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Towards automated long‑term 
acoustic monitoring of endangered 
river dolphins: a case study 
in the Brazilian Amazon floodplains
Florence Erbs 1, Marina Gaona 1,2, Mike van der Schaar 1, Serge Zaugg 1, Emiliano Ramalho 2, 
Dorian Houser 3 & Michel André 1*

Using passive acoustic monitoring (PAM) and convolutional neural networks (CNN), we monitored 
the movements of the two endangered Amazon River dolphin species, the boto (Inia geoffrensis) and 
the tucuxi (Sotalia fluviatilis) from main rivers to floodplain habitats (várzea) in the Mamirauá Reserve 
(Amazonas, Brazil). We detected dolphin presence in four main areas based on the classification 
of their echolocation clicks. Using the same method, we automatically detected boat passages 
to estimate a possible interaction between boat and dolphin presence. Performance of the CNN 
classifier was high with an average precision of 0.95 and 0.92 for echolocation clicks and boats, 
respectively. Peaks of acoustic activity were detected synchronously at the river entrance and channel, 
corresponding to dolphins seasonally entering the várzea. Additionally, the river dolphins were 
regularly detected inside the flooded forest, suggesting a wide dispersion of their populations inside 
this large area, traditionally understudied and particularly important for boto females and calves. 
Boats overlapped with dolphin presence 9% of the time. PAM and recent advances in classification 
methods bring a new insight of the river dolphins’ use of várzea habitats, which will contribute to 
conservation strategies of these species.

In recent years, the International Union for the Conservation of Nature (IUCN) reassessed the status of the two 
river dolphin species of the Amazon, the pink river dolphin (Inia geoffrensis) and the tucuxi (Sotalia fluviatilis) 
from ‘Data deficient’ to ‘Endangered’1,2. With these new categorizations, all five remaining river dolphin species 
are now officially considered threatened with extinction. This alarming situation reflects the intricate combina-
tion of direct and indirect threats posed to river dolphins worldwide where conflict with commercial fisheries 
(i.e. competition for resources and damages to fish nets)3–6 are aggravated by the high level of anthropogenic 
pressure on tropical freshwater  ecosystems7. In the Amazon basin, the main direct threats on river dolphin 
populations are being captured for bait in the commercial fishery of piracatinga Calophysus macropterus and 
entanglements in  gillnets3,8–13. Furthermore, disruption of hydrological connectivity through dam construction, 
mining, agriculture and cattle ranching is profoundly impacting river ecological functions and increasingly 
degrading freshwater  ecosystems14. As a consequence, Amazon River dolphin populations are declining. Recent 
studies highlight an alarming population reduction of 50% every 10 years for boto and every 9 years for  tucuxi6. 
Current models of population viability predict a 95% reduction of boto population within 50  years15. These 
two studies were conducted in a protected area, the Mamirauá Sustainable Development Reserve (Reserva de 
Desenvolvimento Sustentável Mamirauá—RDSM), where anthropogenic pressures on river dolphins are likely 
reduced compared to non-protected areas.

Amazonian River dolphins inhabit a unique environment characterised by radical seasonal changes in water 
regimes. Half of the year, large areas of the riverine forests are  flooded16, extending the habitat of the aquatic 
animals from the main rivers to large areas of fringing floodplains locally called várzea and igapó. These provide 
access to a highly complex and resource-rich environment formed by submerged vegetation. The seasonal ‘flood 
pulse’ is the major factor driving the distribution and movements of many Amazonian aquatic species, includ-
ing freshwater fish that undertake small-scale seasonal movements between the main rivers and floodplains for 
completion of their life  cycle17,18. Fish families known to constitute the major part of the river dolphin diets, such 
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as the Characids (Characiforms) and Doradid catfish (Siluriforms)19, display such synchronised lateral migra-
tions and Amazon dolphin seasonal changes in habitat density have been related to the migration of  fish20–23.

During the low-water season, river dolphins are concentrated in the main  rivers21,24. Preferred habitats are 
confluences where two or more water streams join together (e.g. small tributaries or larger channels connect to 
the main rivers), bays, lakes, and river margins 23–26. When water levels start to rise, river dolphins follow fish 
movements and enter the floodplains through river channels. The botos are highly adapted to the complex and 
cluttered environment of the floodplains; anatomical specialisations such as unfused cervical vertebrae provide 
extra neck flexibility and a unique shoulder joint allows for a broader rotation range of the flippers, greatly 
increasing  manoeuvrability27. The botos tend to disperse across the mosaic of newly inundated habitats, includ-
ing floodplain channels, internal lakes (seasonally isolated from the rivers) and flooded forests, while the tucuxis 
usually remain in the deeper parts of the floodplain, i.e. occupying the river channels and small  confluences21,28–30. 
Once water levels start dropping, dolphins move back to the main rivers, probably to avoid  entrapment5,21. Botos 
seem to use preferentially different habitats according to their age and reproductive status. Male botos and 
females without calves appear to have similar habitat preferences and exhibit similar movement patterns from 
main rivers to the várzea21. On the other hand, females with calves and immatures animals spend more time in 
the várzea habitats (bays or small confluences, channels) than in the main river, sometimes not returning to the 
main rivers during the low water season, if the water level remains sufficiently  high5.

The complexity of the floodplain habitats makes surveying the internal lakes and the flooded forest extremely 
challenging. Until now, the vast majority of information on river dolphin distribution has relied on boat–based 
visual surveys that are usually conducted along rivers. Unfortunately, inconspicuous surface behaviour and occur-
rence in remote areas make river dolphins difficult to monitor through visual techniques. Aerial visual monitoring 
methods have recently emerged as an alternative or complementary approach, with the use of unmanned aerial 
vehicles (drones) or non-rigid airship systems (blimp) focusing on surveying dolphins in the main  rivers31,32. 
These techniques, while promising in improving count  estimates31, are restricted to open areas and cannot be 
applied in the flooded forest where the tree canopy prevents visual detection from above. Satellite tracking studies 
can inform on movements and habitat preferences of  animals33,34 but come with major limitations regarding cost 
and operational complexity, risks associated with animal capture and tag  attachment35. A study linked mortal-
ity events with tag implants in  belugas36, whereas Martin et al.37] did not find tagging affected survival rate of 
the tagged botos in the RDSM. While risk levels might be partially species specific, the recently published ‘best 
practice guidelines for cetacean tagging’ recommends that this technique should be limited to research questions 
that cannot be addressed by other  methods38.

The use of Passive Acoustic Monitoring (PAM) to conduct surveys of river dolphins takes advantage of the 
quasi-continuous vocal production of the river  dolphins39, resulting in a high acoustic detectability. River dol-
phins produce echolocation clicks to sense their environment, to orientate and forage, as well as other vocalisa-
tions including boto-specific low frequency pulsed  vocalisations40, and  whistles41. Echolocation clicks are pro-
duced almost continuously and constitute a reliable, consistent, highly detectable acoustic means for investigating 
dolphin presence (for a review of methods and applications  see42). PAM has been successfully applied in Amazon 
River dolphin studies including population distribution and habitat  use43–45, and vocal  behaviour39,44,46–51. With 
technological advances, the acoustic presence of dolphins can be detected in real  time52. However, the Amazo-
nian environment produces numerous challenges to signal detection and classification. The complexity of the 
freshwater ecosystem soundscape includes various impulsive sound sources in addition to dolphin echolocation 
clicks, such as cavitation noise from ship engines, rain, and high frequency stridulating insects. Additionally, the 
complex acoustic propagation conditions in the constrained, shallow-water environments are complicated by 
suspended sediment and detritus that alters signal propagation via reflection, refraction and scattering.

Several methods exist to automatically detect impulsive sounds such as echolocation clicks. Support vector 
machine methodology and energy-based click detectors have been used for odontocete clicks (Amazon River 
 dolphin43, beaked  whales53), some of which have been coupled with neural networks (Indo-Pacific humpback 
 dolphins54). Other studies have used Gaussian mixture models (GMMs) with signals represented by cepstral 
 features55,  entropy56, or Gaussian-kernel-based  networks57 and feed forward neural networks, the first kind of 
artificial neural  networks58. The most recent advances in the field of automatic classification of acoustic signals 
use Deep Neural Networks (DNN). For cetacean echolocation clicks, this approach has been developed for sperm 
whale 59 and other odontocete  clicks60,61. So far, Convolutional Neural Networks (CNN), a class of DNN, have 
not been used for classifying river dolphin signals.

In this study we combined PAM techniques with state-of-the-art automatic classification algorithms based on 
CNN to monitor river dolphin presence in different floodplain habitats inside the Mamirauá Sustainable Devel-
opment Reserve (RDSM) in the state of Amazonas, Brazil. Specifically, we focused on (1) developing a reliable 
classification model that can accurately discriminate between several types of impulsive sounds present in the 
floodplain soundscapes (echolocation clicks from dolphins, boat engine, and rain); (2) automatically detecting 
dolphin acoustic presence in large datasets from different floodplain habitats, including permanent and season-
ally flooded sites; (3) identifying temporal overlap between dolphin and boat presence. The classifiers developed 
here will form part of the conservation strategy of the RDSM.

Materials and methods
Study area. The study area covers about 800  km2 in the Mamirauá Sustainable Development Reserve 
(RDSM), in the state of Amazonas, Brazil (Fig. 1). The RSDM comprises approximately 11,000  km2 at the con-
fluence of the Solimões river (upper Amazon River) and the Japurá River and is the largest Brazilian protected 
area dedicated to the conservation of flooded rainforests. The RDSM is inhabited by local populations along riv-
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ers and lakes, that are involved in managing and monitoring biodiversity through sustainable development. This 
protected status ensures that the areas under protection contain predominantly unmodified natural systems.

The region is formed by várzea (white-water river floodplain) habitat, a lowland forest seasonally flooded 
by white-waters from the Amazon, with an average annual variation in water levels of 10–12  m62. The region 
also contains patches of dense vegetation dominated by shrubs (chavascal) and herbaceous vegetation. During 
the dry season (September to March), the forest is intersected by numerous lakes and channels. During the wet 
season (April to August), floodwaters progressively inundate the forest, submerging most of the dry land. Two 
river dolphin species are present in the RDSM, the boto or pink river dolphin and the tucuxi. Each species has 
specific habitat preferences inside and outside the várzea (i.e. the main rivers bordered by the floodplains)24.

This study encompasses four different várzea habitat types comprising permanently and temporarily flooded 
habitats. (1) ‘Ressacas’ are defined as shallow bays adjacent to the river channel, with low velocity current and 
often fringed with floating  vegetation21. (2) River channels (paranás) are minor aquatic systems that connect the 
rivers to the floodplain lakes. (3) Internal lakes are permanently flooded systems inside the floodplain. Depending 
on their geomorphological type and their location, lakes display various degrees of connectivity with the main 
rivers and can be covered with free floating aquatic macrophytes. (4) Low várzea forests, like the flooded forest 
in this study, are inundated for more than 3 months of the year (as opposed to high várzea forests) and covered 
with trees and  shrubs63.

Data acquisition. The acoustic data were acquired through different recording systems. An overview of 
the data collection is shown in Table 1. The Providence node, funded by the National Marine Mammal Foun-
dation (NMMF), is composed of an icListen digital hydrophone (24-bit Smart hydrophone SB2-ETH model, 
Ocean Sonics, Canada, sensitivity − 170 dB re 1 V/uPa) connected to a SONS-DCL real-time processing system 
(Sonsetc, Spain). This node was deployed from the Mamirauá floating research lodge, with direct access to the 
Mamirauá channel, at a depth of 5 m. The system sampled at 128 kHz with 24-bit resolution and without addi-
tional gain. Raw data from this system was transferred to Network Attached Storage (NAS) at the Uakari floating 
lodge (close to the research lodge) whenever the network was available. Data used from this system was recorded 
between July 2019 and June 2020.

Additionally, four Wildlife Acoustics SM4 recorders (Wildlife acoustics, USA) equipped with HTI-96-Min 
hydrophones (High Tech Inc., USA, sensitivity − 165 dB re 1 V/uPa) were deployed in different várzea habitat 
types. One system was located at Boca, a ressaca (or bay) at the entrance of the Mamirauá Channel (situated 
at 2 km from the confluence with the Japurá River), deployed from a floating house at a depth of 3–5 m, and 

Figure 1.  Map of the study site, the Mamirauá Sustainable Development Reserve (RDSM), Amazonas state, 
Brazil, and recording locations inside the RDSM. The habitat types are modified from Ferreira-Ferreira et al.64.
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recorded from November 2019 to April 2020. Two other systems were deployed inside the flooded forest, fixed to 
trees: Rato (between the Mamirauá channel and a depression lake) from February 2019 to May 2019; Juruazinho 
(between a parana and a depression lake) from July 2019 to September 2019. The last system was deployed at 
Aracazinho (a scroll lake with intermediate connectivity with the Japurá River) from July 2019 to September 
2019. The latter three were deployed in areas that are not connected to the main rivers during the dry period of 
the year. All SM4 systems were sampled at 96 kHz with 16-bit resolution and without additional gain.

Separately from the autonomous recorders, manual recordings were collected during monthly boat-based 
surveys in the Mamirauá reserve, from July 2019 to May 2020. The recordings were made in close vicinity of 
dolphin groups (< 50 m) using a SoundTrap 300 HF (Ocean instruments, New Zealand, sensitivity − 176 dB re 
1 V/uPa) deployed from the boat at 3 m depth. This data provided ground truth data for the training of the clas-
sifier as the signals came with visual identification.

CNN classification procedure. Data annotation. Data labelling was performed using a Python-based 
custom graphical interface (labelling tool) that displayed segments of spectrograms of a given duration (here, 
5 s) and allowed to annotate signal extension in time and frequency with bounding-boxes and assign sound-
types (classes). Sound types were assigned only one label and multiple labels could be present independently at 
the segment level. The annotations were incrementally stored in a dedicated database (the Controlled Acoustic 
Repository database, or CAR DB). Frequency and time boundaries of each signal were then easily extracted from 
the bounding-boxes.

A subset (2.63 h) of data were selected from the boat-based recordings (9% manually selected to contain 
river dolphin signals and 91% randomly selected to include a representative sample of soundscape variability). A 
subset (6.57 h) of data was also randomly selected for the Providence node over a 2-day period. Both subsets of 
data were initially labelled with two target classes: echolocation clicks and boat engine noise, hereafter referred 
to as ‘click’ and ‘boat’ classes. Additional background sounds (e.g. aquatic insects, dolphin whistles, fish calls, 
…) were labelled to ensure proper representation in the training set. In addition to labelled segments, segments 
containing only background sounds were included. Echolocation clicks were not separated by species as there 
is currently no click-based method developed to discriminate between the two river dolphin species (boto and 
tucuxi) present in the study area. After a first training of the classifier, this initial labelling was completed by an 
active learning labelling (see paragraph below). An overview of the data annotation is given Table 2.

Data augmentation. Data augmentation to artificially expand the training dataset was performed in two steps, 
focusing on providing additional spectrograms containing soundtypes that were underrepresented in the train-
ing data. The first step was data oversampling, where labels from small classes were duplicated to have a mini-
mum number of labels per epoch for the training. In this case, the minimum number of labels was set to 300. 
Duplication was done by duplicating segments that contained the underrepresented classes. Since a segment 
may have contained multiple labels, this potentially also duplicated labels of other classes. Second, with the 
duplicated data set, “on-the-fly” data augmentation was  performed65,66. This was done by transforming the origi-
nal data, including transformations in the frequency domain (small circular shift along the frequency axis), time 
shifts (small circular data shift along the time axis), contrast adjustments by modifying the spectrogram power, 
and time-warping (stretching the spectrogram along the time-axis and clipping it back to original length). For 
each epoch, the whole training set was run through the transformations, providing slightly different segments 
from the base data. A summary of the label dataset can be found in Table 2.

Automatic classification of acoustic signals using a Convolutional Neural Network (CNN). The approach to auto-
matically classifying acoustic signals was based on a Convolutional Neural Network (CNN), a class of deep 
learning algorithms, that was trained to automatically perform image-based classification on the visual repre-
sentation (spectrogram) of  sounds67. This approach required input spectrograms with annotations identifying 

Table 1.  Overview of the data collection at the RDSM.

Recording site Habitat type Recorder Latitude / longitude Start / end date
Sampling 
Frequency(kHz) Duty cycle

Recording 
duration (h)

Research lodge River channel Providence node
3°3′41.81″S 2019-06-23

128 Continuous 2121
64°50′48.59″W 2020-06-13

Boca Bay SM4
3° 7′9.60″S 2019-11-05

96 1 on/9 off 393
64°47′30.88″W 2020-04-29

Araçazinho Internal lake SM4
2°59′1.34″S 2019-07-09

192 1 on/9 off 139
64°51′3.28″W 2019-09-05

Juruazinho Flooded forest SM4
3°2′34.69″S 2019–07-09

192 1 on/9 off 139
64°51′6.07″W 2019-09-05

Rato Flooded forest SM4
3°2′47.18″S 2019-02-06

96 10 on/110 off 139
64°51′22.13″W 2019-05-29

Multiple boat-based 
surveys

River channel, bay, 
internal lakes Sound Trap Multiple sites within 

MSDR
2019-06-01

512 Continuous during 
survey 83

2020-05-01
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the sound classes to be classified. Network prediction consisted in the successive convolution of trained filters (or 
kernels) on the spectrogram image to extract relevant features for class prediction (classification). Over a series 
of epochs (iterations of the network over the training dataset), the CNN model described below was then trained 
using the binary cross-entropy loss function (with the loss summing over the labels and the batch) and the Adam 
 optimizer68 to perform predictions on the presence of the classes within a spectrogram. The dataset used to 
produce the CNN classifier was split between a training and a testing dataset, each set containing data from the 
boat-based survey (different recording sessions), the research lodge (different days), and the várzea (equal split 
on a random selection) (see Table 2). Based on the output prediction, the classifier performance was evaluated.

Data pre‑processing and CNN architecture. We used a convolutional neural network (CNN) with the architec-
ture as shown in Supplementary Materials Figure S1. To compute the input features, the wave forms that were 
not already sampled at 96 kHz were first down-sampled to 96 kHz by low pass filtering and decimation by 2 or 4 
depending on the original sampling frequency. Then all wave form data was combined and segmented into 5-s 
non-overlapping segments. The classifier operated in a frequency band from DC to 48 kHz. Each segment was 
Fourier transformed using a 2048 sample Hamming window with 1112 samples of overlap to compute the power 
spectral density (PSD). This resulted in a time–frequency matrix of 1024 by 1024 PSD values. The PSD values 
were log-transformed element wise. Then the frequency dimension of the matrix was Mel scale-transformed 
such that 1024 linear frequencies were mapped to 128 log-spaced Mel bands. Finally, the matrix was equalised 
over the time dimension (subtraction of the median for each Mel row) and then presented as input to the clas-
sifier. The first part of the CNN classifier consisted of 5 blocks that were identically structured, with each block 
containing two 2D convolution layers that were using the same number of 3 × 3 filters with the rectified linear 
activation function, followed by a max-pooling layer (using 2 × 2 filter without overlap). The number of filters 
was changed each iteration of a block: 32, 64, 96, 128, 160. All convolution layers were preceded by a batch 
normalisation layer. After the last convolution block, the resulting feature maps were reshaped to obtain a two-
dimensional matrix which was run through two one-dimensional convolution layers with batch-normalization, 
each convolution with 256 filters, kernel size 1 and rectified linear activations. Finally, the per-class output was 
obtained through a 1-dimensional convolution layer with sigmoid activation.

Active learning procedure. Considering the large dataset and relatively rare presence of some of the target sig-
nals, an active learning approach was followed. After first training using the boat-based and the Providence node 
dataset, the classifier model was evaluated on other data sets (Boca and várzea sites) to identify misclassifica-
tions, i.e. new sound types not present in the soundscape of the initial training data that conflicted with classi-
fied classes. Predictions from the initial model were manually checked for out-of-sample errors (generalisation 
errors). Custom Python scripts were created to automatically extract and display spectrograms of randomly 
selected positively classified sounds, above a threshold of the classification output selected from the model per-
formance (see paragraph below). Misclassifications for the classes ‘click’ and ‘boat’ were identified through visual 
observation of spectrogram segments, and typically contained unrelated sounds with similar/overlapping acous-
tic characteristics to that of the sound types of interest (e.g. rain, see Fig. 2). The audio segments containing 
correctly classified and misclassified sounds were automatically extracted and combined with the initial training 
dataset for retraining of the model. An overview of sound labels by site used for initial classification and active 
learning can be found in Table 2.

Table 2.  Overview of annotated data used for the initial model (first 3 rows) and the final model (all 5 rows).

Dataset

Initial labelling Active learning labelling Total

Train Pre-DA
# segments

Train DA
# segments Test #segments

Boat-based 
survey

Boat-based 
survey Research lodge Research lodge Várzea sites All

Selection Manual Automatic 
(random)

Automatic (10 s. 
per minute over 
2 days)

Semi-automatic
(Random above 
threshold)

Semi-automatic
(Random above 
threshold)

All NA NA NA

Duration of data 
subset (h) 0.23 2.40 6.57 0.41 1.56 11.17 NA NA NA

Use Test Train Train/test
(Equal split) Train Train/test

(Equal split) Train/test NA Train Test

no. segm. with 
echolocation 
clicks

138 1230 96 25 76 1565 1337 4106 228

no. segm. with 
ship noise 0 308 104 69 178 659 530 1130 129

no. segm. with 
rain 0 0 0 0 378 378 188 382 190

no. segm. without 
any of the 3 
classes (back-
ground)

30 403 4533 204 362 5532 3046 3204 2486
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Classification performance evaluation. The final classifier was trained with a data set consisting of the initial 
and active learning data sets, and classified three impulsive sound types: echolocation clicks, shipping noise 
and rain. First, we produced a summarised classification output calculated over a 5-s segment. The dimension 
of the (scaled) spectrogram submitted to the classifier was a 512 × 128 matrix (time x frequency bins). After the 
iteration of convolution-pooling layers, this was reduced to a 16 × 3 matrix, and classification was performed on 
each column producing 16 output values per class (3) per segment. After CNN training, the 16 values per class 
were summarised by taking the mean over the values between the  75th and  100th percentile as the segment-based 
classification result, referred to as Q75. After evaluating several options we found that the  75th percentile had 
best performance for a signal that we expect to be repeated several times within the spectrogram. This approach 
should reduce the number of spurious high classification values under the assumption that our target classes 
have multiple high output values per 5-s segment.

Some performance metrics, for example accuracy, can be deceptive when considering the actual performance 
of a classifier, since the data are unbalanced (i.e., some classes are more prevalent than others in the dataset) 
and when models give the probability  score69. Here, we preferred reporting on precision and recall, metrics that 
can provide a better insight when dealing with unbalanced class  representation69,70. The precision (also called 
Positive Predicted Value, PPV) was defined as the fraction of observations predicted to be positive that were in 
fact positive. The recall (or True Positive Rate, TPR) was the fraction of observations classified as positive out of 
all positive observations (i.e. a probability of detection). A precision-recall curve was plotted wherein these two 
performance metrics were respectively plotted on the x and y axis for a sequence of decision thresholds. Then, 
the Average Precision (area under the precision-recall curve, AP) was computed for each class to evaluate the 
individual class performance. The global performance of the classifier over the three classes was computed using 
the mean average precision (mAP) through micro averaging, where all classification results from the different 
classes were combined to compute a single precision-recall curve, and then the AP from this curve was computed 
to give the mAP; this approach accounted for class unbalance.

with T the number of thresholds and TPR(T) = 0, PPV(T) = 1.

Amazon River dolphin presence and boat passage. Choice of optimal classification threshold. The 
entire dataset except the boat-based surveys (2931 h of recordings) was evaluated with the final model. For each 

Precision (PPV) = True Positive / (True Positive + False Positive)

Recall (TPR) = True Positive /
(

True Positive + False Negative
)

True Negative Rate (TNR) = True Negative /
(

True Negative + False Positive
)

Average Precision (AP) =

t=T−1
∑

t=0

[TPR(t)− TPR(t + 1)] ∗ PPV(t)

Figure 2.  Precision-recall curves for class click, boat and rain (left) and spectrograms of the three 
corresponding impulsive sounds classified (right).
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5 s segment, this gives 3 predicted scores for the 3 target classes (click, boat, rain). Validation outputs (Average 
Precision curves and scatter plots) of the final model were used to identify the optimal classification threshold 
for each sound type. The optimal threshold (or decision threshold) was determined as the value point of the 
Average Precision curve where both Precision and Recall are equal. Decision thresholds were then tested and 
evaluated per location on randomly selected classified segments from the entire dataset. The TPR and the True 
Negative Rate (TNR) were assessed and the thresholds were adjusted and re-evaluated if necessary. The decision 
threshold for each class and location was then compared to the prediction score of each segment classified, and 
the segment was assigned as positive for dolphin (click class), ship (boat class) or rain (rain class) presence if the 
prediction score was above the class threshold.

Metric of daily acoustic presence. Five second segments with CNN scores above the threshold were counted 
as acoustic occurrences of river dolphins. Daily acoustic presence is a proportion that was obtained as the daily 
duration with acoustic occurrences divided by the total daily recording duration. Reporting a proportion com-
pensates for the differences in the recording duty cycles between the Providence node and the SM4 recordings. 
For the várzea sites, where dolphin passages were assumed to be infrequent and further away from the record-
ing equipment with complex propagation conditions (flooded forest), the positive detections were manually 
checked.

Additional filters. For the várzea sites, dolphin detections typically had very low signal-to-noise ratios (SNR) 
compared to the river channel detections. This led to an increase in click misclassifications with the rain sound-
type. As the final classifier has a higher performance for rain than clicks (see Results), the rain class was used as 
a posterior filter for misclassifications from all recording sites (e.g. any 5-s segment that contained a value above 
threshold both for click and rain sound-types was attributed to rain).

Co‑occurrence of dolphins and boat. To investigate the spatio-temporal overlap of dolphins and boats, a co-
occurrence count was calculated at Boca, the location with the highest acoustic occurrence of dolphins. This 
count corresponds to the number of minutes that contain both positive click classification and positive boat 
classification.

Results
CNN Classifier performance. The initial and the final classifier performance were assessed based on the 
precision recall curve for the 3 impulsive sound types: Echolocation clicks from river dolphins, engine noise 
from passing boats and rain.

The initial classifier had an Q75 Average Precision of 0.90. After the active learning procedure, tests with 
reduced segment length, and addition of the rain class, the final classifier had an Average Precision of 0.95. 
This corresponds to an overall increase of 5.5% on the Average Precision after the active learning procedure. 
Highest Average Precision was achieved from the rain class with 0.98. Click and boat classes also showed high 
performance with respective values of 0.95 and 0.92 (Fig. 2). Positive classification threshold for echolocation 
clicks was set to values shown in Table 3, selected from the semi-automated performance evaluation performed 
for each recording location. Table 3 also shows the corresponding TPR and TNR for a given threshold at a given 
location. Click TPR and TNR were between 0.88 and 1, while these values ranged from 0.94 to 1 for the boat class.

Acoustic presence of river dolphins. Acoustic detection of dolphins was frequent at the two sites located 
in permanent bodies of water (Fig.  3). At Boca (the ressaca location), dolphin presence based on echoloca-
tion clicks was detected over the full deployment period, from November 2019 to May 2020. Dolphin presence 
increased from November to the beginning of January 2020, when detections peaked briefly in mid-January 
(dolphin presence detected approximately 70% of the daily time). Detections peaked similarly at the end of Feb-
ruary and at the beginnings of April and May (Fig. 3, middle). At the Research lodge (the river channel location), 
there was a very low level of detections in the beginning of July and from September to November Detections 

Table 3.  Classification threshold selected for echolocation click and boat at each recording location, and 
associated TPR and TNR assessed on 60 randomly selected classified segments (see Methods).

Class Recording location Class threshold Rain filter threshold TPR TNR

Click

Rato 0.85 0.90 0.96 0.91

Aracazinho 0.85 0.99 1 0.88

Juruazinho 0.85 0.99 1 0.88

Boca 0.85 0.99 1 1

Research lodge 0.85 0.99 0.96 0.94

Boat

Rato 0.98 NA 1 1

Aracazinho 0.98 NA 1 1

Juruazinho 0.98 NA 1 0.97

Boca 0.97 NA 0.94 0.97

Research lodge 0.98 NA 1 0.97
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then started to increase until peak presence in Mid-January when dolphins were detected approximately 30% 
of the time. Between March and April and at the end of May, detections decreased to minimum values (Fig. 3, 
bottom).

The annual cycle of flooding between June 2019 and June 2020 (Fig. 3, top) showed the typical pattern of 
fluctuations between high and low water levels. From June to October, water levels decreased until reaching a 
minimum. This corresponded to a null or very low number of clicks detected at the Research lodge in the river 
channel. Later, at both sites (ressaca and river channel), dolphin presence increased over a 3-month period from 
November to January, with a clear synchronised peak in mid-January at the two locations. This time of the year 
corresponds to the rising water period of the annual cycle of flooding. In 2019, water levels rose 8 m from October 
to reach their highest level in mid-January (Fig. 3, top). Finally, during the following month (February to end of 
May), water levels remained high, and dolphins were detected regularly at both sites with similar variations in 
the rate of detection (matching peaks in March, April and May).

River dolphin acoustic presence was lower in the periodically flooded sites than at the permanent bodies of 
water. At Rato, one the flooded forest site, dolphins were mainly present in February–March and in May, during 
64% of the sampling days, with a maximum value of 1.7% of the daily time. The recording period corresponds 
to the end of the rising water period (Fig. 4, top). At Juruazinho, the other flooded forest site, during the 2 and 
half months of recording available, detection rates were very low and dolphin presence was detected essentially 
during 8 days (12% of the sampling days) between the end of July and the beginning of August. The detections 
were of the same order of magnitude at Aracazinho, the internal lake location (less than 0.6% of the time, 9 days 
of detections). In terms of water level, this period corresponds to the receding water, where water levels in early 
July began to drop to reach approximately 30 m above sea level in early September.

Spatio‑temporal co‑occurence of river dolphins and boats. The dolphin activity varied strongly by 
month, but when they were present there did not seem to be a strong difference between day or night activity 
(Fig. 5, left). A Wilcoxon rank-sum test was used for each month to compare the distributions of the number of 

Figure 3.  River dolphin acoustic presence at the ressaca and in the river channel (blue bars), based on CNN 
click classification. Water levels (top); Presence at the entrance of the river channel (middle); Presence at the 
Research lodge (bottom). The pink box indicates the rising water period. The grey line is the daily recording 
duration. Grey areas indicate an absence of recordings.
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positively classified segments between day (dawn–dusk) and night (dusk–dawn), both scaled by the time period 
being measured in minutes as the duration of day and night changed over time (H0: the day/night activity is the 
same; H1: one time of the day has higher activity than the other). A non-parametric test was selected because 
the distribution shapes between day/night appeared to be different and not normal. Only February showed a 
significant difference between day/night (p = 0.00 with N = 18 as there was missing data at the start of the month). 

Figure 4.  River dolphin acoustic presence at three periodically flooded sites, based on CNN click classification. 
Water levels (top); Dolphin presence at Rato (middle left); Presence at Aracazinho (middle right). Presence 
at Juruazinho (bottom right). The pink boxes indicate the high water period (left box) and the receding water 
period (right box).

Figure 5.  Acoustic presence of dolphin, boat, and co-occurence grouped by hour of the day at the Boca site. 
The dark grey lines represent dusk and dawn. The light grey areas represent a period without data collection 
(battery replacement). Please note the values of 6 min per hour is the maximum value that can be obtained 
based on the data collection duty cycle (1 min on, 9 min off, see the Methods section).
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But for the other months such a difference was not found. Boat passages were almost exclusively detected during 
daylight hours without noticeable difference between the hours of the day or between months (Fig. 5, middle).

The temporal overlap between boats and dolphins was estimated through the co-occurence of segments with 
positive clicks and boat classification within a 1-min time period. Figure 5 shows relatively low values in terms 
of time with co-occurrence. Over the full 5-month dataset, the number of minutes with co-occurrence is low 
(mean 0.54, SD = 0.94), representing an average of 9% of the recorded time. These values remain low when com-
puted over the 3-month period corresponding to the higher dolphin presence in January-March (mean = 0.67, 
SD = 1.05) with 11% of the recorded time.

Discussion
The results of the CNN automatic classification of river dolphin echolocation clicks revealed patterns of pres-
ence in relation to the period of the annual water flood. In the bay and in the river channel, dolphin acoustic 
presence clearly increased during the period of rising waters, from November to January. This pattern was 
especially conspicuous in the bay (entrance of the river channel), where the daily acoustic presence rose from 
approximately 10% to 70% during this period. Interestingly, the main peak of acoustic presence was detected 
at both sites simultaneously. The synchronised detection peak at both locations suggests local population scale 
movements of dolphins entering the várzea from the main river through the river channel. These results are in 
agreement with published data on dolphin movements in the várzea in relation to the flooding cycle. Martin 
and da  Silva21 reported the movements of the dolphins inside the RDSM through the river channel during rising 
waters based on visual surveys and radio-tracking data, with a rapidly increasing presence of dolphins peaking 
“at about a level of 10 m”. Our results show a similar pattern of detections, with a peak at rising water, when 
water levels reached 8 m above the lowest level. At high water levels (from February to June), dolphins remained 
present in the bay, where they were acoustically detected between 20 and 60% of the time. Dolphins were also 
regularly detected in the river channel, although not continuously, and with a considerably lower acoustic pres-
ence (0–15% of the time).

These findings further support the idea that bays formed at confluence areas are an important habitat for 
river dolphins. Mintzer et al.5 studied the seasonal movements of botos inside the RDSM estimating a transition 
probability between habitats, and characterised the entrance of the Mamirauá lake system as a core area for botos 
(i.e. where animals spend a maximum amount of time). Especially mother/calf pairs and immatures seemed to 
spend more time in the bays before moving back into the Mamirauá lake system at low/rising water. This prefer-
ence was also demonstrated through a PAM study from the same location at the end of rising  waters43. Tucuxis 
also seems to favour  confluences29,71. The importance of this habitat appears to be shared by Amazonian River 
dolphin populations and subpopulations across their  distribution33,34. A recent study covering several locations 
in both the Orinoco and the Amazon basin highlighted that the highest dolphin densities for both Amazonian 
River dolphin species were found in the confluence areas, with densities averaging 23 and 16 ind./km2 for botos 
and tucuxis respectively, and reaching 61 and 64 ind./km2 in the confluences of the Mamirauá  Reserve72.

Additionally, river channels appeared to be used by dolphins, especially botos, as a gateway to access remote 
parts of the várzea. Results from past PAM study in the RDSM investigating dolphin click trains and trajectories 
showed that the animals mainly used the Mamirauá channel as a passage to other locations of the várzea43. From 
this channel, botos could access either permanent lakes connected (e.g. Mamirauá lake) or disconnected from 
the riverine system at low water (e.g. Rato lake) and seasonally flooded lakes (e.g. Juruazinho and Aracazinho 
lakes). Tucuxis are also known to be present in the channel, although limiting their use of the channel to the 
lower part, closer to the main  river29.

Thus, the difference between detection values at the two sites (situated 10 km apart on the same river channel) 
could be explained not only by a difference in the number of dolphins present but also by a difference in their 
habitat use. The entrance of the channel is a bay (ressaca), close to a confluence of two major waterways, the 
Solimões (upper part of the Amazon) and the Japurá rivers. The local environmental conditions create favour-
able low-current prey-rich habitats for the dolphins. Higher acoustic activity could reflect either an increase in 
time that individual dolphins spent in the area, an increase in the number of dolphins using this area, but also 
an increase in the acoustic activity due to the higher click production used for foraging compared to travelling 
 behaviours47,73,74.

Dolphin detections at high water in the flooded forest (Rato) were very low in terms of duration (less than 
2% of the daily time) but regular in terms of presence (i.e. number of days). The Rato flooded forest site is an 
access to the Rato lake and dolphin detections likely reflect the regular passage of botos to the remote parts of 
the floodplains. Várzea lakes, especially the ones with floating vegetation that provide refuge for a great variety 
and abundance of fish, are also a favourite habitat of river  dolphins21. Nevertheless, due to the difficulties to 
penetrate the intricate flooded forest ecosystem with boats, there is very little information on the distribution 
of dolphins in the mosaic of floodplain habitats. Even using alternative monitoring techniques, such as tracking 
animals through tags, data on dolphin distribution once they leave the river channel is excessively difficult to 
collect. In a study using VHF transmitters on 24 botos, Martin and da  Silva21 reported that during high waters 
the tagged botos were out of range up to 100% of the time, preventing their localization inside the area. Our 
results indicate here the regular use of flooded forest passages connecting várzea channels to internal lakes by 
the dolphins during high waters.

Females botos with calves and immatures animals spend more time in the várzea habitats than  males21. One 
of the reasons is that várzea habitats provide access to rich prey resources. Floodplain systems, which combine 
high levels of habitat complexity with nutrient-rich waters, host a great diversity of fish associated with high 
 biomass17,75,76. Another hypothesis is that várzea habitats seem to grant shelter against males’ aggressive behav-
iour, especially towards  calves77,78. Finally, habitats such as internal lakes, flooded forests and small channels 
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provide resting areas with lower  currents5,21 that are usually favoured by river dolphins. This unique and beneficial 
combination of environmental conditions make várzea habitats of major importance for females with calves and 
immatures, and therefore for boto populations survival.

From July to September, at the end of high water and at falling waters, our study collected data on two sites: 
one inside the flooded forest (Juruazinho), and one in an internal lake (Aracazinho). The detection levels were 
very low and of the same order of magnitude at both sites, with 12% of the days with dolphin detections, mostly 
occurring in July and early August. Unfortunately, no data could be collected during the same time period at 
the other study sites, and it was not possible to draw strong conclusions about the relationship between the 
limited presence of dolphins and the decrease of water levels. Nevertheless, our results are aligned with known 
dolphin movements outside the várzea. Both river dolphin species are known to move back into the main rivers 
during this time period, following fish movements outside the floodplains, and anticipating the upcoming risk 
of  entrapment5,21,29,79.

Quantifying the extent of spatiotemporal co-occurrence between dolphins and boats in freshwater environ-
ments is of critical importance, especially in core areas where the animals spend a great amount of their time 
budget in vital activities such as foraging. Passage of boats in these spatially restricted areas introduces engine 
cavitation noise in the underwater environment. Chronic stress, masking effects, behavioural and acoustic 
responses were reported for marine populations in the open  ocean80 and it can be assumed that such responses 
are even stronger in freshwater systems of (e.g. rivers, channels, bays) that are spatially restricted and provide less 
opportunities for animals to evade disturbance. Our results show that at Boca, where continuous and significant 
dolphin presence was detected during the 5-month recording period, the level of co-occurrence was approxi-
mately 10% of the recorded time. Nevertheless, the data was collected on a 10% duty cycle, and can only provide 
an estimation of how much boat traffic overlaps with dolphin presence. It is likely though that at this location the 
level of disturbance is reduced due to the low level of boat traffic (essentially fishermen from local communities 
and tourism boats that pass by a few times per week). However, effects of underwater noise on river dolphin 
populations are remarkably  understudied80 and so far only a handful of publications have addressed the effects 
of shipping traffic on freshwater cetacean  populations81–83. Therefore, the effects of noise exposure representing 
10% of the time spent by river dolphins in core areas can not be evaluated. Continuous recordings are needed 
to accurately assess the overlap in boat and dolphin presence and evaluate the potential disturbance caused by 
this source of underwater noise. Further studies will be conducted at other confluence habitats regularly used 
by the river dolphins, where boat traffic is higher (e.g. Lake Tefé).

The CNN method developed here classified three sound types (echolocation clicks from river dolphins, boat 
noise from engine cavitation, and rain), with a mean Average Precision of 0.95. The sounds are represented 
as spectrogram images and this demonstrates the validity of using an image-based approach for classifying 
and discriminating underwater acoustic events of impulsive nature. Once labels were created (a time-intensive 
task), our CNN-based workflow required only a few pre-processing steps. Furthermore, with the integration 
of on-the-fly data augmentation, this workflow allowed to train initial models for undersampled classes. These 
models were used to automatically retrieve additional true positive (sound type of interest) and false positive 
(misclassifications) examples in an active learning loop in order to swiftly strengthen the model performance.

There is an increasing interest in using convolutional neural networks to automatically detect and classify 
odontocete echolocation clicks. Some studies focus on classifying single clicks in a single class classifier and 
achieve high  performance60,84. However, compared to monospecific recordings (i.e. containing one sound class), 
classification tasks using soundscape recordings (i.e. containing multiple sound classes) represent an important 
challenge for classification algorithms. Recent classification contests demonstrated that the performance scores 
achieved on soundscape recordings were 4 times smaller than on monospecific  recordings85. We chose to base 
our workflow on 5-s soundscape recordings with the objective of furthermore developing a general classification 
model for different types of sounds (impulsive or tonal) from biological (Amazon aquatic species), anthropogenic 
(e.g. boat) and natural (e.g. rain) sources.

Conclusion
This study demonstrates the suitability of using CNN-based classification to automatically detect river dolphin 
echolocation clicks in the complex soundscape of freshwater habitats. The efficiency and speed of the CNN 
method allow to analyse the totality of the data collected without having to subsample as usually done for manual 
analysis, making it possible to detect major movements of dolphins in the study area, and rare passages in specific 
habitats or seasons. The use of Passive Acoustic Monitoring coupled with automatic analytical methods such 
as CNN-based classification of dolphin signals can efficiently increase our knowledge on endangered dolphin 
populations across a range of flooded habitats, especially in remote and understudied habitats of flooded forest 
and lakes, and allows to precisely time the movements of river dolphins between várzea habitats in relation to 
the flooding pulse. The classifier in this study was extended to include automatic detection of boat passages in 
dolphin core areas to assess the extent of underwater noise disturbance on river dolphins.

Our study calls for a generalisation of the use of PAM inside the mosaic of floodplain habitats to understand 
habitat preferences and requirements of river dolphins, especially the boto females and calves. Practical applica-
tions in forecasting the dolphins’ response to habitat loss and degradation (e.g. deforestation for pastures, plan-
tations, selective logging, …) will contribute to the management strategies of the aquatic-terrestrial transition 
zone (ATTZ), critical for the maintenance of habitat  connectivity16,86. Another area of applications is towards 
developing and implementing standardised protocols to monitor distribution shifts in relation to the recent 
amplification of drought and flood events in the Amazon  basin87. As sentinel species of the aquatic systems they 
inhabit, river dolphins can constitute an early detection system of ecosystem  unbalance26.
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