the number of neighbors a node has, and the 
betweenness counts the number of shortest-paths from every node that pass through a given node. Hence, 
nodes with high degree and high betweenness values are among the most central residues in the protein 
structure.
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work in conjunction with other less connected but important residues to maintain the FV structure and function 
(Supplementary Figure S2).

From these observations, we understand that centrality measures derived from the FV-RIN are able to iden-
tify residues that exert a critical function in the FV structure. Moreover, it is reassuring to verify that the critical 
residues identified in the FV-RIN are located within the core of the protein and have changed very little during 
the course of millions of years of evolution, corroborating that the centrality measures can indeed uncover 
features that have biological meaning.

Mapping of mutation data into the FV‑RIN.  Finally, we investigated what is the effect of non-synony-
mous amino acid substitutions in the function of FV. We manually gathered all single-point missense mutations 
reported in the European Association for Haemophilia and Allied Disorders database (EAHAD), and after a 
careful data sanitation to eliminate duplicate and ambiguous records, we consolidated a dataset with 63 unique 
mutations. We asked what are the structural, evolutionary and centrality characteristics of the residues where 
these substitutions occurred, and how they compare to other positions in the FV protein. We found a clear pat-
tern that strongly associates the occurrence of FV-deficiency and the position where a mutation happens (Fig. 3).

Our results show that most substitution of residues located near the core of the protein lead to FV-deficiency, 
and this is explained by the fact that these residues have low surface exposure, are highly central in the FV-RIN, 
and are conserved — the hallmarks of residues that hold protein structures structure in place. Moreover, we found 
an overlap of ∼17% between the FV-deficiency and the central residues (i.e., the HDHB and LDHB groups). We 
found no overlap between the supercritical residues and the FV-deficiency residues; we hypothesize that muta-
tions at these residues would lead to a complete non-functional FV-protein (a lethal mutation), or we do not see 
a larger overlap simply because the groups are too small.

Figure 2.   Quantifying the residues’ importance. (A) We automatically divided the centrality values into 4 
bins to identify the groups highlighted. In the log-betweenness and degree dimensions, the intervals were 
(−0.484, 0.886) and (1.988, 4.75) for LDLB; (3.613, 4.977) and (1.988, 4.75) for LDHB; (3.613, 4.977) and 
(10.25, 13.0) for HDHB. (B–C) The HDHB nodes are mainly located at the core of all domains of the FV protein 
structure, and play a pivotal role in maintaining the structure in place via attractive and repulsive atomic forces. 
The LDHB nodes are those that despite being connected to only a few nodes, are central to the long-range 
communication network formed by all residues. Finally, the LDLB residues are located at the surface of FV, 
with only a few connections and are usually not conserved (Supplementary Tables S2–S3). (D) The closeness 
centrality is the inverse of the steps necessary to reach every other node in the FV-RIN. Therefore, the most 
central residues of the protein structure display high closeness values. Using the Pareto front to evaluate the 
closeness, the degree and the betweenness values of all nodes, we arrive at the most central, well-connected and 
critical residues of the FV-structure, located at the junction of multiple domains, and most likely holding the 
structure in its most favorable conformation. Abbreviations: High degree and high betweenness (HDHB); low 
degree and high betweenness (LDHB); low degree and low betweenness (LDLB); Solvent accessible surface area 
(SASA). Statistics: One-way ANOVA followed by Tukey’s Post Hoc test. *** p value < 0.001.
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Nevertheless, we listed the centrality values, structural and evolutionary features of all FVa residues, effec-
tively building a resource that the community can examine and use for their own research (Supplementary 
Tables S2–S3).

In summary, these observations demonstrate the feasibility of using measures derived from the FV structure, 
as well as from its evolutionary history to study the basal mechanism leading to FV-deficiency. Similar to other 
proteins involved in the coagulation cascade27,28, mutations at the core residues of FV hampers its ability to 
participate in key interactions, most likely because its structure and correct folding are disrupted.

Predicting the effect of new mutations.  After relating the occurrence of FV-deficiency to the central-
ity properties of the FV-RIN and to the structural and evolutionary measures of its residues, we wondered if we 
could use all these features in conjunction to predict the effect of new mutations. In practice, these predictions 
serve two purposes; first, it could anticipate the manifestation of FV-deficiency in patients harboring new single-
point, non-synonymous mutations in the F5 gene; and second, by understanding which mutations are more 

Figure 3.   The hallmarks of residues associated to FV-deficiency. The figure depicts a comparison of structural, 
evolutionary and network centrality properties of the FV residues associated to FV-deficiency (n=63), compared 
to those without FV-deficiency reported ( n = 1254 ). The substitution of residues with low surface-exposed and 
surface accessible areas (i.e., the core residues), often lead to the loss-of-function of proteins67 (panels A-C). 
Likewise, mutations of the most central residues, as indicated by multiple centrality measures derived from 
the FV-RIN, are also related to the occurrence of FV-deficiency (panels D-H). Finally, in agreement with these 
observations, substitutions of the most conserved residues of FV are also likely to impair the functions of FV 
(panel I, where low values indicate high conservation). The p-values are derived from a statistical comparison 
designed to minimize the effect of different group sizes (i.e., the bootstrap hypothesis testing45,46; see Methods). 
*** p value < 0.001; ** p value < 0.01; * p value < 0.05. Abbreviations: SESA, solvent exposed surface area; SASA: 
Solvent accessible surface area. Supplementary Tables S2–S3 contain all measures used in the study.
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likely to impair FV’s function, researchers can avoid these substitutions when performing targeted mutations 
aiming to improve FV’s activity, stability and half-life. In fact, as we did for Coagulation factors VIII and IX 
(FIX) (refs.27–29), these predictions create a comprehensive map of the protein regions that are harmful or safe 
to substitute.

For this purpose, we devised a full-scale machine learning (ML) framework with different underlying classifier 
algorithms and training regimens — we named this framework FV-Class (Fig. 4A). A ML classifier algorithm 
work by tuning its parameters in a way that allows the classifier to learn intrinsic data patterns from a set of 
examples (the training set). After the algorithms converge (i.e., achieve good accuracy on the training set), its real 
performance is then assessed on a set of examples not seen during the training phase (the so-called test-set). In 
our case, we prepared a dataset where the features were the network centrality measures, the structural and evo-
lutionary characteristics of FV, and the class label to be predicted was the presence or absence of FV-deficiency. 
This dataset presented two challenges that are notorious in the ML field30, first, a small number of examples, and 
second, imbalanced classes (i.e, 63 FV-deficiency against 1254 non-FV-deficiency cases).

We addressed this issue by implementing the FV-Class using a series of pre-processing steps and careful train-
ing routines (see Methods). In brief, we varied both the pre-processing routine as well as the estimator used to 
train the model. In all cases, we standardized the features (null mean and unit standard deviation) to eliminate 
biases induced by data scales. For the pre-processing, we considered 4 different combinations: using PCA or not 
for dimensionality reduction, and using oversampling or not for balancing the classes. The ADASYN31 strategy 
was used to oversample the minority class until balance was achieved. For the estimators, we used the following 
classifiers: Decision Tree32; Random Forest33; Extreme Gradient Boosting (XGBoost)34; Support Vector Machine 
(SVM)35 and k Nearest Neighbors (kNN)36. To tune the estimators’ hyperparameters, we first employed a Grid-
Search strategy with 10-fold stratified cross-validation (given the target imbalance). The mean validation Area 
Under the Receiver Operating Characteristics Curve (AUC) was used as criterion for choosing the best set of 
hyperparameters (see Methods).

Figure 4.   The FV-Class AI framework. (A) The first and most critical step to use predictive ML algorithms 
is to prepare a clean, highly informative dataset. We used the structural characteristics of the FV structure15 
(PDB: 7KVE), as well as centrality measures derived from the FV residue network, and a score quantifying the 
evolutionary conservation of its residues. In this dataset, we had 63 unique instances representing single-point 
mutations of FV-deficient patients and ∼1250 residues where no FV-deficiency was reported (Supplementary 
Table S4). After careful curation and standardization, this dataset was ready to be inputted into multiple ML 
classifier algorithms. (B) We performed a comprehensive parameter optimization to find the best settings for the 
FV-Class; this yielded AUC values that demonstrate a favorable learning prospect for all algorithms (Methods). 
In particular, the Support Vector Machine (SVM) obtained the highest value. (C–D) Here, each dot is a residue 
of the FV protein, and the boxplots depict the number of ML classifiers that predicted a loss-of-function if those 
residues are mutated; for instance, in red are the residues predicted to be safe to substitute, and in magenta, 
those that will most likely impair FV’s functions (in general, the most conserved residues, buried at the core of 
the structure). Abbreviations: DT: Decision trees32; KNN: K-nearest neighbors36; RF: Random forest36; XGB: 
XGBoost34.
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In the AUC, a value of 0.5 indicates a random prediction, while a value of 1.0 represents a perfect classification. 
In our case, after a comprehensive grid-search procedure, we found that our models achieved fair AUC values in 
the range of 0.65-0.69, suggesting that while the results do not reach the necessary level required for clinical FV-
deficiency diagnosis, the classifiers learned the intrinsic features of the data (Fig. 4B). Moreover, we also used an 
existing program37 (Polyphen-2) to anticipate the effect of single-point, non-synonmous mutations, however, its 
output scores could not distinguish the different phenotypes caused by FV-deficiency (Supplementary Figure S3). 
We also devised an alternative ML framework with a different training regimen and that uses both supervised 
and unsupervised algorithms, but the AUC was not superior to the current FV-Class setup, highlighting the dif-
ficulty in fully anticipating the occurrence of this condition (Supplementary Results). Nevertheless, we regard 
as encouraging the fact that the FV-Class algorithms achieved this AUC value despite the dramatic limitations 
in the size of the input dataset. For this reason, we implemented the FV-Class framework in a way that it is 
straightforward to be retrained as soon as new clinical and genetic data becomes available.

Finally, we used the current FV-Class framework to anticipate the effect of mutations on residues not listed 
in any database. This exercise is particularly interesting to aid in the generation of recombinant FV proteins, 
because it can dramatically reduce the number of candidates to be validated in in vitro and in vivo assays. For 
this purpose, we used all ML classifiers in conjunction, and counted the number of classifiers that predicted 
mutations to a given residue to be detrimental to FV’s functions (Fig. 4C–D).

To achieve this goal, we utilized 5 ML classifiers in conjunction to predict the chances of a substitution being 
detrimental to FV’s function. Our findings revealed that ∼40% of residues were deemed safe to substitute — 
i.e., they were predicted by all 5 classifiers as having low probability of causing harmful effects, possibly due to 
favorable structural, evolutionary and network centrality characteristics. Additionally, we found that 33% of 
residues presented an intermediate prospect of being harmful, and less than 1% of residues were classified as 
detrimental by all algorithms (the most conserved and buried residues of FV). We assigned a quantitative score to 
each residue, effectively ranking them based on their potential to disrupt FV’s activity (Supplementary Table S5); 
if considered in conjunction with other factors like the structural, evolutionary, and centrality measures, these 
results reveal the most promising regions for targeted mutations.

In summary, these findings demonstrate that using multiple features derived from the FV protein is a power-
ful strategy to anticipate the risk of FV-deficiency in patients harboring non-synonymous mutations. Moreover, 
it is interesting that the FV-Class identified regions of the FV protein that are more vulnerable to amino acid 
substitutions — and these findings are in agreement with the common knowledge about the role of the different 
parts of the protein architecture.

Discussion
In this study, we created a comprehensive map of the FV protein structure, effectively quantifying the importance 
of its residues and associating their substitution to the occurrence of FV-deficency. We created a residue network 
where the residues of FV are connected if they are in close proximity in the three-dimensional space; we used 
multiple algorithms to quantify the position of each residue within this network, and observed that the hub resi-
dues — i.e., those conserved and located at the core of the structure — are usually associated to loss of function 
if mutated to a different amino acid. Finally, we established a machine learning framework (the FV-Class) that 
took as input multiple features from FV and single-point non-synonymous substitutions from FV-deficiency 
patients, and anticipated with reasonable accuracy the effects of novel mutations in this protein.

The idea of transforming a protein structure into an undirected graph has been explored previously and 
has proven itself to be a powerful method to quantify the importance of the thousands of residues (Fig. 1). In 
our previous studies, we found a strong association between the measures derived from residue networks and 
the loss-of-function of the FVIII, FIX and Antithrombin (AT) proteins27,28,38. Likewise, we found that residues 
associated to FV-deficiency are conserved, buried at the core and take part in multiple inter-atomic interactions 
(Fig. 3). This impairment of function is an underlying property of different network systems, including electric-
ity grids39 and transportation networks40, where perturbations to the most connected nodes disrupt the layout 
and communication of the whole system. As we observed for FV, this seems to be the case, and while current 
datasets do not have enough resolution to anticipate precisely which function will be disrupted, the emerging 
picture indicates that substitutions of the most central residues impairs FV’s activity.

Compared to our previous studies27,28, the present work was by far the most challenging, given the rarity of 
FV-deficiency. In turn, this required us to use more strict statistical procedures and to develop a robust machine 
learning framework. In particular, the current FV-deficiency dataset had two notorious characteristics known 
to impair classifier algorithms’ performance30: imbalanced classes and a small sample size in one of the classes 
(63 FV-deficiency cases vs 1254 non-deficiency residues). Nevertheless, the FV-Class still achieved an AUC 
value of 0.69, indicating that its underlying algorithms were learning the patterns that relate the characteristics 
of residues in the FV protein to its loss-of-function. Importantly, we designed this framework as an open-source 
tool that can be used to study other diseases, and be retrained as soon as new FV-deficiency cases are reported 
in the biomedical literature.

While the FV-Class and the FV-RIN are not yet suitable for routine diagnosis in clinical settings, we still 
regard it as useful for researchers interested in generating recombinant FV molecules that display enhanced 
activity and stability. For instance, the FV map that we created (Supplementary Table S5), serves as a valuable 
resource to eliminate recombinant candidates that substitute residues with high centrality measures and that are 
evolutionary conserved, given that they are likely to lead to non-functional proteins (Fig. 4C–D). Therefore, while 
it is not feasible at present for any computational tool to anticipate mutations that are beneficial41, the FV-Class 
helps reduce the number of candidate molecules that will be tested in wet-lab experiments.
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Finally, the present study opens interesting research avenues. First, the use of blood marker parameters to 
enhance the predictive power of ML algorithms. Parameters like D-dimer, aPTT and levels of circulating coagula-
tion factors are known to play a major role in the outcome of coagulation disorders42,43; hence, adding them to the 
the input of the FV-Class is likely to enhance its capacity. Second, isolate the pro- and anti-coagulant functions 
of FV. As this protein exerts multiple roles depending on the stage of its life-cycle6–8, studying separately the 
network centrality and the role of its binding sites might uncover the aspects of the FV biology responsible for 
its opposing functions. Moreover, although our FV-RIN was built using a single conformation of the FV struc-
ture, proteins exist in multiple possible conformations (i.e., the ensembles). These conformations dynamically 
change the landscape of atomic interactions in the structure44. Computational molecular dynamics techniques 
can sample from conformational ensembles and build multiple RINs that might reveal which residue interactions 
are stable or only transient. Although not explored in this study, this remains an exciting approach to strengthen 
the datasets used as input to the ML algorithms. Third, not all mutations happen on coding regions, hence, add-
ing information about the promoter regions, RNA folding and splicing sites are features that albeit challenging 
to represent, are certainly exciting research prospects.

In summary, by studying the FV protein from a computational perspective and using the knowledge of FV-
deficiency cases accumulated over the years, we uncovered patterns of this critical component of the coagulation 
system. By quantifying and ranking residues according to their importance, we feel confident that the research 
community will generate sound hypotheses that can be tested using a fraction of the resources otherwise needed.

Methods
Statistical analyses.  To compare the structural, evolutionary and network measures from Fig.  3, we 
used a statistical method less influenced by large differences in sample sizes. As a form of bootstrap hypothesis 
testing45,46, for each centrality measure separately, we randomly selected from the larger group (”No deficiency 
reported, n = 1254 ), the same number of elements as the smaller group (FV-deficiency, n = 63 ), and compared 
their mean values. We repeated this procedure 10,000 times and the derived p-values were the number of times 
that the median of the larger group was greater than the median of the FV-deficient group, divided by 10,000.

Calculation of the FVIII protein structure properties.  We used the FV protein structure deposited in 
the PDB with the accession code 7KVE (ref.15), and performed a side-chain readjustment (also known as “relax”) 
using Rosetta47. We selected the model with the lowest free energy for further analyses, and used Chimera ver-
sion 1.15 (ref.48) to calculate and extract the following residues’ structural properties: kdHydrophobicity, solvent 
accessible and solvent-excluded surface areas, dihedral angles phi and psi, and the relative SESA, which was 
calculated by dividing the solvent-excluded area of the residue by the surface area of the same type of residue in 
a reference state (we considered the reference values of the 20 standard amino acids in Gly-X-Gly tripeptides)49.

The FVIII residue interaction network.  The FV structure was represented as an undirected unweighted 
graph constructed using RINerator version 0.5.116 with the default parameters. We considered two residues as 
interacting partners if there was an edge between them in the graph. The RIN was analyzed with the Python 
iGraph50 package (version 0.9.6). The graph was simplified to remove redundant edges and self interactions. We 
calculated the following centrality measures: degree, betweenness, closeness, KCore, Burt’s constraint, Authority 
Score and Page Rank-like score. Cytoscape version 3.8.251 was used to visualize the RIN. The conservation score 
was obtained from the ConsurfDB webserver52, using the FV protein structure as input.

Construction of the machine learning framework.  In supervised learning, we are interested in pro-
ducing a model given by the hypothesis function f : X → Y which better relates the features (in the feature 
space X ) to the target (in the target space Y ), based on the available dataset (xi , yi)Ni=1 . In our case, we used as 
features: the residues’ structural properties (given by Chimera48); the centrality measures (given by iGraph50) 
and the conservation score (given by the ConsurfDB webserver52), totaling 14 features. The target was binary: 1 
if a mutation in a given residue position in FV was observed, and 0 otherwise. We had N = 1317 instances, and 
the target was heavily imbalanced: 1254 ( 95.22% ) observations in class 0 and 63 ( 4.78% ) in class 1. Fifty-seven 
instances were discarded because they had missing values due to problems in the underlying 3D structure model 
(i.e., errors in the Cryo-EM structure determination), or the value 0 in the betweenness centrality.

All the main modeling tools were used from the Python53 package scikit-learn54 (version 1.0.2) and imbal-
anced-learn55 (version 0.9.0).

For the estimators, the following classification methods were used: Decision Tree32; Random Forest33; Extreme 
Gradient Boosting (XGBoost)34; Support Vector Machine (SVM)35 and k-Nearest Neighbors (kNN)36. To tune 
the estimators’ hyperparameters, we first employed a Grid-Search strategy with 10-fold stratified cross-validation 
(given the target imbalance). The mean validation AUC was used as criterion for choosing the best set of hyper-
parameters. The hyperparameter grids tested for each one of the estimators were the following (all the unspecified 
hyperparameters were left as their default values in the scikit-learn implementation):

For the Decision Tree, we varied the splitting criteria (Gini impurity or entropy), the minimum number of 
samples in a node for a split to be considered (varied from 2 to 50), the minimum number of samples in a node 
for it to be considered a leaf (varied from 1 to 20), and the cost-complexity pruning56 parameter (varied in the 
range (1, 0.1, 0.01, 0.001, 0.0001)).

For the Random Forest, we varied the number of trees in the ensemble (from 50 to 1500, with a step of 50), 
the number of features in the random subset of features considered as candidates for each split (from 2 to 7), and 
the minimum number of samples in a node for it to be considered a leaf (varied from 1 to 10);
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For the XGBoost, we varied the maximum depth of the trees in the ensemble (varied from 1 to 25), the 
L2 regularization weight (varied in the range (1, 0.1, 0.01, 0.001, 0.0001)) and the learning rate (in the range 
(1, 0.1, 0.01, 0.001, 0.0001)).

For the SVM, we varied the kernel function (polynomial or Radial Basis Function), the γ kernel coefficient 
(varied from 0.01 to 1.5, with a step of 0.05), the degree of the polynomial kernel (varied from 2 to 5), the inde-
pendent term in the polynomial kernel (varied from 0.1 to 2, with a step of 0.05).

For the kNN, the only hyperparameter varied was the number of neighbors considered in the classification 
(from 3 to 50).

The classification metrics (AUC) presented for each one of the tuned classifiers were calculated with 10-fold 
stratified cross-validation. The mean and standard deviation of the metrics were reported.

We also employed Bayesian optimization with the library Hyperopt57 (version 0.2.7) as an alternative strat-
egy for optimizing the estimators’ hyperparameters. Hyperopt’s implementation uses Tree of Parzen Estimators 
(TPE)58 as surrogate model. We did 50 evaluations over an extended hyperparameter space for each one of the 
estimators.

Programming language and packages.  To create the graph using the RINerator software, we used 
Python 2.7.1859 with the NumPy60 (version 1.16.6) and Biopython61 (version 1.59) packages. The other calcula-
tions, figures and analysis were done with Python 3.9.953 using the following packages: Hydra62 (version 1.1.1), 
Pandas63 (1.3.5), NumPy60 (version 1.21.4), Igraph50 (version 0.9.6), Scikit-Learn54 (version 1.0.2), Imblearn55 
(version 0.9.0), XGBoost34 (version 1.5.2), Seaborn64 (version 0.12.1) and Matplotlib65 (version 3.6.0). We pre-
pared a DockerFile66 to facilitate the instalation and reproduction of the results of this study.

Data availability
The source code and datasets used in the study are freely available at https://github.com/madlopes/FV-Class.
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