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Smoothing method for unit 
quaternion time series 
in a classification problem: 
an application to motion data
Elena Ballante 1,2*, Lise Bellanger 3, Pierre Drouin 3,4, Silvia Figini 1 & Aymeric Stamm 3

Smoothing orientation data is a fundamental task in different fields of research. Different methods 
of smoothing time series in quaternion algebras have been described in the literature, but their 
application is still an open point. This paper develops a smoothing approach for smoothing quaternion 
time series to obtain good performance in classification problems. Starting from an existing method 
which involves an angular velocity transformation of unit quaternion time series, a new method which 
employ the logarithm function to transform the quaternion time series to a real three-dimensional 
time series is proposed. Empirical evidences achieved on real data set and artificially noisy data sets 
confirm the effectiveness of the proposed method compared with the classical approach based on 
angular velocity transformation. The R functions developed for this paper will be provided in a Github 
repository.

The representation and analysis of the motion of human body is a research subject which has been constantly 
expanding with the increasing use of sensors. In time series analysis, smoothing is a fundamental step in real 
world applications, especially when sensors are involved, because a certain amount of noise is captured. The 
presence of noise can lead to unstable results or even wrong conclusions when data are analyzed and classifica-
tion or clustering algorithms are applied.

In this paper, data registered by a motion sensor called MetaMotionR (MMR), from Mbientlab, are analysed. 
The sensor measures the spatial orientation of the hips and stores it as a quaternion time series. The motion of 
the hip joint is registered under two different conditions: natural walking and a walking made difficult by a knee 
immobilizer orthosis to simulate a walking impairment due to Amyotrophic Lateral Sclerosis (ALS), Multiple 
Sclerosis (MS) and other neurodegenerative diseases.

In this context, different smoothing techniques for quaternion time series are reviewed. The smoothing 
technique proposed  in1 has been selected for its simplicity of implementation and its power in making available 
all the techniques developed in Euclidean spaces. On the basis of this method, a new technique is proposed and 
compared with the previous one on real and artificially noisy data to understand how the influence of the level 
of the noise affects the performance of a smoothing methods.

The rest of this paper is organized as follows: “Quaternion time series smoothing methods” section  reviews 
the literature related to smoothing 1D quaternion time series and introduces our proposal. In “Description of 
the differences between approaches” section a theoretical comparison of some of the methods is presented. 
“Experimental results” section shows the experimental settings and results of the quaternion wavelet smoothing 
of real and noisy data in terms of classification performance. In “A real application: data on a human behaviour 
study” section the application of the proposed method to a real dataset related to a human behaviour study is 
described. Conclusions and further ideas for research are summarized in “Conclusions” section.

Quaternion time series smoothing methods
We are interested in smoothing methods suitable for one-dimensional quaternion-valued signals. Let 
f ∈ L2(R,H) be a signal, where H is the quaternion space (an introduction to quaternions and quaternion time 
series is described in Section 2 of Supplementary Material).
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Most of the existing smoothing methods for this type of signal are generalizations of classical smoothing 
techniques originally introduced for Euclidean spaces: the Fourier transform, spline functions, and wavelets. 
These methods have been adapted to quaternion time series in different ways: spline functions are often used 
in quaternion algebras to interpolate  signals2,3, while there are no examples of applications where splines are 
directly applied to smoothing signals.

Regarding the Quaternion Wavelet Transform (QWT), extensive reviews can be found  in4  and5.
In6, naïve approach to smooth each component of the quaternions independently is described. It is well known 

in the literature that different isomorphisms between H and other spaces characterized by specific properties 
can be deployed to smoothing. More precisely the application of wavelet methods to quaternion time series is 
described  in7, where Clifford wavelets and a Clifford multiresolution analysis are introduced. The application to 
quaternion time series is possible because H is isomorphic to the Clifford Algebra Cl(0,2). The author limited his 
considerations to the theoretical statement of the method and the definition of the Haar wavelet.

In8, the idea of Mitrea was explored in the context of image analysis, and the Haar wavelet was applied to 
biomedical data (tomography images) written in terms of quaternions and compressed via wavelets.

The idea of matrix-valued wavelets (MVWs) was explored by Ginzberg and Walden  in9,10, demonstrating that 
the wavelets defined in the previous  literature11,12 are trivial: new matrix-valued wavelets, using the isomorphism 
between H and the space of matrices R4x4 with quaternion-structure conditions on the coefficients, are proposed. 
The isomorphism is defined as in Eq. (1).

Adopting Eq. (1), quaternion-structured MVWs and hence quaternion wavelets are designed. The MATLAB 
code to compute the wavelet filter coefficients was presented, but the code to perform a wavelet analysis on 
quaternion signals is not provided.

In10 an application of MVWs to a simulated quaternion time series is described. Fletcher extended this  work13 
adding new wavelet filters of different lengths and explained how to arrange the filters in a matrix for analysing 
images, applying it to the analysis of a colour vector image.

In14 a different approach to analysing a quaternion signal is presented, with multi-resolution techniques, 
based on second generation wavelet transform. The quaternion lifting scheme is defined as follows: the input 
data set is split into two disjoint sets of even and odd indexed samples; samples with odd indices are predicted 
based on the sample with even indices, using the SLERP or SQUAD methods for quaternion time series (more 
details are in Section 2 of Supplementary materials). Next, the input value with the odd index is replaced by the 
offset (difference) between its value and its prediction. The outputs are updated, so that coarse-scale coefficients 
have the same average value as the input samples. This step is necessary for the stability of the wavelet transform.

In this procedure, the wavelet function used can be reconstructed, but it is not necessary for the computation.
Another approach to quaternion signal smoothing through wavelets is described  in1, resorting the methods 

explored  in15  and16 for the application of the Fourier transform to quaternion signals. The analysis is now focused 
on unit quaternion time series, where each element of the time series is an object in the space of unit quaternions 
H1 ⊂ H , i.e. the space of unit norm quaternions.

The underlying idea is that if a unit quaternion time series is smooth, the changes of the angular velocities 
should be  small1. With this rationale, the smoothing process can be applied in the angular velocity space. As the 
angular velocities are in three-dimensional Euclidean space, all the real wavelet techniques, and even more, in 
general, all smoothing techniques for Euclidean spaces can be deployed. After the smoothing process, the unit 
quaternion time series are reconstructed.

In order to obtain angular velocities without employing derivatives, the following approximation formulas 
are used. Given a unit quaternion time series q1, . . . , qN and the time step h at which they were measured, the 
angular velocity is approximated as follows (see Eq. (4) for the definition of quaternion logarithm):

With these approximate angular velocities ṽ1, ..., ṽN , the quaternion time series is reconstructed as (see (5) for 
the definition of quaternion exponential):

Following this idea, our proposed approach considers the logarithm transformation to go from H1 to its tan-
gent space R3 . The logarithm of a unit quaternion time series is a time series in 3-dimensional Euclidean space 
defined as follows:

The idea is to employ suitable smoothing process to each component of the logarithm of the quaternions and 
then compute the unit quaternions by taking the quaternionic exponential, as follows:
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where the w component of the logarithm is always 0.
Note that the logarithm is defined on a sufficiently small neighbourhood of zero, the exponential is indeed 

globally defined, but is only bijective on a sufficiently small neighbourhood of zero. Hip motions are small in 
amplitude, so this issue should not affect our application.

The logarithm transformation is smoother with respect to the angular velocity and it has some intrinsic dif-
ferences that will be explored in “Description of the differences between approaches” section. These differences 
in the definition of the transformed space, where the smoothing is performed, affect the performance in clas-
sification tasks in ways that will be described in “Experimental results” section.

Description of the differences between approaches
Firstly, we are interested in the comparison of the images of the two transformations involved.

The quaternionic logarithm function, for a unit quaternion, is f : H1 �→ R
3 such that 

q = (w, x, y, z) �→ log(q) =
(x,y,z)
|(x,y,z)| arccos(

w
|q| ) ∈ R

3 , where, for v = (x, y, z) , write v
|v| for the vector of unit norm 

in R3 in the same direction as v and arccos(w/|q|) ∈ [0,π ].
As a consequence, Image(f ) = {v ∈ R

3 : |v| ≤ π} is the ball of radius π in R3.
Given a unit quaternion time series q1, . . . , qN , the angular velocities are approximated as in Equation (2): 

vi =
log(q−1

i qi+1)

h  , where q−1
i qi+1 ∈ H1 . Therefore, the same considerations can be applied to the numerator and 

Image(f ) = {v ∈ R
3 : |v| ≤ π

h } is the ball of radius πh  in R3 . In the theoretical framework, the angular velocity 
is calculated as a derivative and, in the limit for h that goes to 0, the image of the transformation is all of R3 . 
Since in our application the angular velocity is approximated, h is a small positive constant and the image of the 
transformation is a ball in R3 with a radius larger than that with the logarithm transformation.

To further develop this comparison, we consider the geometric interpretation of the transformations involved: 
angular velocity and logarithm.

The logarithm function applied to a unit quaternion q, gives the point corresponding to q in the tangent space 
at the identity quaternion. So when we take the logarithm of a quaternion time series, we obtain a series lying 
entirely in that one specific tangent space.

The angular velocity transformation log(q−1
i qi+1) gives the point in the tangent space at qi corresponding to 

qi+1 . As a consequence, the corresponding time series in R3 is a collection of points lying in tangent spaces at 
different points.

Another critical issue that must be taken into account is that in the space H1 of unit quaternions, the product 
is not commutative.

As is well known, the formula exp(p) exp(q) = exp(p+ q) does not hold in general when p and q do not 
commute. In this case, the Cambell-Baker-Hausdorff  formula17 for the product of two non-commuting expo-
nentials is applied and in the general case it provides an infinite correction term within the right-hand side of 
the exponential.

The problem was exactly solved for rotational data in SO(3)18 and in SU(N)19 (note that SU(2) is isomorph 
to H1).

An exact formula to determine the value of the quaternion α such that exp(p) exp(q) = exp(α) is stated  in20.

Experimental results
This section will describe how the different smoothing methods and transformations affect the classification. 
All the Tables reporting the detailed results commented in “Classification results” section can be found in Sec-
tion 1.2 of Supplementary materials.

Data description. The original data set consists of 54 unit quaternion time series of 101 observations each. 
The time goes from 0 to 100 (%) in steps of 1%. The data were recorded by a wearable motion sensor called Meta-
MotionR (MMR) an Inertial Measurement Unit (IMU) from Mbientlab. It is a device that combines a three-axis 
accelerometer, a gyroscope, and magnetometer, to determine its orientation in the form of a unit quaternion. It is 
worn at the level of the hip to measure the angle of rotation of the hip during walking movements, at a frequency 
of 100 Hz. The signal captured by a motion sensor is periodic and composed of actual walking steps referred 
to as gait cycles. A gait cycle is defined as the sequence of movements performed by the body during the phase 
delimited by two successive contacts of a given foot with the ground. We therefore compute an average gait cycle, 
referred to as the individual gait pattern, by jointly aligning in time and pointwise averaging the segmented gait 
cycles.

Data related to 27 healthy subjects were collected under two different conditions. The first evaluation was 
made letting the subject perform a natural walking movement. Another record was made using a knee immo-
bilizer orthosis to simulate a walking impairment.

To represent 3D rotations we choose a unit quaternion representation for convenience, as suggested in the 
literature on 3D rotation  analysis21.

A unit quaternion represents a 3D rotation between a given object’s frame, or coordinate system (the IMU’s 
coordinate system), and a fixed coordinate system defined as the reference. We choose the first orientation 
observed of the Individual Gait Pattern (IGP) as the reference, and each unit quaternion of the IGP represents 
the rotation between this first orientation and the one observed at a given time. For this reason, in the original 
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dataset, the first element of each time series is the quaternion (1 0 0 0), representing the identity rotation. We 
also processed the data in order to ’straighten’ the IGP, so that the first and the last element of the IGP are the 
identity rotation. In order to apply wavelet methods, the original time series is re-sampled to have 128 time points.

Figure 1 depicts the component-wise representation of the individual gait pattern data; color represents the 
two conditions in which the data are collected and that will be used for the classification task: the natural walk 
and the hindered walk. Alternative representations are provided in Section 3 of Supplementary Materials. In 
order to understand the influence of noise on the performance of the different smoothing methods, we applied 
the methods described in “Methods and experimental settings” section to data to which different levels of noise 
had been added. We generated these noisy data sets by adding Gaussian noise to the logarithm of the curves in 
the original data  set22. The quaternion time series were transformed to R3 through the logarithm transformation 
and then Gaussian noise was added independently to each component. Consider the observation Xi,k , where i 
corresponds to the i-th subject and k correspond to the k-th component of the multidimensional time series, 
m(t) identifies the median line, and ǫ is a Gaussian error term:

where Cov(ǫk(s), ǫk(t)) = C(s, t) is generated as an exponential-like covariance function with two parameters:

Different degrees and types of noise were simulated by varying the parameters α and β:

• α = 0.001 , β = 0.01 . Low noise, moderately correlated.
• α = 0.01 , β = 0.001 . Moderate noise, highly correlated.
• α = 0.01 , β = 0.01 . Moderate noise, moderately correlated.
• α = 0.01 , β = 0.1 . Moderate noise, weakly correlated.
• α = 0.1 , β = 0.01 . High noise, moderately correlated.

The datasets obtained are visually represented in Section 1.1 of Supplementary Materials.

Methods and experimental settings. Wavelet smoothing method with Fourier and spline smoothing, 
each one embedded in one of the two transformations from H1 to R3 , are compared.

In order to smooth signals using wavelets, the discrete wavelet transform was applied, with soft thresholding 
in its generalized sense for multidimensional  signals23:

where w are the p-dimensional vectors of the detail coefficients of the DWT. The chosen threshold was the uni-
versal threshold as generalized  in23: tp = σ

√

3 log(N) where σ is the standard deviation of the noise. Since σ is 

Xi,k = mk(t)+ ǫk(t), Cov(ǫk(s), ǫk(t)) = C(s, t), ∀i = 1, . . . ,N , ∀i = k, . . . , L

(6)C(s, t) = αe−β|s−t|.
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Figure 1.  Component-wise representation of the individual gait pattern data.
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generally unknown in practical situations, it must be estimated following the idea described  in24, where the Median 
Absolute Deviation (MAD) of the details coefficients was proposed ( MAD(x) = median(|x −median(x)|) ). The 
estimated standard deviation in the multidimensional case is:

where d1 = {di1,k}k,i is the vector of detail coefficients obtained from the first level of decomposition of each 
component function (all pooled together).

The following mother wavelets and decomposition levels are considered:

• Mother wavelets: Haar, Daubechies 4 (d4), Daubechies 6 (d6), Daubechies 8 (d8), Daubechies 16 (d16), Least 
Asymmetric 8 (la8), Least Asymmetric 16 (la16), Least Asymmetric 20 (la20), Best Localized 14 (bl14), Best 
Localized 20 (bl20).

• Decomposition levels (DLs): from 1 to 6.

The Fourier smoothing was performed through a non-parametric regression smoothing using 20, 40 and 60 
basis elements. No covariates and no roughness penalty was used.

Linear, cubic and quintic splines were employed with cross validated parameters for each curve. The number 
of knots considered is 71. The parameters selected are not optimal, because their optimization it is outside the 
scope of this paper.

For each combination of parameters, the smoothing process is evaluated in terms of classification perfor-
mance. A k-Nearest Neighbours (k-NN) model is used to perform classification on the original and on the 
smoothed quaternion time series to select the smoothing method that removes noise while preserving the most 
important features that can distinguish between two groups.

The k-NN algorithm is a non-parametric classification method firstly developed  in25. An observation is clas-
sified by a plurality vote of its neighbours, with the object being assigned to the class most common among its 
k nearest neighbours. Here, k is a positive integer, typically small, that we will set to the standard value of 5. The 
value of k is generally optimized based on data at hand, but that is outside the scope of this paper.

Being a distance-based algorithm, it is easily generalized to quaternion time series using the Dynamic Time 
Warping (DTW)  distance26. For more details about DTW, see Section 2 of Supplementary Materials.

The results presented in the present paper are based on a cross validation exercise, where 5 folds are defined 
to obtain stable results working with a small sample size.

For each series in the test fold, the distances from the series in the training fold are computed. The 5 nearest 
time series in the training set are considered and the majority label is assigned to the tested series.

The results are evaluated in terms of accuracy, expressed in terms of percentage of correct classified observa-
tions, coupled with AUC (area under the ROC curve). The accuracy measures are computed on the 5 folds and 
summarized in terms of averaged values.

To increase the robustness of the conclusions, linear regression models were studied to model the influence 
of the transformations and of the choice of smoothing methods on the performance indices. Each level of noise 
described in “Data description” section was simulated ten times and the original data were simulated adding a 
minimal noise setting α = 0.0001 and β = 0.0001 . The accuracy and the AUC were evaluated and considered as 
target variables, and smoothing method and type of transformation were considered as covariates.

All the computations were performed using the R software (R Core Team (2017)), the figures are generated 
with the ggplot2 package (v3.3.3; Wickham, 2016) and the plotly package (Plotly Technologies Inc. Collabora-
tive data science. Montréal, QC, 2015. https:// plot. ly.). The R functions developed for this work will be provided 
in a Github repository.

Classification results. The performances reached by k-NN on the original individual gait pattern data set 
have an accuracy of 0.8200 and an AUC of 0.9149.

Applying a smoothing process to the data after the logarithm transformation, for all the methods and all the 
choices of parameters, the accuracy is 0.8100 and almost all the AUCs are 0.8531, with small differences for some 
combinations of the parameters. Considering the angular velocity transformation, the performances are lower 
than both the original data and the logarithm smoothing process.

This shows that the smoothing process does not improve the classification performance when the curves 
considered are already nearly smooth. Instead, in some cases, the performances are lower, which seems to suggest 
that the smoothing process removes some important features in the data that are already exploitable.

The comparison between angular velocity methods and the logarithm shows that when smooth functions 
are involved, the logarithm better preserves the characteristics of the curves, as in Fig. 2. An explanation for this 
result could be that the logarithm transformation is smoother than the angular velocity, which presents a higher 
variability also for regular curves.

Classification results on noisy data: analysis of variance at fixed autocorrelation. Now consider the performances 
reached with noisy data sets as defined in “Data description”. We start with a fixed value of the autocorrelation 
( β = 0.01 ), increasing the value of the variance parameter ( α = 0.001 , α = 0.01 , α = 0.1).

Consider at first the data set generated with α = 0.001 and β = 0.01 . We are introducing low levels of noise 
(the noise has low variance) and a moderate correlation between the nearest points.

σ̂ =
MAD(d1)

0.6745

https://plot.ly
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The performances reached without any smoothing have an accuracy of 0.550 and an AUC of 0.601. The best 
method can be identified as the wavelet smoothing method with different combinations of parameters: wavelet 
d6 with 4 in terms of accuracy (accuracy = 0.5433 and AUC = 0.6527) and wavelet d4 with 5 and 6 decomposi-
tion levels in terms of AUC (accuracy = 0.49 and AUC = 0.6958).

The angular velocity method achieves poorer results in terms of classification accuracy for all the smoothing 
functions and choices of parameters (accuracy≤0.47) as in Fig. 3a. The highest values of AUC are reached with 
wavelet d16 with 1 decomposition level (accuracy = 0.3933 and AUC = 0.7434).

Note that almost all the smoothing methods and transformation yield higher AUC but lower accuracy. The 
only method competitive with the non-smoothed data set is the best of the logarithm transformation.

Now consider the data set with moderate noise variance and moderate correlation ( α = 0.01 and β = 0.01 ). 
Data classification without any smoothing obtains an accuracy of 0.407 and an AUC of 0.608.

In this case the logarithm transformation performs similarly to the angular velocity and it is difficult to 
identify the best method as in Fig. 3b. Almost all the smoothing methods obtain better results than the non-
smoothed data set.

Now consider the noisy data set generated with high noise variance and moderate correlation between close 
points ( α=0.1 and β=0.01). Data classification without any smoothing reaches an accuracy of 0.5 and an AUC 
of 0.609.

One method reaches better results than the original data classification in terms of the AUC, but with the same 
accuracy (wavelet la20 with 3 decomposition levels, accuracy=0.5 and AUC=0.6322). Higher values of AUC are 
reached with lower levels of accuracy: for this reason it is difficult to identify the best method. The logarithm 
transformation seems to obtain better results in terms of AUC than does the use of the angular velocity, with 
similar values of accuracy. See Fig. 3c.

Classification results on noisy data: analysis of autocorrelation at fixed variance. Consider the performances 
reached with noisy data sets generated with a fixed value of variance ( α = 0.01 ), varying the value of the autocor-
relation parameter ( β = 0.001 , β = 0.01 , β = 0.1).

Considering the data set with moderate noise variance ( α = 0.01 ) and an high correlation between close 
points ( β = 0.001 ), we obtain that data classification without any smoothing reaches an accuracy of 0.630 and 
an AUC of 0.591.

In this data set the angular velocity performs better than logarithm in terms of AUC, but worse in terms of 
accuracy. Both the transformations with all the methods obtain worse performances than the raw data classifica-
tion and no smoothing is suggested, as in Fig. 4a.

Figure 2.  Results on original data. Performances of the different methods are evaluated in terms of accuracy 
and AUC. The shape distinguishes between Fourier, spline or wavelet smoothing methods and colours 
distinguish between logarithm and angular velocity transformations.
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In general we confirm that when noise levels are low, the smoothing process is not necessary and it increases 
the risk of removing important features of the data set.

Now consider the data set with moderate noise variance and moderate correlation ( α = 0.01 and β = 0.01 ). 
As seen before, data classification without any smoothing obtains an accuracy of 0.407 and an AUC of 0.608.

Almost all the smoothing methods obtain better results than the non-smoothed data set, as in Fig. 4b.
Now consider the noisy data generated with a moderate noise variance and low correlation between close 

points ( α = 0.01 and β = 0.1 ). Data classification without any smoothing reaches an accuracy of 0.640 and an 
AUC of 0.678.

A lot of smoothing methods reach better results than the original data classification, but only if we consider 
a smoothing transformation. The angular velocity transformation seems to have lower results. The best result 
in terms of accuracy is reached by wavelet d4 with 1 decomposition level (accuracy=0.7200, AUC=0.7136). In 
terms of AUC the best method is wavelet la8 with 4 decomposition levels, accuracy=0.6467 and AUC=0.7416 
(see Fig. 4c).

Final results. The influence of noise is clear: when the curves are nearly smooth, the smoothing methods can 
not improve in the classification, whereas when we introduce noise (both in terms of high variance and low auto-
correlation), the need for applying smoothing methods becomes clear and the performance can be improved by 
the process, as we can see in Fig. 5.

In order to confirm the validity of the proposed method, a linear regression analysis of the accuracy and the 
AUC has been performed, where the influence of the transformation function and the smoothing method is 
evaluated. Ten data sets have been generated for each combination of parameters α and β , as defined in Eq. (6), 
and the original data set is simulated with the parameters α = β = 0.0001 . The covariates of the three models are:

Figure 3.  Results obtained in the classification using noisy datasets with a fixed value of the autocorrelation 
( β = 0.01 ), increasing the value of the variance parameter ( α = 0.001 , α = 0.01 , α = 0.1).
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• The variable ’transformation’ indicates if the transformation function is angular velocity or logarithm. It is a 
factor variable with reference value ’angular velocity’ (two levels).

• The variable ’smoothing_method’ indicates if the smoothing method is Fourier, spline or wavelet. It is a factor 
variable with reference value ’Fourier’ (three levels).

• Par alpha and par beta correspond to the noise parameters as defined in Eq. (6) and are numerical variables.

The target variables of the three models are the accuracy and the AUC. The logit transformation is applied to 
each of the target variables to transform the range from [0,1] to (−∞,+∞) . This produces a larger range of 
values than the other common transformations. Because the target variables still do not satisfy the normality 
assumption, and common transformations do not solve the problem, a bootstrap procedure is applied to obtain 
the coefficients and confidence intervals.

The results regarding the model for accuracy outcome are summarized in Table 1. As the results for AUC are 
similar to the accuracy ones, they are shown only in Section 1.3 of Supplementary Materials. The ANOVA tables 
for the linear models are also presented in Section 1.3 of Supplementary Materials.

The smoothing methods (wavelet, spline and Fourier) do not seem to have a global impact on the quality of 
the smoothing process in terms of the classification performance: the coefficients of the wavelet and spline meth-
ods compared to the reference level (Fourier) are not significant. Instead, the coefficient related to the logarithm 
transformation with respect to the angular velocity transformation is significantly different from zero and posi-
tive. The results confirm the positive effects of the logarithm transformation on that target variable. We can also 
observe that the variance and autocorrelation parameters in the noise generation are significant, with negative 
coefficients. Higher levels of noise have a negative impact on the classification performances, as can be expected.

Figure 4.  Results obtained in the classification using noisy datasets generated with a fixed value of variance 
( α = 0.01 ), varying the value of the autocorrelation parameter ( β = 0.001 , β = 0.01 , β = 0.1).
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A real application: data on a human behaviour study
In order to confirm the potential of our proposed method, this section reports the empirical evidence achieved 
on a highly noised dataset. The data considered are related to a behavioural study about small free-standing con-
versational groups. A sample of the dataset (called CongreG8) is available at the following link: https:// zenodo. 
org/ record/ 45378 11 and it is described  in27.

The dataset contains full-body motion data collected from free-standing conversational groups of three 
human with a newcomer that approaches the group with the intention of joining it.

Figure 5.  For each method (Fourier, spline and wavelet) and transformation (logarithm and angular velocity) 
the best result is presented, where the best result is identified by using the sum of the accuracy and the AUC. 
Shape distinguishes between Fourier, spline or wavelet methods and colours distinguish between logarithm and 
angular velocity transformations.

Table 1.  Linear regression model for accuracy target variable with a bootstrap procedure.

Variables Coefficients stdev CI

Intercept 0.088 0.020 (0.051, 0.125) *

Transformation logarithm 0.121 0.008 (0.106, 0.138) *

Smoothing method spline 0.011 0.028 (−0.043, 0.068)

Smoothing method wavelet 0.022 0.020 (−0.043, 0.068)

Noise variance ( α) −2.965 0.114 (−3.196, −2.756) *

Noise autocorrelation ( β) −0.752 0.097 (−0.945, −0.562) *

https://zenodo.org/record/4537811
https://zenodo.org/record/4537811
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From the quaternion time series collected by 37 body markers, the skeleton was digitally reconstructed and 
different bones were tracked in terms of position and orientation. From these last set of time series we selected 
the abdominal orientation considering that it could be the one that better summarize and capture the personal 
attitude of the people in small groups with respect to the newcomer. We also sample one subject from each group 
to control correlation between subjects and computational time. Being of different lengths, each time series was 
cut to a standard length of 1024 that correspond to a temporal span of 8.5 seconds.

The target variable is related to the behaviour of the group, annotated by the authors as Welcome or Ignore.
After the preliminary selection, a dataset containing quaternion time series related to 80 subjects, 27 of which 

labeled as “Ignore” and 53 as “Welcome”, is obtained.
The final dataset is shown in Fig. 6. Alternative representations are provided in Section 3 of Supplementary 

Materials. The time series are extremely noised at a visual inspection and the discriminatory power is not clear. 
Figure 7 depicts the results obtained adapting the pipeline described in “Experimental results” section.

Performances of the different smoothing methods are evaluated in terms of classification performances 
measured as accuracy and AUC. In Fig. 7, shape distinguishes between Fourier, spline or wavelet smoothing 
methods and colours distinguish between logarithm and angular velocity transformations. The classification of 
data without the application of any smoothing method obtain and accuracy of 0.6 and an AUC of 0.665.

We observe that the accuracy is slightly improved by Fourier in logarithm method, Fourier in angular velocity 
and wavelets in angular velocity. This improvement does not correspond to an improvement of the AUC, that is 
lower than the original dataset classification one.

The best methods are cubic and quintic splines with logarithm transformation, that obtain the best results 
in terms of AUC. The accuracy is 0.6 as the original classification, but could be improved varying the threshold 
for classification (set as 0.5 by default).

We also observe that the application of different wavelets do not introduce any variability in the results. Wave-
lets applied with the logarithm method reach the same performances of the data without smoothing. Angular 
velocity methods show better results in terms of accuracy but much worse in terms of AUC.

We confirm the conclusion of the simulation study and of the regression methods: the best smoothing method 
seems to be data specific, and the logarithm transformation leads in general to better results than the angular 
velocity one. On the basis of the empirical evidence achieved on real data, better performances are reached 
in terms of AUC and further investigation about threshold selection is required to observe the improvement 
also in terms of accuracy. This leads us to improve in a further research study how threshold selection affects 
performances.

Figure 6.  Component-wise representation of the quaternion time series of abdominal orientation. Blue lines 
represent subjects in groups with behaviour Ignorance and red lines represent subjects in groups with behaviour 
Welcome.
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Conclusions
This paper presents a new method to smooth unit quaternion time series.

This new method manages unit quaternions in a proper way, transforming the time series to an Euclidean 
space to take advantage of all the existing smoothing techniques. We compare wavelet methods with respect to 
Fourier and spline smoothing methods.

The results were evaluated in terms of their classification performance on a data set of unit quaternion time 
series describing walking cycles with a binary outcome variable. Five versions of this data set were created by 
adding noise to the original data to evaluate the influence of different degrees of noise on the smoothing process.

The results on the original data set and on the noisy ones confirm the need for applying smoothing techniques 
when the data are noisy and the opportuneness of deploying the proposed method (namely, using the logarithm 
transformation of unit quaternion time series) to obtain in general better results. Instead, we obtained no evi-
dence about which one of the different smoothing techniques in R3 should be used, it seems to depend on the 
particular data set to be analyzed and should be evaluated on a case by case basis.

The application of the proposed method to a real noisy dataset confirms the conclusion of the simulated 
study. Further avenues of research include the application of different noise models to evaluate the influence of 
the particular nature of the data set, the application of other classification models, and a deeper analysis of the 
classical smoothing methods applied in this context. Furthermore, quaternion representation and visualization 
methods in R will be explored in depth. The approach described in this paper can be exploited in terms of the 
functional representation of quaternion time series, but this aspect needs further study.

The R functions developed for this work will be provided in a Github repository.

Data availability
The original datasets generated and analysed during the current study relateed to walking cycle application are 
available from the corresponding author on reasonable request. Instead, data analysed in “A real application: data 
on a human behaviour study” section are available in Zenodo repository at https:// zenodo. org/ record/ 45378 11.
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