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Transformer‑based hand gesture 
recognition from instantaneous 
to fused neural decomposition 
of high‑density EMG signals
Mansooreh Montazerin 1, Elahe Rahimian 2, Farnoosh Naderkhani 2, S. Farokh Atashzar 3,4, 
Svetlana Yanushkevich 5 & Arash Mohammadi 1,2*

Designing efficient and labor‑saving prosthetic hands requires powerful hand gesture recognition 
algorithms that can achieve high accuracy with limited complexity and latency. In this context, the 
paper proposes a Compact Transformer‑based Hand Gesture Recognition framework referred to as 
CT-HGR , which employs a vision transformer network to conduct hand gesture recognition using 
high‑density surface EMG (HD‑sEMG) signals. Taking advantage of the attention mechanism, which is 
incorporated into the transformer architectures, our proposed CT-HGR framework overcomes major 
constraints associated with most of the existing deep learning models such as model complexity; 
requiring feature engineering; inability to consider both temporal and spatial information of HD‑sEMG 
signals, and requiring a large number of training samples. The attention mechanism in the proposed 
model identifies similarities among different data segments with a greater capacity for parallel 
computations and addresses the memory limitation problems while dealing with inputs of large 
sequence lengths. CT-HGR can be trained from scratch without any need for transfer learning and 
can simultaneously extract both temporal and spatial features of HD‑sEMG data. Additionally, the 
CT-HGR framework can perform instantaneous recognition using sEMG image spatially composed 
from HD‑sEMG signals. A variant of the CT-HGR is also designed to incorporate microscopic neural 
drive information in the form of Motor Unit Spike Trains (MUSTs) extracted from HD‑sEMG signals 
using Blind Source Separation (BSS). This variant is combined with its baseline version via a hybrid 
architecture to evaluate potentials of fusing macroscopic and microscopic neural drive information. 
The utilized HD‑sEMG dataset involves 128 electrodes that collect the signals related to 65 isometric 
hand gestures of 20 subjects. The proposed CT-HGR framework is applied to 31.25, 62.5, 125, 250 ms 
window sizes of the above‑mentioned dataset utilizing 32, 64, 128 electrode channels. Our results are 
obtained via 5‑fold cross‑validation by first applying the proposed framework on the dataset of each 
subject separately and then, averaging the accuracies among all the subjects. The average accuracy 
over all the participants using 32 electrodes and a window size of 31.25 ms is 86.23%, which gradually 
increases till reaching 91.98% for 128 electrodes and a window size of 250 ms. The CT-HGR achieves 
accuracy of 89.13% for instantaneous recognition based on a single frame of HD‑sEMG image. The 
proposed model is statistically compared with a 3D Convolutional Neural Network (CNN) and two 
different variants of Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models. 
The accuracy results for each of the above‑mentioned models are paired with their precision, recall, F1 
score, required memory, and train/test times. The results corroborate effectiveness of the proposed 
CT-HGR framework compared to its counterparts.
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Hand gesture recognition using surface Electromyogram (sEMG) signals can be considered as one of the most 
important technologies in making efficient Human Machine Interface (HMI) systems. Hand gesture recognition-
based HMI systems are applicable to a wide range of applications including prosthetics, neurorobotics, exoskel-
etons, and in Mixed (Augmented/Virtual) Reality settings, some of which targeting able-bodied individuals. In 
particular, sEMG-based hand gesture has been a topic of growing interest for development of assistive systems 
to help individuals with amputated limbs. Generally speaking, myoelectric prosthetic devices work by classify-
ing existing patterns of the collected sEMG signals and synthesizing the intended  gestures1. While conventional 
myoelectric control systems, e.g., on/off control or direct-proportional, have potential advantages, challenges such 
as limited Degree of Freedom (DoF) due to crosstalk have resulted in the emergence of data-driven solutions. 
More specifically, to improve efficiency, intuitiveness, and the control performance of hand prosthetic systems, 
several Artificial Intelligence (AI) algorithms ranging from conventional Machine Learning (ML) models to 
highly complicated Deep Neural Network (DNN) architectures have been designed for sEMG-based hand gesture 
recognition in myoelectric prosthetic  devices2–5. The ML-based models encompass traditional approaches such 
as Support Vector Machines (SVMs), Linear Discriminant Analysis (LDA), and k-Nearest Neighbors (kNNs)6–9, 
and DNN-based models consist of frameworks such as Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and Transformer-based  architectures10–15.

sEMG signals represent the electrical activities of the muscles and are recorded by a set of non-invasive 
electrodes that are placed on the muscle  tissue16,17. Broadly speaking, there are two types of sEMG acquisition 
systems, called sparse and high-density18,19. Both of these groups are obtained by placing electrodes on the sur-
face of the muscle and recording the electrical activity of the muscle’s Motor Unit Action Potentials (MUAPs) in 
response to the neural signals. Unlike sparse sEMG acquisition that involves a limited number of electrodes to 
record muscle activities, High-density sEMG (HD-sEMG) signals are obtained through a two-dimensional (2D) 
grid of electrodes, which cover an area of the muscle tissue and a large number of associated motor  units20,21. 
When comparing HD and sparse sEMG signals, it can be stated that more computational power is required for 
the signal processing and training stages when using HD-sEMG signals in contrast to the scenario where sparse 
sEMG signals are used. This point has also been observed in the prior  works1,22, where it is stated that HD-
sEMG-based interfaces result in more complex analog front-end and processing facilities leading to increase of 
the computation demand. It is, therefore, more difficult to design an ML/Deep Learning (DL)-based algorithm 
for hand gesture recognition from HD-sEMG signals. However, HD-sEMG signals are considered more potent 
than their sparse counterparts because of their ability to include both temporal and spatial information of 
muscle activities, which provides a high-resolution 3-dimensional signal (two dimensions in space and one in 
time)23. The HD-sEMG signal acquisition can evaluate functionality of the underlying neuromuscular system 
more precisely in terms of spatial resolution. Accordingly, developing an efficient DNN-based framework that 
can effectively learn from a comprehensive HD-sEMG dataset is of great importance in neuro-rehabilitation 
research and clinical  trials24, which is the focus of this manuscript.

Conventional ML models, such as SVMs and LDAs, utilized for sEMG-based hand gesture recognition, 
typically work well when dealing with small datasets. These methods, however, depend on manual extraction of 
handcrafted (engineered) features, which limits their generalizability as human knowledge is needed to find the 
best set of  features25. Increasing the number of utilized electrodes and the number of gestures entails extracting 
more features, therefore, the feature extraction process becomes significantly complex and time-consuming. This 
is because more trials and efforts are required to boost the discriminative power of the model. Dependence on 
engineered features is partially/fully relaxed by utilization of DNN-based models. Among the most frequently 
used DNN architectures for the task of hand gesture recognition is the CNN-based frameworks. For example, 
 Reference12 converts sEMG signals to 3D images and uses transfer learning to feed them to a popular CNN 
trained on a database of natural images. CNNs, however, are designed to concentrate on learning spatial features 
of the input signals and fail to extract temporal features of the sEMG data. To overcome this issue, researchers 
turned their attention to hybrid CNN-RNN frameworks that were designed to take both spatial and temporal 
information of the time-series sEMG datasets into  account26,27. For instance, Hu et al.26 have applied atten-
tion mechanism on top of a hybrid CNN-LSTM (Long Short-Term Memory) model to perform hand gesture 
recognition based on sEMG signals with relatively large window sizes (i.e. 150 ms and 200 ms). They achieved 
classification accuracy of up to 87% using the largest window size.  In27, a dimensionality reduction method is 
proposed and assumed to enhance the classification accuracy when used with a hybrid CNN-LSTM architecture. 
In this  framework27, the classification accuracy is 88.9% on the same dataset as that  of26 for the 250 ms window 
size. Nonetheless, as well as not allowing entire input parallelization, hybrid CNN-RNN frameworks are usually 
computationally demanding and reveal important limitations with respect to the memory usage and large train-
ing times. To alleviate the problem of lacking input parallelization in the aforementioned networks,  References15,28 
proposed transformer-based models for gesture recognition via sparse sEMG signals. For instance,  in28 a Vision 
Transformer (ViT) network is stacked to CNNs for gesture classification using the frequency domain information 
(Fourier transform) of a set of sparse sEMG signals. In this study, first and different from these prior works, we 
target HD-sEMG signals. Second, by eliminating the complexity of simultaneously exploiting CNNs/RNNs or 
merging them with transformers, we aim to construct a compact and stand-alone framework with reduced com-
putational overhead. When it comes to real-time HMI devices, we hypothesized that by introducing a compact 
DL-based model developed based on HD-sEMG signals that has the capacity to classify a large number of hand 
gestures with a small amount of memory and training time, we can put a step forward towards development of 
more dextrous control interfaces. On the one hand, while DL models are more complicated than conventional ML 
solutions, the latter requires operator interventions for feature engineering, which is a burdensome procedure. 
On the other hand, Gesture recognition based on sparse sEMG requires precisely locating the electrodes over 
the muscle to make sure that the same MUs are being recorded. Different from sparse sEMG, for the HD-sEMG 
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acquisition, a little change in the position of the electrode grid still records the MU activities with no significant 
change in the characteristics of the signal.

In this study, a comprehensive evaluation of the proposed ViT-based framework for hand gesture classifica-
tion on HD-sEMG dataset is carried out for the first time to the best of our knowledge. The ViT architecture 
takes advantage of the  attention29 mechanism, which works by finding dependencies and similarities among 
different data portions. The attention mechanism in the ViT is integrated in a typical transformer model, mak-
ing it a robust framework for hand gesture recognition without being combined with other DL algorithms. One 
of the differences between the ViT and a typical transformer is that the ViT is generally designed to be applied 
on 2D RGB images that have an additional dimension (the 3rd dimension) as the color channel rather than 2D 
time-series signals. Considering the fact that HD-sEMG signals comprise of two dimensions in space and one in 
time (3 dimensions in total), they can be an appropriate input to a ViT. As mentioned  in30, instantaneous train-
ing with HD-sEMG signals refers to training the network with a 2D image depicting MUAP activities under a 
grid of electrodes at a single time point. In this paper, we also show that there are reproducible patterns among 
instantaneous samples of a specific gesture which could also be a physiological representation of muscle activi-
ties in each time point. We demonstrate that the proposed framework can perform instantaneous hand gesture 
classification using sEMG image spatially composed from HD-sEMG. In other words, it can achieve acceptable 
accuracy when receiving, as an input, a single frame of the HD-sEMG image. The main contributions of the 
paper are briefly outlined below:

• To the best of our knowledge, the proposed Compact Transformer-based Hand Gesture Recognition frame-
work ( CT-HGR ) is the first ViT-based architecture that is leveraged to classify hand gestures from HD-sEMG 
signals. It can efficiently classify a large number of hand gestures relying only on the attention mechanism. 
Furthermore, the CT-HGR can be trained from scratch without the need for transfer learning or data aug-
mentation.

• Achieving near baseline accuracy using instantaneous HD-sEMG data samples, which is significant as it 
paves the way for real-time learning from HD-sEMG signals.

• Introducing, for the first time to the best of our knowledge, the idea of integrating macroscopic and micro-
scopic neural drive information through a hybrid DNN framework. The proposed variant of the CT-HGR 
framework, is a hybrid model that simultaneously extracts a set of temporal and spatial features through its 
two independent ViT-based parallel architectures (the so called Macro and Micro paths). The Macro Path 
is the baseline CT-HGR model, while the Micro path is fed with the peak-to-peak values of the extracted 
MUAPs of each source.

The rest of the paper is structured as follows: The utilized HD-sEMG dataset is introduced in Sub-Sect. "The 
HD-sEMG dataset". An explanation of the pre-processing procedures on the raw dataset is given in Sub-sect. 
"Data pre-processing" and our proposed framework is presented in Sub-sect. "The proposed CT-HGR". Our 
experiments and evaluations of implementing the proposed framework are discussed in Sect. "Results", a detailed 
discussion of the acquired results is generated in Sect. "Discussion" and finally, Sect. "Conclusion" concludes 
the paper.

Materials and methods
The HD‑sEMG dataset. The  dataset31 used in this study is a recently released HD-sEMG dataset that con-
tains two 64-electrode square grids ( 8× 8 ) with an inter-electrode distance of 10 mm, which were placed on 
extensor and flexor muscles. The HD-sEMG acquisition setup is shown in Fig. 1. According  to31, the two HD-
sEMG electrode grids covered the dorsal and the volar muscles of the forearm, specifically full or partial parts 
of flexor digitorum profundus and flexor digitorum superficialis, which is for flexion of fingers D2-D5, extensor 
digitorum communis for extension of fingers D2-D5, flexor carpi radialis and flexor carpi ulnaris for wrist flex-
ion, extensor carpi radialis longus and extensor carpi ulnaris for wrist extension, pronator teres, supinator, and 
flexor pollicis longus for thumb flexion, extensor pollicis longus for thumb extension and abductor pollicis lon-
gus. Data from 20 participants is provided through the dataset. One of the subjects is not included in the study 
from the beginning due to its incomplete information. The participants performed 65 hand gestures that are 
combinations of 16 basic single degree of freedom movements. One of the gestures is carried out twice, therefore, 
there are 66 movements in total. The subjects performed each gesture 5 times with 5 seconds rest in between. 
Fig. 2 illustrates how the raw dataset is organized. The red plot shows the acquired HD-sEMG signal for one 
single channel of one specific hand movement. The blue line shows the repetition number of that gesture and the 
rest intervals. The signals were recorded through a Quattrocento (OT Bioelettronica, Torino, Italy) bioelectrical 
amplifier system with 2, 048 Hz sampling frequency. Signals of the successive channels were subtracted from 
each other (i.e., the sEMG data is acquired in a bipolar fashion) to lower the amount of common-mode noise. 
The rational behind selection of this publicly available dataset is that it comprises of a large number of gestures 
and electrodes, which allows development of a generalizable framework by investigating different settings of the 
input data. Additionally, this dataset provides straightforward instructions on how to deploy the dataset for dif-
ferent evaluation purposes. However, since the  paper31 on this dataset did not refer to the train and test sets as a 
basis for comparison, we performed a 5-fold cross-validation as there are 5 sessions in the dataset. In this way, 
one (out of 5) repetition is considered as the test set and the remaining are assigned to the train set. Each time, 
the test set is changed until all the repetitions have been tested. Finally, the accuracy of each fold together with 
the average accuracy across all the folds are reported.
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Data pre‑processing. The raw HD-sEMG dataset is pre-processed following the common practice before 
being fed to the proposed CT-HGR framework. More specifically, there is a consensus in the literature that 
pre-processing of sEMG signals should involve the following steps: (i) Band pass filtering; (ii) Rectification; (iii) 
Linear envelope computation, and (iv) Normalization. The utilized dataset is band-pass filtered with a hardware 
high-pass filter at 10 Hz and a low-pass filter at 900 Hz during recordings. All filter types are second order but-
terworth filters. Prior to the filtering step, full wave rectification is performed, i.e., absolute value of the signal 
is computed. The rectification step coupled with the low-pass filtering results in getting the shape or “envelope” 
of the sEMG signal. The envelope obtained by low-pass filtering is used to acquire active segment  data32,33. The 
purpose of the low pass filtering is to attenuate higher frequencies present in the signal while keeping the DC 
and low frequency values. In this regard, a low-pass first-order butterworth filter at 1 Hz is applied separately 
to each of the 128 channels of the data. We would like to mention that the utilized low-pass filtering approach 
is common in the literature, e.g.,  References34–37 also applied a low-pass filter with cutoff frequency of 1 or 2 Hz 
and then windowed the signal. Shallower filters are widely recommended as they produce less signal distortions 
and spread them less in the time domain due to a shorter impulse response. Using the Fourier transform of the 
HD-sEMG  signals38,39, we observed that the cut-off frequencies up to 10 Hz are reasonable, as such we have 
also tested the model’s performance for 5 and 10 Hz low-pass filters as shown in Table 1. It is worth nothing 
that low-pass filtering can be seen, more or less, to smoothing the data with a sliding averaging window. In this 
regard, theory predicts that a moving average filter will have a cutoff frequency equal to f = 0.443

Tw
 (e.g., a moving 

Figure 1.  Representation of the HD-sEMG acquisition  setup31: (a) The ( 8× 8 ) HD-sEMG grid of electrodes. 
(b) The flexion and extension electrodes positioned on supinated and fully pronated forearm muscles.

Figure 2.  Illustrative example of the raw HD-sEMG dataset. The red plot is the sEMG signal for one single 
channel and one single movement and the blue plot shows the repetition number and the rest intervals for that 
movement.
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average filter with 1 Hz cutoff frequency corresponds to a 443 ms window size). Having said that, Butterworth 
filter in the time domain has an infinite impulse response with positive and negative lobes in contrast to the 
moving average filter, which is a finite positive window with constant values in time. Intuitively speaking, the 
positive and negative lobes of the butterworth filter neutralize the effect of averaging over time instants. In final 
pre-processing phase, the filtered signals are normalized by the µ-law normalization algorithm, which reduces 
significant changes in the dynamic range of the signals acquired from different electrodes. The µ-law normaliza-
tion is performed based on the following formulation

where xt is the time-series sEMG signal for each electrode channel, and µ is the extent to which the signals are 
scaled down and is determined empirically. According  to2,40, µ-law normalization helps the network to learn 
gestures more effectively. Fig. 3 shows the effects of the µ-law normalization. As can be seen from Fig. 3, original 
signals are closely spaced and their amplitudes change in a very small range (i.e. ≈ 0-0.02 V). They are, however, 
apparently separated after applying the µ-law normalization, which results in the sEMG signals ranging from ≈ 
15-50 V. Having separated values provide the network with better learning capabilities to discriminate between 
different gestures. Finally, the sEMG signals are segmented following the common approach in the  literature41–44. 
More specifically, after removing the rest intervals from the dataset, the signals are segmented with a specific 
window size creating the main 3D input of the CT-HGR with shape W × Nch × Ncv , where W is the window size 
and Nch and Ncv are the number of horizontal and vertical channels respectively. This completes our discussion 
on the pre-processing stage. In what follows, the proposed CT-HGR framework is presented, which takes the 
pre-processed data samples as its input and returns the predicted gesture class.

The proposed CT-HGR. In this section, description of our proposed CT-HGR framework, its main build-
ing blocks, and its adoption for the task of hand gesture recognition are presented. The CT-HGR is developed 
based on the ViT network in which the attention mechanism is utilized to understand the temporal and spatial 
connections among multiple data segments of the input. As stated previously, several studies have employed 
the attention mechanism together with hybrid CNN-RNN models to force the network to learn both spatial 
and temporal information of the  signals3,26. However, in this paper, we demonstrate that attention mechanism 
can work independently of any other network and achieve high accuracy when trained from scratch with no 
data augmentation. We also show that the proposed framework can be trained even on small window sizes and 

(1)F(xt) = sign(xt)
ln
(

1+ µ|xt |
)

ln
(

1+ µ
) ,

Table 1.  Comparison of classification accuracy and STD for each fold and their average for W = 64 , 128 
electrode channels ( CT-HGR-V1), and different cutoff frequencies for the low-pass filter. The accuracy and 
STD for each fold is averaged over 19 subjects.

# Channels
Window size 
(samples) Cutoff freq(Hz) Fold1(%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%)

Average 
(%)

128 64

1 82.14 (±3.26) 93.30 (±2.14) 93.75 (±2.08) 93.39 (±2.11) 90.07 (±2.55) 90.53 (±2.43)

5 81.94 (±3.74) 92.74 (±2.46) 93.48 (±2.12) 93.33 (±2.10) 89.64 (±2.95) 90.23 (±2.67)

10 80.40(±3.44) 91.42 (±2.38) 92.27 (±2.28) 91.98 (±2.28) 88.30 (±2.80) 88.87 (±2.64)

Figure 3.  The impact of the µ-law normalization on the sEMG signals: (a) Low-pass filtered sEMG signals of 8 
different electrode channels of the extensor grid before normalization. (b) Low-pass filtered sEMG signals of 8 
different electrode channels of the extensor grid after normalization.
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more importantly on instantaneous data samples. It is worth noting that in the recent literature, there are some 
 works30,41 that focused on small windows sizes achieving accuracies in the range of 89.3 - 91.81.

An overall illustration of the CT-HGR is indicated in Fig. 4. After completion of the pre-processing steps 
discussed in the previous section, we have 3D signals of shape W × Nch × Ncv , where W is the window size and 
Nch and Ncv are the number of horizontal and vertical channels respectively. As an intuitive approach for patch-
ing the input data with 32, 64 or 128 electrode channels, we considered window sizes that are powers of two (in 
samples), which allows to smoothly divide input into smaller  patches45. Therefore, the utilized window sizes in 
our experiments are of 64, 128, 256, and 512 data points (31.25, 62.5, 125, and 250 ms respectively considering 
2, 048 Hz sampling frequency of the dataset). Furthermore, we have assessed the effect of changing the number 
of electrode channels by using 32, 64 and 128 out of the whole 128 channels. Therefore, we set Nch to 4, 8, and 16 
each time while Ncv remains constant at 8. In what follows, the major blocks of the proposed CT-HGR network, 
namely “Patch Embedding”, “Position Embedding”, “Transformer Encoder”, and the “Multilayer Perceptron 
(MLP)” blocks.

Patch embedding. In this block, the 3D signals are divided into N small patches either horizontally, vertically 
or both. Therefore, we have N patches of size H × V × Ncv that are then linearly flattened to 2D signals of size 
N ×HVNcv where, N is equal to WNch/HV  and is the effective sequence length of the transformer’s input and 
terms H and V represent the horizontal and vertical patch sizes, respectively. Consequently, there are N patch 
vectors xpi  , for ( 1 ≤ i ≤ N ). Using a trainable linear projection layer, the xpi  vectors are embedded with the 
model’s dimension d. The linear projection is shown with matrix E , which is multiplied to each of the xpi  and 
yields N vectors of dimension d. Moreover, a class token named xp0 similar to what was previously used in the 
Bert  framework46 is prepended to the aforementioned vectors to gather all the useful information learned dur-
ing the training stage and is used in the final step when different hand gestures are classified. The final sequence 
length of the transformer after adding the class token is N + 1.

Position embedding. Unlike RNNs that process their inputs sequentially, transformers apply the attention 
mechanism to all of the data segments in parallel, which deprives them of the capacity to intrinsically learn 
about the relative position of each patch of a single input. Because sEMG signals are time-series sequences of 
data points in which the location of each point matters for hand gesture classification tasks, we need to train the 
network to assign a specific position to each sample. Generally speaking, positional embedding is an additional 
piece of information that is injected into the network, helping it to identify how data points are ordered. There 
are different types of positional embeddings offered such as relative, 1D, 2D, and sinusoidal positional embed-

Figure 4.  Overview of the CT-HGR network. (a) The windowed HD-sEMG signal is fed to the CT-HGR and 
split into smaller patches. The patches go through a linear projection layer which converts them from 3D to 2D 
data samples. A class token is added to the patches and the N + 1 patches are input to a transformer encoder. 
Ultimately, the first output of the transformer corresponding to the class token is chosen for the multi-class 
classification part. (b) The transformer encoder which is the fundamental part of the ViT, responsible for 
processing the input patches with its main part called Multi-head Self Attention (MSA). (c) The Multi-head Self 
Attention (MSA) Structure. (d) The Scaled Dot-Product module in the MSA block.
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dings that may be learnable or non-learnable. In this context, we use a learnable 1D positional embedding vector 
that is added to each of the embedded xpi  vectors to maintain and learn the position of each patch during the 
training phase. The final output z0 of the “Patch + Position Embedding” blocks is given by

where Epos is an (N + 1)× d matrix, holding the relative position of each patch in a d-dimensional vector.

Transformer encoder. A typical transformer model consists of two major parts called encoder and decoder. In 
this paper, we aim to utilize only the former part. The transformer encoder is where the attention mechanism 
tries to find the similarities among the N + 1 patches that arrive at its input. As can be seen in Fig. 4b, there are 
L identical layers of transformer encoder in the CT-HGR network and each has three separate blocks, named as 
“Layer Norm”, “Multi-head Self Attention (MSA)” and “MLP”. The z0 sequence of patches that is explained above 
is first fed to a normalization layer to improve the generalization performance of the model and accelerate the 
training  process47. The “Layer Norm block” is then followed by the MSA module, which incorporates h parallel 
blocks (heads) of the scaled dot-product attention (also known as self attention). In the context of self attention, 
three different vectors Keys(K), Queries(Q) and Values(V) of dimension d are employed for each input patch. 
For computing the self attention metric, the dot product of Queries and all the Keys are calculated and scaled by 
1/
√
d in order to prevent the dot products from generating very large numbers. This matrix is then, converted 

into a probability matrix through a softmax function and is multiplied to the Values to produce the attention 
metric as follows

In the MSA block (Fig. 4c), instead of dealing with d-dimensional Queries, Keys and Values, we split them into h 
parallel heads and measure the self attention (Fig. 4d) metric on these heads independently. Finally, after finding 
the corresponding results for each head, we concatenate them to obtain the d-dimensional vectors of patches. 
As indicated in Fig. 4b, residual paths from the encoder’s input to the output of the MSA block are employed to 
avoid the gradient vanishing problem. The formulations for the above explanations are as follows

where zl is the lth transformer layer’s output and l = 1, . . . , L . The final output of the transformer encoder is 
given by

where zpLi is the final layer’s output corresponding to the ith patch and i = 1, . . . ,N . As mentioned before, among 
all the above vector of patches, the zpL0 vector matching the class token is chosen for gesture classification. Authors 
 in48 claim that the learned features in the sequence of patches will eventually be included in the class token, which 
has a decisive role in predicting the model’s output. Therefore, zpL0 is passed to a linear layer which outputs the 
predicted gesture’s label as

Power spectral density (PSD) analysis. One of the experiments we did in this paper is comparing per-
formance of our proposed CT-HGR architecture with that of the conventional ML and a 3D CNN models. For 
the former, we design two sets of traditional ML algorithms based on SVMs and LDAs, which are  commonly49–53 
used for hand gesture recognition tasks. In the first experiment and  following49–51, we trained SVM and LDA 
models based on the following set of classical features: Root Mean Square (RMS), Zero Crossings (ZC), Slope 
Sign Change (SSC), and Wave-length (WL). To observe effects of recently proposed feature extraction methods, 
we did a second experiment based on features introduced in  Reference53. These features are a rough estimate of 
the Power Spectral Density (PSD) of the signal by finding an approximate relation between the PSD in the fre-
quency domain and the time-domain signal utilizing characteristics of the Fourier transform and the Parseval’s 
theorem. According to Parseval’s theorem, the sum of squares of a function is equal to the sum of squares of its 
Fourier transform, i.e.,

where x is the original sEMG signal, X, its discrete Fourier transform, X∗ , the conjugate of X, P is the power 
spectrum, and terms j, k are the time and frequency indices, respectively. The utilized set of features are m0 , 
m1 −m0 , m2 , m3 −m2 , and m4 −m3 , which are defined as follows
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where

where �•,�2• are the signs for the first and second derivatives and d1, d2 are the first and second derivatives of 
the original sEMG signal.

In the next section, the results corresponding to running conventional ML models using the above-mentioned 
sets of features are shown. Moreover, we will describe all other various experiments performed in this study and 
present the obtained results and their explanations in detail.

Results
We perform several experiments to evaluate performance of the proposed framework under different con-
figurations. In the following, each of the conducted experiments and their corresponding results are presented 
separately. The implemented models are evaluated on all the 66 gestures of the HD-sEMG dataset performed by 
19 healthy subjects. The implementations were developed in the PyTorch framework and the models are trained 
using an NVIDIA GeForce GTX 1080 Ti GPU.

Overall performance evaluation under different configurations. In this experiment, we employ 4 
different window sizes together with 3 different combination of electrodes of the HD-sEMG dataset and report 
the achieved accuracy for each of the 5 test folds and the overall averaged accuracy. In the first model, referred to 
as the CT-HGR-V1, the simplest and smallest CT-HGR model that gives acceptable results is chosen. The length 
of windowed signals, in this model, is set to 64, 128, 256 and 512 (31.25, 62.5, 125, 250 ms respectively) with skip 
step of 32 except for the window size of 512 for which the skip step is set to 64. To measure effects of increasing 
the number of channels on the performance of the proposed architecture, we consider three different settings 
using all, half, and 1/4 of the 128 electrodes. In the half mode, electrodes of multiple of 2 and in the 1/4 mode, 
electrodes of multiple of 4 were chosen. In this regard, we chose one electrode out of four adjacent electrodes to 
make sure that the utilized electrodes still cover the whole recorded area and the only thing that changes is the 
distance among the chosen electrodes. In such a scenario (which intuitively speaking can be interpreted as an 
unbiased way of choosing the electrodes), we make sure that we do not miss much of the information that high 
density grids usually provide and the model do not lose its generalizability when being fed with the data from 
fewer number of electrode channels. As stated previously, the number of horizontal electrode channels in the 
CT-HGR ’s input is 4, 8, and 16 while the number of vertical channels is 8. Regarding the hyperparameters of 
the model, the model’s (embedding) dimension is 64, and the patch size is set to (8, 4), (8, 8), and (8, 16) for 32, 
64, and 128 number of channels, respectively. The CT-HGR-V1 model contains only 1 transformer layer and 8 
heads. The MLP block’s hidden size is set to 64, the same as its input size. The CT-HGR-V1 model is trained with 
20 epochs and batch size of 128 for each subject independently. The optimization method used is Adam with 
β1 = 0.9 and β2 = 0.999 parameters, learning rate of 0.0001 and weight decay of 0.001. Learning rate annealing 
is deployed after the first 10 epochs for faster convergence. The cross-entropy loss function is considered as the 
objective function. Table 2 represents the acquired accuracy and standard deviation (STD) for each individual 
window size and number of channels. It is worth noting that the 512 window size is only tested with the whole 
electrode channels of the dataset to indicate the potential best performance of the network.
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Table 2.  Comparison of classification accuracy and STD for each fold and their average for different window 
sizes and number of channels ( CT-HGR-V1). The accuracy and STD for each fold is averaged over 19 subjects

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

32

64 76.85 (±3.83) 89.30 (±2.61) 89.91 (±2.54) 89.62 (±2.67) 85.49 (±3.07) 86.23 (±2.94)

128 77.21 (±3.56) 89.48 (±2.60) 90.05 (±2.63) 90.00 (±2.61) 85.83 (±2.96) 86.51 (±2.87)

256 77.63 (±3.50) 90.51 (±2.52) 90.79 (±2.45) 90.99 (±2.42) 86.66 (±2.97) 87.32 (±2.77)

64

64 79.64 (±3.38) 91.92 (±2.41) 92.55 (±2.18) 92.37 (±2.32) 88.16 (±2.77) 88.93 (±2.61)

128 80.26 (±3.44) 92.32 (±2.27) 92.94 (±2.20) 92.48 (±2.22) 88.46 (±2.77) 89.29 (±2.58)

256 81.43 (±3.31) 92.89 (±2.15) 93.42 (±2.13) 93.05 (±2.18) 89.29 (±2.69) 90.02 (±2.49)

128

64 82.14 (±3.26) 93.30 (±2.14) 93.75 (±2.08) 93.39 (±2.11) 90.07 (±2.55) 90.53 (±2.43)

128 82.80 (±3.22) 93.47 (±2.13) 93.98 (±2.03) 93.82 (±2.10) 90.30 (±2.48) 90.87 (±2.39)

256 83.20 (±3.21) 94.19 (±2.00) 94.25 (±1.97) 94.42 (±1.91) 90.70 (±2.46) 91.35 (±2.31)

512 83.87 (±3.21) 94.62 (±1.88) 95.26 (±1.80) 94.89 (±1.85) 91.26 (±2.37) 91.98 (±2.22)
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A second variant of the CT-HGR model, referred to as CT-HGR-V2, is also tested where the model’s dimen-
sion and the number of hidden layers in the MLP layer are twice those of CT-HGR-V1. We apply the CT-HGR-V2 
model on the data samples derived from the whole 128 electrodes to compare it with the last 4 rows of Table 2. 
The results are shown in Table 3. Table 4 illustrates the number of learnable parameters for each window size and 
number of channels in both models. Fig. 5 demonstrates the box plots for the accuracy of CT-HGR-V1 obtained 
for each individual fold and different window sizes from W = 64 to W = 512 (Fig. 5a–d. The box plots are drawn 
based on the InterQuartile Range (IQR) of accuracy for 19 subjects when all the 128 electrodes are included in 
the experiment. The black horizontal line represents the median accuracy for each fold. In Fig. 6, the Wilcoxon 
signed rank test is applied for CT-HGR-V1 and CT-HGR-V2 separately when the number of channels is fixed at 
128. The box plots show the IQR for each window size that decreases minimally from CT-HGR-V1 to CT-HGR
-V2. The Wilcoxon test’s p-value annotations in Fig. 6 are as follows:

• ns: 5.00e − 02 < p <= 1.00e + 00
• *: 1.00e − 02 < p <= 5.00e − 02
• **: 1.00e − 03 < p <= 1.00e − 02
• ***: 1.00e − 04 < p <= 1.00e − 03
• ****: p <= 1.00e − 04

Although the average accuracy does not change significantly, the STD in CT-HGR-V2 with W = 512 declines 
significantly compared to CT-HGR-V1.

The gestures in the HD-sEMG dataset are ordered according to their DoF and similarity in performance. The 
simple 1 DoF gestures are labeled from 1 to 16, 2 DoF gestures are from 17 to 57 and the most complex ones are 
from 58 to 66. To be more specific, the confusion matrices for Model CT-HGR-V1 with W = 512 and 128 number 
of channels are obtained for repetition 3 of all the subjects. The matrices are summed and normalized row-wise. 
The final confusion matrix is shown in Fig. 7. The diagonal values show the average accuracy acquired for each 
hand gesture among 19 subjects. The average accuracy for most of the gestures is above 94%. The density of the 
non-zero elements in Fig. 7 is utmost near the diagonal, which implies that the possibility of the network mak-
ing mistakes in gesture classification is higher in gestures that have the same DoF and are performed similarly. 
Fig. 8 represents precision, recall, and F1 score associated with Model CT-HGR-V1 for each gesture based on 
the confusion matrix shown in Fig. 7. This figure is included to provide the readers with a better sense of the 
gestures for which the above metrics were significantly high or low. Corresponding results for each gesture are 
illustrated in Table 5 and the average Matthews Correlation Coefficient (MCC) measure among all the subjects 
is calculated as 95.2%.

Comparisons with a conventional ML and a 3D convolutional model. In the first part of this sub-
section, we design two sets of traditional ML algorithms based on SVMs and LDAs, which are  commonly49–53 
used for hand gesture recognition tasks. In the first experiment and  following49–51, we trained SVM and LDA 

Table 3.  Comparison of classification accuracy and STD for each fold and their average for different window 
sizes and 128 electrode channels ( CT-HGR-V2). The accuracy and STD for each fold is averaged over 19 
subjects

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

128

64 83.82 (±3.22) 94.03 (±2.02) 94.58 (±1.9) 94.29 (±2.05) 90.84 (±2.58) 91.51 (±2.35)

128 83.98 (±3.17) 94.09 (±2.00) 94.82 (±1.86) 94.65 (±1.94) 90.89 (±2.45) 91.69 (±2.28)

256 84.74 (±3.13) 94.60 (±1.92) 95.19 (±1.80) 95.06 (±1.86) 91.59 (±2.44) 92.24 (±2.23)

512 85.27 (±3.12) 95.55 (±1.70) 95.81 (±1.65) 95.60 (±1.73) 92.16 (±2.32) 92.88 (±2.10)

Table 4.  The number of learnable parameters for different number of electrodes and window sizes

# Channels Window size (samples) # Parameters ( CT-HGR-V1) # Parameters ( CT-HGR-V2) # Parameters (3D CNN)

32

64 46,530 – –

128 47,042 – –

256 48,066 – –

64

64 62,914 – 294,914

128 63,426 – 311,298

256 64,450 – 319,490

128

64 95,682 273,346 –

128 96,194 274,370 –

256 97,218 276,418 –

512 99,266 280,514 –
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models based on the following set of classical features: Root Mean Square (RMS), Zero Crossings (ZC), Slope 
Sign Change (SSC), and Wave-length (WL). This experiment resulted in two models called SVM-V2 and LDA-
V2. There are, however, some promising new feature extraction methods proposed in the recent  literature52–56. 
To observe effects of recently proposed feature extraction methods, we did a second experiment based on fea-
tures introduced in  Reference53. These features are a rough estimate of the Power Spectral Density (PSD) of the 
signal by finding an approximate relation between the PSD in the frequency domain and the time-domain signal 
utilizing characteristics of the Fourier transform and the Parseval’s theorem. The procedures on how to extract 
these features from raw HD-sEMG data is explained in Sect. "Power spectral density (PSD) analysis".

Figure 5.  Comparison of the accuracy CT-HGR-V1 obtains for each fold and window sizes of (a) W = 64 (b) 
W = 128 (c) W = 256 and (d) W = 512 . The number of utilized electrode channels in these plots is 128.

Figure 6.  Statistical analysis of training over different window sizes, i.e., W = 64 , W = 128 , W = 256 , and 
W = 512 for (a) CT-HGR-V1, and (b) CT-HGR-V2. The box plots are drawn based on the InterQuartile Range 
(IQR) of the accuracy for all the subjects and all the electrodes.
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In the second part, we implement a 3D CNN model that is originally utilized for video-based hand gesture 
recognition  tasks57 and is found effective by authors  in58 to be applied on HD-sEMG datasets as they resemble 
video data in having one dimension in time and two dimensions in space. Therefore, in spite of a typical 2D 
CNN model, a 3D CNN architecture is able to extract both the temporal and spatial features in HD-sEMG 
datasets. The 3D signals of shape W × Nch × Ncv go through the 3D CNN architecture that has two consecutive 
3D CNN layers with 16 and 32 respective filters of size (5, 3, 3), each followed by a GELU activation function, a 
dropout and a max pooling layer. Then, two fully connected (FC) layers of size 256 and 128 are deployed before 
the output layers which consists of an MLP head similar to the one used in our CT-HGR models followed by 
a softmax function for classification. The other hyperparameters of the network are set similar to those of the 
CT-HGR model. The stride values in both 3D CNN layers are 1. Table 6 shows the acquired results for the ML 
and 3D CNN models in which the number of channels in the dataset is set to 64. For the case of ML models, Fig. 9 
compares precision, recall, and F1 score metrics obtained from the best performing ML model (SVM-V1) with 
that of our proposed CT-HGR-V1 with the same settings ( W = 256 and 64 number of electrode channels). The 

Figure 7.  Average confusion matrix of Model CT-HGR-V1 with W = 512 and 128 number of electrodes over 
repetition 3 of 19 subjects.

Figure 8.  Representation of Precision, Recall and F1 Score of Model CT-HGR-V1 with W = 512 and 128 
number of electrodes over repetition 3 of 19 subjects. These measures are obtained from the confusion matrix of 
Fig. 7 and shown for each class separately.
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Figure 9.  Representation of Precision, Recall and F1 Score with W = 256 and 64 number of electrodes over 
repetition 3 of all 19 subjects: (a) Model SVM-V1. (b) CT-HGR-V1.

Table 5.  Average Precision, Recall and F1 Score of Model CT-HGR-V1 with W = 512 and 128 number of 
electrodes over repetition 3 of all 19 subjects

Class # Precision(%) Recall(%) F1 Score(%) Class # Precision(%) Recall(%) F1 Score(%)

1 97.6 (±3.8) 97.8 (±5.3) 97.7 (±3.7) 34 97.5 (±4.8) 94.2 (±12.3) 95.8 (±8.3)

2 94.5 (±7.2) 97.9 (±9.7) 96.1 (±7.0) 35 97.2 (±4.4) 98.1 (±5.4) 97.7 (±3.9)

3 96.8 (±9.2) 95.4 (±15.3) 96.1 (±13.0) 36 97.5 (±4.7) 99.4 (±1.4) 98.4 (±2.5)

4 94.1 (±12.0) 95.6 (±9.4) 94.8 (±9.6) 37 96.7 (±8.7) 82.6 (±27.8) 89.1 (±23.2)

5 95.9 (±23.6) 92.5 (±23.7) 94.2 (±23.5) 38 90.6 (±12.7) 95.4 (±10.0) 92.9 (±9.9)

6 97.4 (±3.5) 95.2 (±11.2) 96.3 (±6.9) 39 90.4 (±13.7) 93.5 (±13.1) 92.0 (±12.7)

7 94.1 (±12.1) 98.4 (±3.5) 96.2 (±8.3) 40 96.0 (±7.3) 94.7 (±12.8) 95.4 (±10.4)

8 97.2 (±6.6) 98.7 (±2.1) 97.9 (±4.3) 41 94.8 (±6.7) 97.2 (±5.9) 96.0 (±5.3)

9 93.6 (±8.7) 95.9 (±9.1) 94.8 (±8.3) 42 95.6 (±7.8) 98.3 (±2.7) 96.9 (±4.8)

10 96.9 (±7.5) 93.4 (±11.4) 95.1 (±8.3) 43 98.3 (±2.6) 96.9 (±10.3) 97.6 (±6.9)

11 91.4 (±12.0) 96.9 (±12.7) 94.1 (±11.1) 44 98.0 (±3.3) 96.1 (±12.6) 97.0 (±8.8)

12 97.6 (±5.7) 98.7 (±2.9) 98.1 (±3.3) 45 97.4 (±8.3) 92.5 (±16.9) 94.9 (±13.3)

13 98.8 (±2.7) 99.4 (±1.2) 99.1 (±1.4) 46 93.7 (±9.1) 95.4 (±8.7) 94.5 (±8.2)

14 96.6 (±6.5) 99.0 (±2.0) 97.8 (±3.8) 47 96.9 (±4.5) 98.9 (±1.8) 97.9 (±2.6)

15 98.9 (±2.2) 99.7 (±1.0) 99.3 (±1.2) 48 98.0 (±22.4) 92.8 (±22.2) 95.3 (±22.1)

16 98.7 (±2.0) 99.5 (±1.5) 99.1 (±1.2) 49 98.7 (±2.0) 98.5 (±3.7) 98.6 (±2.3)

17 95.5 (±9.0) 97.5 (±4.8) 96.5 (±6.0) 50 98.0 (±3.5) 99.5 (±1.1) 98.7 (±1.9)

18 95.4 (±6.6) 97.4 (±9.5) 96.4 (±7.1) 51 98.6 (±2.8) 99.0 (±1.7) 98.8 (±1.7)

19 97.7 (±6.5) 93.5 (±9.7) 95.5 (±6.9) 52 93.7 (±11.4) 97.5 (±4.6) 95.6 (±8.1)

20 93.8 (±12.5) 97.2 (±6.2) 95.4 (±10.0) 53 97.6 (±3.9) 97.0 (±5.8) 97.3 (±4.4)

21 99.0 (±1.4) 97.5 (±5.0) 98.2 (±3.1) 54 96.6 (±19.1) 83.5 (±27.3) 89.6 (±26.3)

22 93.9 (±22.4) 90.7 (±23.1) 92.3 (±22.2) 55 97.2 (±7.6) 96.2 (±11.0) 96.7 (±9.2)

23 95.5 (±7.6) 99.1 (±3.0) 97.3 (±4.7) 56 89.3 (±15.3) 94.0 (±11.5) 91.6 (±12.7)

24 96.9 (±3.3) 94.2 (±12.4) 95.5 (±8.1) 57 92.3 (±14.2) 91.9 (±11.1) 92.1 (±12.6)

25 97.5 (±4.3) 99.1 (±1.2) 98.3 (±2.3) 58 82.2 (±15.2) 82.4 (±27.9) 82.3 (±25.6)

26 95.5 (±14.0) 88.8 (±25.4) 92.0 (±23.6) 59 92.5 (±11.5) 89.1 (±19.5) 90.7 (±15.7)

27 89.0 (±15.8) 94.5 (±10.0) 91.6 (±12.3) 60 84.6 (±15.3) 84.8 (±24.9) 84.7 (±20.5)

28 96.6 (±5.7) 97.0 (±5.1) 96.8 (±4.4) 61 97.6 (±4.0) 93.7 (±17.1) 95.6 (±13.2)

29 95.1 (±5.6) 94.5 (±14.4) 94.8 (±10.5) 62 92.3 (±11.5) 97.7 (±6.6) 94.9 (±8.1)

30 98.4 (±3.1) 88.8 (±19.6) 93.4 (±15.0) 63 98.5 (±2.7) 98.4 (±4.9) 98.5 (±2.9)

31 93.0 (±9.6) 98.2 (±2.4) 95.5 (±5.6) 64 93.3 (±8.8) 95.2 (±8.4) 94.2 (±7.0)

32 91.8 (±23.4) 89.9 (±25.4) 90.8 (±23.9) 65 93.2 (±8.2) 94.8 (±8.2) 94.0 (±6.7)

33 94.7 (±10.6) 98.0 (±3.5) 96.3 (±7.2) 66 94.4 (±9.2) 97.5 (±6.7) 96.0 (±6.6)
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average MCC measure for SVM-V1 is calculated as 94.2% and for CT-HGR-V1 as 93.1%. Fig. 10 shows the box 
plots and the results of Wilcoxon signed rank statistical test that is conducted for comparing CT-HGR-V1, 3D 
CNN, SVM-V1, SVM-V2, LDA-V1, LDA-V2 model’s performance accuracy on 19 subjects. In this experiment, 
the window sizes for all the models are changed ( W = 64 , W = 128 and W = 256 ), but the number of channels 
is fixed at 64. Therefore, only the models accepting the same window size as the input are compared to assess the 
discrepancy between two different models with the same input data.

When it comes to evaluation of the computational cost for DL models, the ultimate objective is to measure 
the needed amount of resources in training and inference. Computational cost can be measured in a variety of 
ways, among which time, memory and number of Floating Point Operations (FLOPs) are the common metrics. 
To evaluate computational cost of the proposed framework, in addition to the number of trainable parameters 
shown in Fig. 4, we have calculated the train time, test time and maximum allocated memory for each of the 
CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 models, which are shown in Table 7. Please 
note that the train/test times reported in Table 7 correspond to the whole train/test data containing all seg-
ments of 256-sample windows. Considering 4 repetitions in the train set and 1 repetition in the test set for each 
subject, we have approximately 73, 000 and 18, 000 samples in the train and test set, respectively. This means 

Table 6.  Comparison of classification accuracy and STD for different window sizes and 64 electrode channels 
using CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 models. The accuracy and STD are 
averaged over all the 5 folds and 19 subjects

# Channels Window size (samples) CT-HGR-V1 (%) 3D CNN (%) SVM-V1 (%) SVM-V2 (%) LDA-V1 (%) LDA-V2 (%)

64

64 88.93 (±2.61) 86.15 (±2.95) 86.01 (±7.05) 74.49 (±11.56) 83.05 (±7.35) 71.40 (±12.45)

128 89.29 (±2.58) 86.68 (±2.85) 89.95 (±5.19) 83.4 (±8.66) 87.97 (±5.38) 81.10 (±9.59)

256 90.02 (±2.49) 87.45 (±2.77) 90.71 (±4.88) 87.77 (±5.84) 90.85 (±4.46) 86.72 (±7.37)

Figure 10.  Box plots and IQR of CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 for 
different window sizes ( W = 64 W = 128 and W = 256 ) and 64 number of channels.

Table 7.  Comparison of train time, test time, and the maximum allocated memory for W = 256 and 64 
electrode channels using CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 models

# Channels Window size (samples) Parameter CT-HGR-V1 3D CNN SVM-V1 SVM-V2 LDA-V1 LDA-V2

64 256

Train time (s) 382.9 1228.9 203.2 187.4 149.3 160

Test time (s) 69 8 237.3 374.7 31.6 36.2

Memory (GB) 14.80 14.81 40.60 21.47 40.60 21.47
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that, CT-HGR-V1 for which the test time is reported as 69 seconds, needs 3.8 ms to predict each 256-sample 
window’s corresponding gesture. We should point out that different factors, such as the GPU memory, how the 
code is organized, and the utilized batch size, can affect test time specifically in the small scale of each window 
size. It is also worth noting that memory bandwidth is considered instead of FLOPs because on existing hardware 
architectures, a single memory access is much slower than a single computation.

Performance evaluation based on shuffled data. 
In the previous sub-sections, a 5-fold cross-validation technique was applied on the HD-sEMG dataset in which 
the test set (repetition) is entirely unseen and is not included in the train set (repetitions). However, another 
approach followed in the  literature9,59 to split the train/test sets is to shuffle the whole dataset with n repetitions 
and assign an arbitrary portion to the train set and the remaining to the test set. Along the same line, in some 
of the previous  works41,42,44 either the train/test splits were not specified or it was mentioned that data for each 
subject was shuffled and then randomly divided into train/test sets. Intuitively speaking, by shuffling the dataset 
across different repetitions, the model can better catch variations of the underlying signals and provide improved 
performance. In practice, the overall objective would be to have a generalizable model that works under different 
conditions as such one can acquire different repetitions and train the model over all to boost the performance. 
To observe effects of such a training approach on the overall achievable accuracy, we have decided to include 
such an experiment by shuffling the dataset. The results and observations are on a par with those reported in the 
aforementioned  reference41,42,44.The obtained average accuracy over 19 participants using 64, 128, 256 window 
sizes using the hyperparameters of CT-HGR-V1 are summarized in Table 8.

Instantaneous performance evaluation. 
In this sub-section, our objective is to assess the functionality of the proposed framework on instant HD-sEMG 
data points. In other words, we consider window size of only 1 sample as the input to our model, which requires 
no patching. We set the number of electrodes to 64. The hyperparameters used in this experiment are the same 
as those used for CT-HGR-V1. The accuracy results are presented in Table 9.

Evaluation of a hybrid model based on raw HD‑sEMG and extracted MUAPs. In this sub-sec-
tion, we present the results of fusing CT-HGR-V1 with a third variant of the CT-HGR called CT-HGR-V3 that 
works based on the extracted MUAPs from raw HD-sEMG signals. More specifically, CT-HGR-V3 uses HD-
sEMG decomposition to extract microscopic neural drive information from HD-sEMG signals for hand gesture 
recognition. Considering multi-channel sEMG signals as a convolutive mixture of a set of impulse functions 
known as the Motor Unit Spike Trains (MUSTs) of each  MU60, sEMG decomposition refers to a set of Blind 
Source Separation (BSS)61 methods that extract discharge timings of motor neuron action potentials from raw 
HD-sEMG data. Single motor neuron action potentials are summed to form MUAPs that are in charge of con-
verting neural drive information to hand  movements62. Motor unit discharge timings, also known as MUSTs, 
represent sparse estimations of the MU activation times with the same sampling frequency and time interval as 
the raw HD-sEMG  signals63. HD-sEMG signals can be modelled as a spatio-temporal convolution of MUSTs, 
which provide an exact physiological description of how each hand movement is encoded at neurospinal  level64. 
Thus, MUSTs are of trustworthy and discernible information on the generation details of different hand gestures, 
as such they are adopted in CT-HGR-V3 for hand gesture recognition.

Generally speaking, for extracting MUSTs, among the existing BSS  approaches60 suggested for HD-sEMG 
decomposition, gradient Convolution Kernel Compensation (gCKC)65,66 and fast Independent Component Anal-
ysis (fastICA)67 are of great prominence and are frequently used in the literature. To achieve better accuracy, the 
utilized BSS  algorithm60 is a combination of  gCKC65,66 and  fastICA67. Detailed explanation of such an integrated 
BSS algorithm can be found  in60. In this method, the number of extracted sources is dependent on the follow-
ing two different parameters that are determined before initiating the algorithm: (i) The number of iterations of 
gCKC and fastICA algorithms in which a new MU is found, and; (ii) The silhouette threshold, which determines 
whether the extracted MU is of high quality to be accepted or ignored. As stated  in68,69, the activation level/area 

Table 8.  Accuracy and STD for the shuffled dataset of all the 5 repetitions and different window sizes 
( CT-HGR-V1).

# Channels Window size (samples) # Avg accuracy (%)

64

64 98.05 (±1.19)

128 98.43 (±1.05)

256 98.79 (±0.96)

Table 9.  Accuracy and STD of each fold and their average for instantaneous training.

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

64 1 80.02 (±3.45) 92.33 (±2.27) 92.47 (±2.26) 92.16 (±2.31) 88.69 (±2.74) 89.13 (±2.61)
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of MUs in limb muscles is highly variable across different hand gestures. Accordingly, if the peak-to-peak values 
of MUAPs for each MU and all the channels are calculated, a set of 2D images can be acquired, which have a 
predictable pattern among different hand gestures. Therefore, after extracting the MUSTs of HD-sEMG signals, 
the corresponding MUAPs are found using Spike-Triggered Averaging (STA)  method69 with an averaging window 
of 20 samples. In this approach, for each MUST (each extracted MU), Nch × Ncv MUAPs of length 20 are found. 
Then, the peak-to-peak values of the MUAPs are calculated and a 2D image of shape Nch × Ncv is constructed for 
each MU. We should point out that the temporal profile of MUAPs obtained from MUSTs encode information 
about MU recruitments and the temporal profile of the EMG recordings. Therefore, using sliding windows for 
extraction of MUSTs informs us about the most current profile of the active MUs, their recruitments, and how 
much they are involved in each stage of performing the hand gestures.

The fused variant of the CT-HGR is designed to simultaneously extract a set of temporal and spatial features 
from HD-sEMG signals through its two independent ViT-based parallel paths, i.e., the Macro Path and the Micro 
Path. The former is the CT-HGR-V1 that accepts raw HD-sEMG signals as input, while the latter is the CT-HGR
-V3 fed with the peak-to-peak values of the extracted MUAPs of each source. A fusion path, structured in series 
to the parallel ones and consisting of FC layers, then combines extracted temporal and spatial features for final 
classification. Fig. 11 illustrates the overall hybrid architecture of the fused model. In particular, the Macro Path 
extracts both temporal and spatial features of HD-sEMG signals as it is fed with time-series raw HD-sEMG sig-
nal that are variable both in terms of time and space. However, the Micro Path can extract another set of spatial 
features from peak-to-peak values of MUAPs that are variable in space.

In our experiments, the number of iterations (Item (i)) is set to 7 and the silhouette measure (Item (ii)) is set 
to 0.92, therefore, depending on the quality of the extracted MUSTs, a maximum of 7 sources are estimated for 
each windowed signal. Therefore, each windowed signal of shape W × Nch × Ncv is of maximum 7 MUs that 
retain various activation levels for each electrode channel. These 2D images are considered as new input data to 
the CT-HGR-V3. Thus, according to Fig. 11, for each windowed signal that is fed to CT-HGR-V1, a maximum of 
7 peak-to-peak MUAPs are created and fed to CT-HGR-V3. After training CT-HGR-V1 and V3 independently, 
the models’ weights are frozen, i.e., are kept constant (not being updated with gradient descent during training) 
and the final classification linear layer is removed for both models. Then, the final class tokens of CT-HGR-V1 
and CT-HGR-V3 are joined together and fed to a FC layer for final classification. In this way, the hybrid model 
decides based on raw HD-sEMG signals as well as peak-to-peak images of MUAPs obtained for each MU inde-
pendently. The CT-HGR-V3’s hyperparameters are set as follows: For both CT-HGR-V1 and V3, HD-sEMG data 
is divided into windows of shape (512,8,16) with skip step of 256. Therefore, the image size and the number of 

Figure 11.  The fused CT-HGR framework. In the first stage, the ViT-based models in the Macro and Micro 
paths are trained based on 3D, HD-sEMG and 2D, peak-to-peak MUAP images, respectively. In the second 
stage, the Micro and Micro weights are frozen (not being updated with gradient descent during training). The 
final Micro and Macro class tokens are concatenated and converted to a 1, 024-dimensional feature vector, 
which is fed to a series of FC layers for gesture classification.
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input channels for 2D images are set to ( 8× 16 ), and 1, respectively. For each peak-to-peak image, we considered 
2 patches by setting patch size to ( 8× 8 ). The model’s embedding dimension (d) and number of heads is the 
same as the two previous models. The optimization algorithm is Adam with learning rate of 0.0003 and weight 
decay of 0.001. Each batch has 64 data samples and the model is trained through 50 epochs. Table 10 compares 
accuracy and STD for CT-HGR-V1, CT-HGR-V3 and their fused model for each fold. It is worth mentioning 
that authors  in70 have adopted a quite similar approach to ours by combining activations of individual DoFs 
(obtained from decomposed MUSTs) with residual HD-sEMG signals for predicting wrist DoF angles using a 
linear regression method. The main distinctions between the two methods are as follows: (i) The method  of70 
focuses on predicting DoF angles in wrist kinematics and not gesture recognition, and (ii) Considered combin-
ing residual HD-sEMG signals with DoF activations, which is a different concept from combining peak-to-peak 
MUAPs with original HD-sEMG signals.

Comparison with other works on the utilized dataset. In this section, we compare our proposed 
CT-HGR model with 4 other  works41–44 that proposed ML/DL methods for hand gesture recognition based on 
the same dataset utilized in this study.

Sun, et al.43 proposed three different CNN-based models for hand gesture recognition with 1D, 2D and 3D 
convolutional layers that are applied on both transient and steady phases of HD-sEMG data. In our study and 
differently  from43, we jointly considered the transient and steady phases of the sEMG signals when providing 
the input to the model, therefore, data distribution should be different. We, however, compared our results with 
their steady phase as there is more similarity between these two types in comparison to the transient phase. 
Using a window size of 200 ms, all the 128 electrode channels, and the same 5-fold cross validation technique 
as we implemented, the maximum median accuracy obtained by the model  of43 is 84.6% whereas the proposed 
framework obtained 91.98% accuracy for 250 ms window and 128 electrode channels.  In41, a similar study to 
ours is conducted by changing the window size and the number of channels to evaluate their effect on the per-
formance of the model. In this paper, 5 time-domain features of the signal along with sixth-order autoregressive 
coefficients are extracted and given to an LDA model. Average accuracy of 81.39% is obtained for the window 
size of 32 ms when 32 channels were used. The accuracy increases to 91.5% for the same window size with 128 
channels. It finally reaches 96.14% for the 256 ms window and 128 channels with minimum STD of 3.82%. We 
should note that autoregressive coefficient extraction could be a time-consuming process for HD-sEMG data 
potentially slowing the learning process. Along a similar path,  Reference44 introduced a new feature extraction 
approach using Wavelet Scattering Transform, applied an SVM model on the extracted features and compared 
their results with that  of41. The results show an increase in the accuracy for different window sizes and 128 elec-
trode channels which is ≈ 94% and 97.2% for 32 ms and 256 ms window sizes, respectively. We should note that 
in these works, the utilized method for splitting the train/test data is not explicitly specified. A Graph Neural 
Network approach is adopted  in42 with window sizes of 65 samples using 128 channels resulting in the average 
accuracy of 91.25% with STD of 4.92%. Using the same setting, we acquired accuracy of 90.53% and STD of 2.43% 
with CT-HGR-V1 and 91.51% and STD of 2.35% with CT-HGR-V2. When it comes to train/test datasets, it is 
mentioned  in42 that data for each subject was shuffled and then randomly divided into train/test sets. Table 11 
represents the average accuracies obtained by the above-mentioned papers and the settings they utilized to assess 
their performance. If the STD and train/test split is not mentioned in the paper, “NA” (Not Applicable) is shown.

Discussion
Based on the results shown in Table 2 and Table 3, the accuracy for each fold and the average accuracy increases 
by increasing both the window size and the number of channels. Doubling the number of electrode channels 
from 32 to 64 results in 2− 3 %, and from 64 to 128 in 1− 2 % increase in all the reported accuracies. Intuitively 
speaking, on the one hand, increasing the window size feeds more data to the model at each epoch, which can 
enhance its performance as the difference among various gestures is more detectable through larger window 
sizes. On the other hand, instead of increasing the skip step while increasing the window size, we kept the skip 
step constant at 32 to feed more data to the model. In this scenario, the model has access to much more different 
samples of the training data as such possibly better learns the underlying representations of the data compared 
to the scenario where the skip step is larger but the model is fed with fewer data samples. Therefore, the model 
could be more generalizable while avoiding overfitting over to the train samples. Generalization refers to the 
ability of the model to make correct predictions for previously unseen data samples. More specifically, although 
the model is tested with completely unseen data samples, it has seen more samples during the training phase as 
such should be able to more effectively detect the underlying patterns among different gestures as such perform 
better on the unseen test data. The small skip step (32) chosen here means that the predictions are made every 
15.3ms, causing a very small latency for real-time implementation of the proposed network in prosthetic devices. 

Table 10.  Comparison of classification accuracy and STD for each fold and their average for each of the 3 
models. The accuracy and STD for each fold is averaged over 19 participants

Model Name Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

CT-HGR-V1 79.92 (±3.39) 91.43 (±2.48) 93.84 (±2.05) 92.57 (±2.28) 88.96 (±2.83) 89.34 (±2.61)

CT-HGR-V3 81.53 (±3.45) 88.03 (±2.66) 89.63 (±2.39) 89.11 (±4.02) 84.92 (±2.97) 86.64 (±3.10)

Fused 89.38 (±2.88) 96.86 (±1.82) 96.82 (±1.75) 96.65 (±2.75) 94.61 (±1.90) 94.86 (±2.22)
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As it is evident from Table 2, starting from 86.23%, the average accuracy increases by 0.3− 0.8 % each time the 
window size is increased reaching 91.98% when the window size and the number of channels are at the maximum. 
Therefore, the number of utilized channels, in general, has a greater impact on the accuracy in comparison to 
the window size. Moreover, the smallest accuracy is for Fold1 while the highest is for Fold3/Fold4, which could 
be due to the fact that in the first repetition, the subject was not completely aware of the procedure and how to 
exactly perform the required gesture. Intuitively speaking, the subject was being trained to perform the requested 
task. We hypothesize that, in the 3rd and 4th repetitions, the subject might have completely learned about the 
gesture and performed it more consistently, however, in the 5th  repetition, fatigue might be a factor resulting 
in lower performance and relatively large drop in the accuracy.

As can be seen from Fig. 5, choosing the first repetition as the test set considerably differs from choosing 
the third or fourth repetition as the former yields much lower accuracy on average. STD for each fold and their 
average follows the same pattern as that of the accuracy, however, in an opposite direction, meaning that the 
best accuracy is usually associated with the least STD. This issue justifies the difference between the acquired 
accuracy in our proposed CT-HGR-V1 model with that of  References41,42,44 using the same HD-sEMG  dataset31. 
As mentioned before, two ML/DL models could be fairly comparable only if their train/test datasets are similar.

As can be seen in Table 3, Model CT-HGR-V2 is generally a better model compared to its CT-HGR-V1 
variant as the accuracy for each fold and the overall average are higher. This is because CT-HGR-V2 is a bigger 
model with larger embedding dimension than CT-HGR-V1 in which the variations among different patches are 
more effectively embedded helping it to better discriminate between different hand gestures. Nevertheless, while 
the best improvement in accuracy occurs for Fold1 with ≈ 1.5% increase compared to CT-HGR-V1, not much 
improvement (less than 1% in most cases) is observed in the other folds and the final average. As indicated in 
Table 4, CT-HGR-V2’s number of learnable parameters is roughly 3 times the number of learnable parameters of 
CT-HGR-V1, however, there is a marginal progress in its performance in comparison to the former model. This 
shows that the hyperparameters used in CT-HGR-V1, producing no more than 100, 000 learnable parameters 
for the model, are sufficient for learning the 66 hand movements with high accuracy and there is no need to use 
more complex models for hand gesture classification using the proposed CT-HGR framework on this specific 
HD-sEMG dataset. Clearly, deploying more complex models takes more memory and training time, which in 
turn reduces the overall efficiency of the model. According to the box plots shown in Fig. 6, all the comparisons 
between different window sizes are statistically significant. According to our results and those  of41, in the case of 
HD-sEMG data, changing the window size has a great impact on the model’s accuracy in contrast to sparse sEMG 
signals. In HD-sEMG signals, thanks to using large number of electrode channels, there exists valuable informa-
tion about differentiable patterns among hand gestures even in small window sizes. We should also mention that 
there exists a direct link between the window size and responsiveness in  prosthetics71. For CT-HGR-V2, we have 
p ≤ 0.001 for the W = 64 / W = 128 and W = 256 / W = 512 pairs, which is less statistically significant than 
the other pairs with p ≤ 0.0001 . For CT-HGR-V2, the results for the W = 64 / W = 128 pair are with p ≤ 0.05 
which is less statistically significant than that for the other pairs. In our experiments, we aimed to verify that 
our proposed model can extract the underlying patterns in a single sample or very small portion of HD-sEMG 
data while these patterns are not easily discernible in sparse sEMG data. Although this may not be widely used 
in today’s real-time HMI devices, it can be a potential field of research and development of the current devices 
for window sizes of 2 ms and below to evaluate user’s experience.

Table 11.  Comparison of classification accuracy and STD obtained by the other works on our utilized dataset 
with CT-HGR-V1 and CT-HGR-V2

Reference Window size (ms) # Channels Accuracy (%) Train/Test Split

Ref43 200 128 84.6 (NA) 5-fold Cross Validation

CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation

CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation

Ref41 32 32 81.39 (±10.77) NA

CT-HGR-V1 31.25 32 86.23 (±2.94) 5-fold Cross Validation

Ref41 256 128 96.14 (±4.67) NA

CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation

CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation

Ref42 31.7 128 91.25 (±4.92) NA

CT-HGR-V1 31.25 128 90.53 (±2.43) 5-fold Cross Validation

CT-HGR-V2 31.25 128 91.51 (±2.35) 5-fold Cross Validation

Ref44 32 128 94 (NA) NA

CT-HGR-V1 31.25 128 90.53 (±2.43) 5-fold Cross Validation

CT-HGR-V2 31.25 128 91.51 (±2.35) 5-fold Cross Validation

Ref44 256 128 97.2 (NA) NA

CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation

CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation
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As mentioned previously, the positional embedding used in the CT-HGR framework is a 1D trainable embed-
ding vector that is added to each of the embedded patches. By increasing the window size in our experiments, the 
patch size remains constant and the number of patches increases. This causes the positional embedding, which 
is the principal factor in determination of the input samples’ succession, to learn the positions more precisely. 
Fig. 12 illustrates the cosine similarity matrices of the positional embedding in Model CT-HGR-V1. Cosine 
similarities are sketched for different window sizes, 128 electrode channels and the trained model on subject 20 
when repetition 3 is considered as the test set. In this case, models with window sizes of 64, 128, 256, and 512 
have (8, 16) patch sizes. Therefore, each contain 8, 16, 32 and 64 patches in total. The x and y coordinates show 
the patch indices for each case and each row shows the similarities between each patch and the other patches. The 
diagonal values in each matrix are the largest values because their positional embedding vector is the same and 
its cosine is maximum. Similarity in the learned positional embedding vector of patches declines as the patches 
become farther. For W = 512 , the model learns the positions better and cosine similarities change more smoothly. 
Fig. 13 demonstrates the cosine similarity matrices of the positional embedding in Model CT-HGR-V2. Evidently, 
Model CT-HGR-V2 has learned the position embeddings more effectively as there is less similarity between the 
distant patches for all the window sizes. The more the window size increases, the more the model discriminates 
between the distant patches and the more the adjacent patches are considered similar to each other. As illustrated 
in Figs. 12 and  13, for W = 512 , Model CT-HGR-V2 behaves in a more orderly fashion than Model CT-HGR
-V1 and consequently, extracts the positional information better.

Regarding instantaneous training, authors  in30 implemented a CNN to conduct instantaneous classification of 
8 gestures in the CapgMyo DB-a dataset. They applied various pre-processing and hyperparameter tuning steps 
and achieved the best performance of 89.3 for 18 subjects and 8 different gestures when all the 128 channels of 
the electrode grid were utilized. However, we achieved average accuracy of 89.13% for 19 subjects and 66 hand 
gestures with 64 channels. It is worth mentioning that 89.13 for 19 subjects and 66 gestures is achieved with the 
lightest version of our framework. Based on the results shown in Table 9, no significant discrepancy between 

Figure 12.  Cosine similarities of repetition 3, subject 20 of CT-HGR-V1 for (a) W = 64 (b) W = 128 (c) 
W = 256 and (d) W = 512.
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the results for instantaneous training and larger window sizes is found. The results, in this case, are very similar 
to that of CT-HGR-V1, when W=128 and number of channels is equal to 64. This suggests that instantaneous 
training can sometimes work even better than training on very large window sizes with our proposed framework. 
More specifically, the model is able to achieve high accuracy in learning 66 hand movements with a single-point 
input which can be considered as an important breakthrough in the field of hand gesture recognition. This proves 
that HD-sEMG datasets provide highly valuable information of the muscles’ activity in each time point which 
are sufficient for the model to learn various hand gestures with no need for larger window sizes. Furthermore, 
training with single-point windows of data provides a great number of input samples to the CT-HGR which helps 
the model generalize better and avoid overfitting. Based on the results shown in Table 8, the average accuracy and 
STD with shuffling is ≈ 9% higher and ≈ 1.4% lower than the results of the 5-fold cross-validation, respectively. 
This, however, can cause major issues in practice when dealing with hand prosthetic devices since the test data 
is entirely unseen and the pre-trained model could not perform reliably while testing with new datasets. In other 
words, the results reported without shuffling should be used as the bases for practical utilization.

Based on the results shown in Table 6 and Fig. 10, contrary to CT-HGR , increasing the window size leads 
to significant improvements in the average accuracy of the conventional ML models. In general, the achieved 
accuracy for the best performing ML models, i.e., SVM-V1 and LDA-V1 (trained with a newly proposed set of 
features), is 3− 6 % lower and 0.5− 0.8 % higher than CT-HGR-V1 with W = 64 and W = 256 , respectively. 
Furthermore, as indicated in Table 6 and Table 4, our proposed CT-HGR-V1 framework surpasses the 3D CNN 
model by ≈ 3% average accuracy while employing less than 1/4 of the learnable parameters used in the 3D CNN 
model. According to Table 6 and Fig. 10, the accuracy of both the deep networks ( CT-HGR-V1 and 3D CNN) 
increases by less than 1% with doubling the window size. As shown in Fig. 10, there is statistically significant 
difference among the six models with window size of 64 ( p ≤ 0.0001 ), implying that the proposed CT-HGR-V1 
gives its best performance at smaller window sizes. For W = 128 , the difference between CT-HGR-V1 and SVM-
V1 and LDA-V2 is not significant although these models achieve twice the STD of CT-HGR-V1. The proposed 
CT-HGR-V1 model seems to perform similarly to SVM-V1, LDA-V1 and SVM-V2 models when the window 

Figure 13.  Cosine similarities of repetition 3, subject 20 of CT-HGR-V2 for (a) W = 64 (b) W = 128 (c) 
W = 256 and (d) W = 512.
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size is set to 256 as the Fig. 10 shown no significant discrepancy in the average accuracy of these models. In 
this case, there is still significant difference between CT-HGR-V1 and 3D CNN architectures with p ≤ 0.0001.

According to Table 7, the train and test times for the two LDA models are less than that of CT-HGR-V1 while 
the maximum allocated memory for ML models with the second set of features that resulted in better accuracy 
is much higher than the maximum memory requirement of the CT-HGR-V1. This can be attributed to fact 
that the process of extracting five features from each channel of the HD-sEMG signals requires a great amount 
of system memory. On the contrary, DL-based models do not need a separate feature extraction step and the 
input windowed signals are the only item that needs system’s memory allocation. It is worth nothing that when 
it comes to the train time, CT-HGR-V1 needs 20 epochs to secure the minimum loss and the best convergence 
of the model. However, if the CT-HGR-V1 model is run with even 10 epochs, the accuracy drops around 0.8%, 
but the train time halves, i.e., 189 seconds. As stated previously, the train and test times are calculated in seconds 
for training the whole signal of one complete repetition for one subject. The batch size used for the testing stage 
of the CT-HGR-V1 is set equal to that of the training phase, i.e., 128. This impacts the test time of the CT-HGR
-V1 (with larger batch sizes, the test time should reduce) compared to the ML models where the whole test data 
is provided at once. As can be seen in Table 7, the test time for the 3D CNN model is the least, but it has much 
larger training time, larger number of trainable parameters and less accuracy in comparison to CT-HGR-V1.

Based on Fig. 9, CT-HGR-V1 architecture performs poorly for gestures 57 and 59 as it achieves low precision, 
recall and F1 score for these two gestures. Gesture 36, also, in this model has a low recall measure implying that 
of all the samples that were labelled as class 36, not a great number of them were labelled correctly by CT-HGR
-V1. SVM-V1 model was also incapable of effectively classifying gestures 57 and 59, but acted more precisely 
than CT-HGR-V1 for these gestures. This model, however, performs worse than CT-HGR-V1 on gesture 64 in 
terms of precision and F1 score. According to Table 10 in which the studies are reported for the 250 ms window 
size, CT-HGR-V1’s accuracy is higher than that of the CT-HGR-V3 by ≈ 3− 4 %, except Fold1 for which the 
peak-to-peak values of MUAPs provide more accurate information of the performed hand gesture than the 
HD-sEMG signals. However, a great improvement in average performance of the fused model in comparison 
to both stand-alone models is witnessed which is 8.22 and 5.52 % increase compared to CT-HGR-V1 and V3, 
respectively. As a side note on current challenges in EMG-based control of prosthetic hands, according to 
 Reference72, one of the future perspectives to achieve the real-time usability of prosthetic, is to improve the fea-
ture extraction component of the EMG-based solutions. Deep learning is envisioned as one fruitful approach to 
address the feature extraction problem, which is the focus of this study. When it comes to real-time continuous 
classification, beside achieving high accuracies, one requires rapid response. The proposed framework provides 
high accuracies over small window sizes, therefore, can generate fast and dense decision flows. In summary, we 
hypothesized that by introducing a compact DL-based model that has the capacity to classify a large number of 
hand gestures with a small amount of memory and training time, we can put a step forward towards develop-
ment of more dextrous control interfaces.

As a final remark, here we focus on clarifying specific questions related to the overall design of the proposed 
framework. The first question that comes to the mind is how to extract the MUAP in real-time. The decomposi-
tion method utilizing STA (from extracting MUSTs to obtaining MUAPs) is performed offline, which is consid-
ered as a limitation of the method as stated in the Sect. "Conclusion". Real-time extraction of MUAPs is a fruitful 
direction for future research and our suggested intuition is to design a DL-based model for extraction of MUSTs 
in real-time. Another question is on the rational of the statement that the MUAP in the sliding window contains 
information on MU recruitment. MUSTs show temporal activities of each MU in the course of performing dif-
ferent hand gestures. Duration of signals for each hand gesture in our dataset is about 4.5 seconds, therefore, 
during the entire process of performing a hand movement, different MUs with different levels of activities (forces) 
are involved. Consequently, extracting MUAPs based on small segments of the whole signal can provide us with 
more accurate information on MU recruitment at each stage of performing a specific hand gesture. Authors in 
 References73,74 have also adopted a similar measure to perform STA by using sliding windows of various sizes 
based on their application.  In74, it is explained that since the force level changes during performing a hand gesture, 
sliding STA is used to obtain detailed information of the MU recruitments within small time intervals. Another 
key question is the rational behind integration of MUAP with raw EMG signals. Intuitively speaking, each of 
these signals provide different information about how a specific hand gesture was performed. HD-sEMG signals 
reflect the macroscopic view of the neural drive information when performing a hand gesture. These signals 
provide useful information about amplitude variation, signal envelope, and onset/offset times of muscle contrac-
tion which are all extracted from the signals on the skin surface. However, MUAPs represent a microscopic view 
of the neural drive which is very similar to the behavior of human’s brain and individual motor neurons when 
a hand movement is being performed. This includes information about MU recruitments, MU firing rates, MU 
size/shape and MUAP amplitudes which are not readily provided by raw HD-sEMG signals. As the two signals 
are relevant to different parts of body and provide distinct views of macroscopic and microscopic neural drive 
information, we combined them to achieve more accurate classification accuracy for the gesture recognition task.

Conclusion
In this study, we proposed a ViT-based architecture, referred to as the CT-HGR framework, for hand gesture 
recognition from HD-sEMG signals. Efficacy of the proposed CT-HGR framework is validated through exten-
sive set of experiments with various numbers of electrode channels and window sizes. Moreover, the proposed 
model is evaluated on instantaneous data samples of the input data, achieving, more or less, a similar accuracy 
to scenarios with larger window sizes. This provides the context for real-time learning from HD-sEMG signals. 
Although increasing the number of learnable parameters of the CT-HGR network leads to higher accuracy, the 
network works reasonably well on 66 hand gestures with less than 65k number of learnable parameters. This is 
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exceptional as its conventional DL-based counterparts have, at times, millions of parameters. Besides, a hybrid 
model that is trained on raw HD-sEMG signals and their decomposed MUAPs is introduced, which substantially 
enhances the accuracy of the single CT-HGR model trained solely on raw HD-sEMG data.

Although the utilized HD-sEMG dataset in this study is a comprehensive dataset acquired for a large num-
ber of hand gestures and from various subjects, it is obtained only from able-bodied individuals. This can be 
considered as a limitation of our developments. One direction for future works is to incorporate neurophysi-
ological characteristics of hand amputees by acquiring a more generalized dataset that includes signals from 
this population. Moreover, the HD-sEMG decomposition phase in this study is conducted offline, preventing 
the proposed hybrid model to be employed in real-time HMI devices. This can be considered another limitation 
of our developments and a second fruitful direction for the future work to design a DL-based architecture for 
extracting MUSTs in real-time for development of online HMI systems. Another fruitful and important direction 
for future research is to focus on explainable AI to represent the extracted feature space through the proposed 
network and compare it with that of the conventional ML models. Finally, it would be interesting and intuitively 
pleasing to research potentials of Spiking Neural Networks (SNN) in this domain.

Data Availability
The utilized dataset is publicly available through the following link: https:// doi. org/ 10. 6084/ m9. figsh are.c. 50908 
6131.
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