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Assessing the impacts of dam/weir  
operation on streamflow 
predictions using LSTM 
across South Korea
Yongsung Kwon 1, YoonKyung Cha 1, Yeonjeong Park 2 & Sangchul Lee 1*

Recently, weather data have been applied to one of deep learning techniques known as “long short-
term memory (LSTM)” to predict streamflow in rainfall-runoff relationships. However, this approach 
may not be suitable for regions with artificial water management structures such as dams and weirs. 
Therefore, this study aims to evaluate the prediction accuracy of LSTM for streamflow depending on 
the availability of dam/weir operational data across South Korea. Four scenarios were prepared for 25 
streamflow stations. Scenarios #1 and #2 used weather data and weather and dam/weir operational 
data, respectively, with the same LSTM model conditions for all stations. Scenarios #3 and #4 used 
weather data and weather and dam/weir operational data, respectively, with the different LSTM 
models for individual stations. The Nash–Sutcliffe efficiency (NSE) and the root mean squared error 
(RMSE) were adopted to assess the LSTM’s performance. The results indicated that the mean values 
of NSE and RMSE were 0.277 and 292.6 (Scenario #1), 0.482 and 214.3 (Scenario #2), 0.410 and 260.7 
(Scenario #3), and 0.592 and 181.1 (Scenario #4), respectively. Overall, the model performance was 
improved by the addition of dam/weir operational data, with an increase in NSE values of 0.182–0.206 
and a decrease in RMSE values of 78.2–79.6. Surprisingly, the degree of performance improvement 
varied according to the operational characteristics of the dam/weir, and the performance tended to 
increase when the dam/weir with high frequency and great amount of water discharge was included. 
Our findings showed that the overall LSTM prediction of streamflow was improved by the inclusion 
of dam/weir operational data. When using dam/weir operational data to predict streamflow using 
LSTM, understanding of their operational characteristics is important to obtain reliable streamflow 
predictions.

Advanced monitoring networks have led to the automatic collection of large-scale data, and enhanced comput-
ing resources and algorithms have efficiently analyzed these  datasets1. Deep learning is a crucial computing 
algorithm for data analysis and is widely used in various fields owing to its superior prediction and classification 
 abilities2. The key deep learning techniques frequently used are recurrent neural networks (RNN) for sequence 
data and convolutional neural networks (CNN) for  images3. These advanced deep-learning techniques have 
also been adopted in environmental fields, such as disaster management, water resource management systems, 
and air pollution  problems4. Water resource data are regularly collected, and these sequence data are recorded 
at successive equally spaced points in time. Therefore, RNN models are frequently used in water  resources5. 
Therefore, hydrological variables, such as rainfall, outflow, water demand, and water level, are often predicted 
using RNN  models6.

Recently, weather data have been used to predict streamflow using RNN. The most frequently used RNN 
models are updated versions of the original  RNN7, including long short-term memory (LSTM)8 and gated 
recurrent unit (GRU)9, which address the vanishing gradient problem of the original  RNN10. Fu et al.11 used the 
LSTM model to predict the streamflow of the Kelantan River in northeastern Malaysia over the past 50 years 
using rainfall data. Rahimzad et al.12 used rainfall data to predict streamflow using LSTM. They found that 
LSTM outperformed machine-learning models (e.g., linear regression, multilayer perceptron, and support vector 
machines). Wang et al.13 collected streamflow and rainfall data from seven watersheds in China and predicted 
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streamflow using a GRU model. A hybrid approach has been suggested to improve LSTM and GRU’s prediction 
capacity. Masrur Ahmed et al.15 coupled LSTM and GRU with the Boruta feature selection algorithm (BRF) to 
predict streamflow using weather data and developed a principal component analysis (PCA), LSTM, and Bayes-
ian optimization (BO) that decomposes and ensembles to improve the accuracy of predicting the runoff of the 
Huangshui River in eastern Qinghai Province,  China14.

Regarding rainfall-runoff relationships, deep learning models have frequently adopted weather data as 
input data for predicting  streamflow16. However, this common practice may be unsuitable for stream networks 
with abundant artificial construction, such as dams and weirs, because streamflow is highly affected by their 
 operations17. In addition, implementing artificial construction modifies streamflow patterns regardless of the 
weather  conditions18. Therefore, including such operational data could improve the prediction accuracy of deep 
learning models for streamflow. The study by Ouyang et al.19 compared the performance of the LSTM model 
depending on the degree of dam influence for 3557 basins across the United States, emphasizing the importance 
of dams being treated appropriately in the LSTM model when forecasting streamflow.

This study aims to quantitatively assess the impact of dam/weir operational data on the capacity of LSTM 
to predict streamflow in South Korea. Dams and weirs have been intensively constructed for water resource 
management in South  Korea20. Due to the prevalence of mountainous areas and concentrated  precipitation21, 
securing water resources is critical in South Korea. Efficient management of water resources in South Korea 
and the Four River Restoration Project between 2009 and 2012 led to the implementation of dams and weirs in 
a 537-km river  channel21. Thus, South Korea is a suitable test bed to test the impacts of dam/weir operational 
data on deep learning models regarding geographical and climatic conditions. Furthermore, extensive dam/weir 
constructions were made for a short period in South Korea and thus our study is helpful for the regions that 
experience rapid development of water management constructions.

To demonstrate the importance of dam/weir operational data for the LSTM model, we first identified 25 
streamflow stations based on the data availability. Then, we have prepared four scenarios with different input 
data and optimization conditions. The first two scenarios were set to have the same optimal hyperparameters 
for all 25 streamflow stations while one scenario only had climatic input data (Scenario #1) and the other one 
used climatic as well as dam/weir operational data (Scenario #2). The other two scenarios were set the have dif-
ferent optimal hyperparameters for 25 individual streamflow stations while one scenario only had climatic input 
data (Scenario #3) and the other one included climatic as well as dam/weir operational data (Scenario #4). By 
comparing four scenarios, this study explored the impact of dam/weir operational data on the capacity of LSTM 
to predict streamflow in South Korea.

Materials and methods
Study area. South Korea is located at 127° east longitude and 37° north latitude (Fig. 1)22. Geographically, 
it is an East Asian region heavily influenced by the Asian monsoons and has four distinct  seasons23. The average 
annual temperature ranges from 3.1 to 13.2 °C and varies by geographical location (e.g., distances to oceans, 
elevations, etc.)24. The winter (December to February) and spring seasons (March–May) tend to be dry due to 
the northwest seasonal winds caused by the Siberian high  pressure25–28. Moreover, the East Asian region is prone 
to be humid during the summer season (June to August) due to the influence of the North Pacific high-pressure 
 system29. Over 50% of the average annual precipitation is concentrated in the  summer30, making it important 
to carefully manage water resources. South Korea has implemented Integrated Water Resources Management 
(IWRM) policies to efficiently manage water resources within the four major watersheds, which are managed 
separately for efficient water  management31.

Data acquisition. This study used daily streamflow, weather, and dam/weir operation data between 2010 
and 2020 (Table 1). The temporal coverage was determined based on the availability of the three datasets. Daily 
streamflow data were downloaded from the Water Resources Management Information System (WAMIS, http:// 
wamis. go. kr/). The 25 streamflow stations were chosen based on data availability and the spatial locations of 
the dams and weirs. Daily weather data (e.g., precipitation, maximum and minimum temperatures, and relative 
humidity) were obtained from 16 automated synoptic observing systems (ASOS) operated by the Korea Mete-
orological Administration (KMA, https:// data. kma. go. kr/). The weather stations closest to the individual stream 
stations were selected. The twelve dams and three weirs adjacent to 25 streamflow stations were used. Their daily 
inflow and outflow data were obtained from WAMIS and the Korea Water Resources Corporation (Mywater, 
https:// www. water. or. kr/). There were no suitable streamflow stations in the GR due to insufficient weather and 
dam/weir operational data.

Study design. To demonstrate the importance of dam/weir operational data in predicting streamflow using 
LSTM in South Korea, this study developed four scenarios with different input data and different hyperparam-
eter optimization techniques (Fig. 2). Scenarios #1 and #2 have varying input data (one with weather [Scenario 
#1] data and the other with weather and dam/weir operational data [Scenario #2]). The two LSTM models were 
optimized to have the same hyperparameter values for all 25 streamflow stations. Scenarios #1 and #2 were 
intended to determine how the LSTM performed when all conditions were the same except for the input data. 
Scenarios #3 and #4 had different hyperparameter values of LSTM models for individual 25 streamflow stations, 
but Scenario #3 had only weather data as LSTM input data. In contrast, Scenario #4 used weather and dam/weir 
operational data for LSTM. Scenarios #3 and #4 were optimized using Bayesian optimization. Using four sce-
narios, this study aimed to demonstrate the importance of dam/weir operational data for streamflow predictions 
under different LSTM conditions. The analysis procedure included data preprocessing, matching the input with 
target variables, the LSTM model, hyperparameter optimization, and objective function (Fig. 2).

http://wamis.go.kr/
http://wamis.go.kr/
https://data.kma.go.kr/
https://www.water.or.kr/
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Data preprocessing. The treatment of missing values for each variable was conducted differently by refer-
ring to previous  studies32,33. First, missing precipitation values were replaced with zeros. Second, previous one-
day observations were used to fill in the missing values for maximum and minimum temperatures, and relative 
 humidity34. Third, missing values for the dam/weir operational data were predicted using linear  interpolation35. 
Finally, after processing the missing values for each input data point, all input data were normalized to values 
between 0 and 1.

where Yi is the value of a normalized variable, and Xi, Xmin, andXmax represent the observed, maximum, and 
minimum values of the observation, respectively.

Matching input with target variables. The weather stations closest to the individual 25 streamflow 
monitoring stations were identified using a Haversine function that computes the closest distance between the 
two points to match the input and target data acquired from numerous monitoring stations. This computation 
was performed using the Python library (haversine). Consequently, the 16 weather monitoring stations were 
matched to 25 streamflow stations (Fig. 1b). Regarding the flow direction and location, 12 dams and three weirs 

Yi =
Xi − Xmin

Xmax − Xmin

Figure 1.  The location of the four watersheds, weather stations, streamflow stations, weirs, and dams. The 
number within the parenthesis on the legend indicates the number of stations. HR, GR, NR, and YSR represent 
the Han River, Geum River, Nakdong River, and Youngsan/Seomjin River, respectively.

Table 1.  Descriptions of input variables. KMA Korea Meteorological Administration, WAMIS water resources 
management information system. *The detailed information of weather, streamflow, and dam/weir is 
summarized in Tables S1, S2, and S3 of the Supplementary Material, respectively.

Variable Description (unit) Source Period Number

Streamflow Daily streamflow  (m3/s) Mywater 2010.01.01–2020.12.31 25

Weather
Daily precipitation (mm/s)
Maximum temperature (°C)
Minimum temperature (°C)
Relative humidity (%)

KMA 2010.01.01–2020.12.31 16

Dam* Daily inflow, outflow  (m3/s) WAMIS
Mywater  ~ 2020.12.31 12

Weir* Daily inflow, outflow  (m3/s) WAMIS
Mywater  ~ 2020.12.31 3
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upstream of 25 streamflow stations were selected (Fig. 1a). The weather stations and dam/weir matched with 
streamflow stations were summarized in Table S4 of the Supplementary Material.

Long short-term memory. The LSTM is a more advanced version of the RNN that has gradient vanishing 
and exploding problems as data size  increases36. To overcome the RNN problem, the LSTM has two states (cell 
and hidden states) with three gates (forget, input, and output) to determine which data to forget, store, and read, 
and uses three gates and two  states12. For example, the forget gate ( ft ) determines how much it will forget the 
past information from the previous cell state ( Ct−1 ) by passing the previous hidden state ( ht−1 ) and current input 
data ( xt ) through the sigmoid function ( σ).

where Wf,x and Wf,h denote the weights linking the forget gate with the xt and ht−1 ; bf  denotes the bias vector 
of the forget gate.

The next step was to add new information to the cell state. This process consisted of two parts. The first 
part is the input gate ( it ), which uses a sigmoid function to determine the value to update. The second part is 
a hyperbolic tangent (tanh) layer that generates a vector of new candidate values that can be added to the cell 
state. The sigmoid function (σ) is calculated by adjusting the weights of the previous hidden state ( ht−1 ) and the 
current input data ( xt ). Similarly, the hyperbolic tangent (tanh) generating the candidate cell ( ̃Ct ) used to update 
the new cell is calculated by adjusting the weight of the previous hidden state ( ht−1 ) and the current input ( xt).

ft = σ(Wf,xxt +Wf,hht−1 + bf )

it = σ(Wi,xxt +Wi,hht−1 + bi)

Figure 2.  Schematic diagram of this study.
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where Wi,x and Wi,h represent the weights connecting the input gate to the xt and ht−1 ; bi denote bias vectors 
of the input gate, respectively; WC,x and WC,h represent the weights connecting the candidate cell to the xt and 
ht−1 ; bC denotes the bias vectors of the candidate cell. In the next step, the current cell state ( Ct ) is updated by 
combining the previous cell state ( Ct−1 ) and the candidate cell ( ̃Ct).

The output gate ( ot ) determines the amount of output to be exported from the cell using the sigmoid function 
through a weight adjustment of the previous hidden state ( ht−1 ) and the current input data ( xt ). The hyperbolic 
tangent function can solve the problems of vanishing and exploding gradients while updating a specific point 
state ( ht).

where Wo,x , Wo,h represent the weights connecting the output gate to the xt , ht−1 , and bo denotes the bias vectors 
of the output gate (Fig. 3).

The LSTM model has different structures, such as a single LSTM layer, stacked LSTM layers, and bidirectional 
 LSTM37,38. This study used two stacked LSTM layers for the four scenarios because a deeper structure provides 
a more stable prediction capacity for sequence  data39,40.

Tuning hyperparameters. Deep learning models were trained to find the models with the best perfor-
mance by tuning the  hyperparameters41. The hyperparameters of LSTM include the sequence length, number 
of hidden layers, number of nodes, number of epochs, dropout rate, learning rate, and batch size. The sequence 
length determines how much time in the past is used to learn data at any point in time; a node plays an important 
role in distinguishing the characteristics of input patterns; and the dropout rate prevents overfitting by randomly 
excluding some of the entire nodes when learning. The learning rate determines how much to learn at once, 
the batch size means the data size at a time, and the epoch refers to the number of times to learn all training 
 datasets42.

The four scenarios had different hyperparameter optimizations to achieve the goals of this study. Follow-
ing previous  studies19,43, Scenarios #1 and #2 with different input data (Scenario #1: weather and Scenario #2: 
weather and dam/weir) were forced to have the same hyperparameter values for all 25 streamflow stations by 
manual optimization. The optimal hyperparameter values of Scenarios #1 and #2 are shown in Table S5 of the 
Supplementary Material. Scenarios #3 and #4 were set to have different input data (Scenario #3: weather and 
Scenario #4: weather and dam/weir) with different hyperparameter values for 25 individual streamflow stations 
using Bayesian optimization. The values and their ranges of hyperparameters used for Bayesian optimization are 
shown in Table S6 of the Supplementary Material. The optimal hyperparameter values for Scenarios #3 and #4 
were reported in Tables S7 and S8 of the Supplementary Material. Bayesian optimization aims to find the optimal 
input value that maximizes the objective function f(x) that receives the input value x. Therefore, the input variable, 
called the hyperparameter, is modified and set to determine the maximum objective function f(x) as  follows44:

C̃t = tanh(WC,xxt +WC,hht−1 + bC)

Ct = ftCt−1 + itC̃t

ot = σ(Wo,xxt +Wo,hht−1 + bo)

ht = ot × tanh(Ct)

x∗ = argmaxf (x)(x ∈ X)

Figure 3.  A diagram of long short-term memory structure (adopted from Rahimzad et al.12).
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where x* is the value of the optimal hyperparameter obtained through Bayesian optimization, argmax f(x) is the 
value of x that maximizes f, and x is the individual parameter for all types of parameter X.

Bayesian optimization consists of surrogate models and acquisition  functions45. The surrogate model approxi-
mately estimates the value of f(x) based on the results inferred through the Gaussian process. The acquisition 
function then stochastically proposes the following optimal estimation points based on the estimated mean value 
and variance range of the uncertainty of the Gaussian process. The purpose of this process is to determine the 
optimal value by repeating the process of updating the results of estimating the objective  function46.

Objective function. This study used the Nash–Sutcliffe efficiency (NSE) to assess the prediction accuracy 
of the two LSTM models. The NSE has been frequently adopted to quantify the prediction capacity of deep 
learning models to forecast  streamflow47,48. The NSE ranges from -∞ to 1, as the NSE approaches 1 (or -∞), 
simulations agree (or disagree) with  observations49. The root mean squared error (RMSE) is another commonly 
used metric to evaluate the accuracy of predicted values. It measures the average squared difference between the 
predicted and observed values, with a lower RMSE indicating better model performance. Here, we selected the 
optimal model based on only the NSE values. The performance differences of the optimal LSTM models among 
four scenarios were compared using both the NSE and RMSE.

where Oi and Pi denotes the ith observed and simulated values, respectively. Oi denotes the average of all the 
observed values.

Results and discussions
Performance comparisons of four scenarios. The LSTM prediction results for 25 streamflow sta-
tions under the four scenarios were compared using density plots (Fig. 4). The NSE range of Scenario #1 was 
from − 0.064 to 0.539 with the most right-skewed distribution among the scenarios, and the corresponding range 
of the RMSE values was from 13.66 to 1118.05. The average and median NSE values were the lowest. Scenario 
#2 indicated the NSE range from − 0.134 to 0.868 with a left-skewed distribution compared to Scenario #1, 
exhibiting better prediction accuracy, and its range of the RMSE values was from 12.89 to 800.37. Scenario #3 
showed an NSE ranging from 0.128 to 0.658, with a corresponding range of the RMSE values was between 11.68 
and 977.27. In contrast, the NSE values shown in Scenario #4 were between 0.160 and 0.901, with the most left-
skewed result among all scenarios, and its range of the RMSE values was from 11.59 to 677.67. The mean NSE 
values between Scenarios #1 and #2 increased 0.277 from 0.482 while the values between Scenarios #3 and #4 
increased from 0.410 to 0.591. The reduction value of the mean RMSE was 78.3 between Scenarios #1 and #2, 
and 79.6 between Scenarios #3 and #4). Overall, the changes in NSE and RMSE results supported the importance 
of dam/weir operational data in enhancing streamflow predictions.

The spatial patterns of the LSTM performance indicated by the NSE and RMSE under the four scenarios are 
shown in Figs. 5 and 6, respectively. In compliance with Fig. 4, LSTM results with the consideration of the dam/
weir operational data (Fig. 5b,d) outperformed in predicting streamflow, without the consideration of these data 
(Fig. 5a,c). According to the NSE and RMSE results, when the dam/weir operational data were included, the 
LSTM performance for the HR basin was improved by 0.297 (from Scenario #1 to Scenario #2) and 0.249 (from 
Scenario #3 to Scenario #4), with the corresponding reduction in RMSE of 180.96 and 189.44, respectively. The 
YSR showed similar results, with an increased in NSE values of 0.270 (from Scenario #1 to Scenario #2) and 
0.225 (from Scenario #3 to Scenario #4), and the reduction in RMSE values of 21.16 and 17.10, respectively. In 
addition, small increases in NSE values of 0.087 (from Scenario #1 to Scenario #2) and 0.099 (from Scenario #3 to 
Scenario #4) were observed in the NR basin, along with the reduction in RMSE of 36.11 and 35.48, respectively.

Like our findings, previous studies have reported the enhancement of deep learning model predictions by 
adding input data. Kim and  Kang50 developed an LSTM-based daily streamflow estimation model using weather 
data to predict streamflow in the Soyang River Basin in South Korea, and they reported that the NSE was 0.8 for 
the model with only precipitation input data while the LSTM performance increased by 0.05 with the inclusion 
of additional data (e.g., temperature, wind speed, and precipitation). Ouyang et al.19 investigated the effects of 
reservoir data on streamflow prediction using LSTM and found that when reservoir data were included, the NSE 
values were improved from 0.65 to 0.75. To improve the accuracy of river flow prediction in the snow-covered 
basin of Kalixälven in northern Sweden, Achite et al.51 utilized a snow-based conceptual hydrological model 
(MISD) and a deep learning model (the group method of data handling, GMDH), and found that the improve-
ment in the model performances by the addition of weather data. A study by Moosavi et al.52 evaluated factors 
affecting the accuracy of daily runoff predictions using various data-driven models and the input data had the 
most significant impact on the accuracy of model prediction. Based on previous studies, it could be concluded 
that additional data are important to improve the LSTM prediction accuracy.

Analysis of streamflow stations with reduced and improved LSTM performance. Including 
dam/weir operational data did not always improve the LSTM’s performance for all streamflow stations. At the 
streamflow station (2201660) downstream of the Sayeon Dam in the NR basin (Fig. S1 of the Supplementary 

NSE = 1−

∑n
i=1 (Oi − Pi)

2

∑n
i=1 (Oi − Oi)

2

RMSE =

√∑n
i=1(Pi − Oi)

2

n
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Material), the NSE performance decreased by − 0.396 (from Scenario #1 to Scenario #2) and − 0.052 (from Sce-
nario #3 to Scenario #4). This could be explained by the operational characteristics of the Sayeon Dam, which 
was built as a water supply dam for domestic and industrial use and has a minimal impact on downstream owing 

Figure 4.  The density plot of NSE and RMSE values with (a) mean NSE values, (b) median NSE values, (c) 
mean RMSE values, and (d) median RMSE values for scenario #1, scenario #2, scenario #3, and scenario #4. 
The NSE and RMSE values during the train and test periods for all scenarios are shown in Table S9 of the 
Supplementary Material.
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to its infrequent water discharge  downstream53. Furthermore, the East Sea is located 10 km east of the stream-
flow station, and the difference in height between high and low tides could affect the  streamflow54. Therefore, 
these two factors collectively led to a reduction in the LSTM model’s performance with the addition of dam data.

The most significant improvement in dam/weir operational data was observed at the streamflow station 
(4008660), which is downstream of the Juam multipurpose dam in the YSR basin (Fig. S2 of Supplementary 
Material). The NSE performance was 0.129 for Scenario #1, 0.650 for Scenario #2, 0.266 for Scenario #3, and 
0.661 for Scenario #4. Therefore, when considering the Juam Dam data, the LSTM performance increased by 
0.521 (from Scenario #1 to Scenario #2) and 0.395 (from Scenario #3 to Scenario #4). This result disagreed with 
the streamflow station (2201660) downstream area of Sayeon Dam in the NR basin described above. In gen-
eral, the discharge amount of a dam is calculated by adding various water supply quantities such as domestic, 
industrial, agricultural, and power-generation water. Unlike the Juam multipurpose dam with high frequency of 
water discharge, the Sayeon dam is primarily used for water supply and discharges water intermittently during 
the flood season.

We visually compared the simulated and observed values for the streamflow station (4008660) with the 
greatest improvement (Figs. 7, 8, and 9). In the scatter plot (Fig. 7), all scenarios showed decent predictions 
during the training period, but Scenarios #1 and #3 without the dam data tended not to capture the actual peak 
streamflow during the test period. In contrast, Scenarios #2 and #4 with dam/weir operational data captured the 
peak observed values well during the test period (Fig. 7).

Figure 5.  The spatial distribution of NSE values for 25 stations: (a) scenario #1, (b) scenario #2, (c) scenario #3, 
and (d) scenario #4.
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Figures 8 and 9 show the time-series comparisons between observed and simulated values. Like Fig. 7, the 
results in Fig. 8 show that all scenarios well captured the actual streamflow patterns for the training period 
(Fig. 8), and the predictions for the test period differed depending on the inclusion of dam data. For example, 
Scenarios #1 and #3 without dam data showed a noticeable discrepancy between the simulated and observed 
peak values. However, Scenarios #2 and #4 with dam data relatively well predicted the observed peak stream-
flow. As a result, the streamflow time series during the year of 2019 were analyzed for better comparisons of 
streamflow prediction based on dam data, as shown in Fig. 9. Focusing on October at the year of 2019, which 
was affected by the typhoon, the greatest recorded streamflow period was 845.04 mm. However, Scenario #1 
and Scenario #3 without the dam data predicted only 149.15 mm and 171.62 mm, respectively, less than half 
of the observed value. In contrast, Scenario #2 and Scenario #4 with the dam data predicted 581.75 mm and 
1013.88 mm, respectively. These time series results supported the LSTM model well depicted peak streamflow 
when including dam/weir data.

Overall, the performance of LSTM models was lower during the test period compared to during the train 
period (Fig. 7). The LSTM model is the deep learning model developed to handle time-series data. The pattern 
of time-series data is trained by the model during the train period, and the trained model is applied into the test 
period data. The average summertime precipitation during the train period was 248 mm lower than one during 
the test period (Table S11 of the Supplementary Material). The great difference of summertime precipitation 

Figure 6.  The spatial distribution of RMSE values for 25 stations: (a) scenario #1, (b) scenario #2, (c) scenario 
#3, and (d) scenario #4.
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between the train and test periods likely reduced the LSTM performance during the test period relative to dur-
ing the train period. Therefore, the trained LSTM model performed well in the year of 2019 than in the year of 
2020 because the 2019 summer had fewer precipitation than the 2020 summer (Fig. 8). In the future research, 
weather conditions should be carefully considered to maintain the predictive power of the LSTM model during 
the train and test periods.

We investigated the LSTM performance according to the dam/weir type (multipurpose dams, water supply 
dams, flood control dams, and weirs, Fig. 10). Discharge from the dam/weir was controlled according to the 
intended use. Multipurpose dams are designed for stable water supply and hydropower generation and thus 
those dams continuously release water, exerting a steady influence on the downstream area. Water supply dams 
intermittently discharge water for flood control. Flood control dams are built to prevent flood damage in down-
stream areas in the event of sudden and severe flooding in upstream areas, and dam gates are adjusted during 
flooding events. Weirs are used for stable flow management, small-scale hydropower generation, and water 
supply for domestic and industrial use. They continuously release water to maintain an appropriate water level 
and generate hydropower. Regarding operational characteristics, multipurpose dams and weirs significantly and 
steadily impact downstream waters.

In compliance with the operational characteristics, the performance difference between Scenarios #1 and 
#2 varied by the dam type and weir, with median NSE values of 0.283, 0.037, 0.122, and 0.288 for multipurpose 
dams, water supply dams, flood control dams, and weirs, respectively (Fig. 10). The median values of NSE dif-
ference between Scenarios #3 and #4 were 0.220 (multipurpose dams), 0.012 (water supply dams), 0.081 (flood 
control dams), and 0.279 (weir). Multipurpose dams and weirs showed an improvement in NSE values of 0.2~, 
whereas the flood control dam showed an improvement in NSE values of ~ 0.1. However, in the case of water-
supply dams, performance decreased or recorded minimal performance improvement due to dam operational 
characteristics. The performance differences among the HR, YSR, and NR basin were also affected by the opera-
tional characteristics. Most streamflow stations (85% >) in the HR and YSR basins were affected by multipurpose 
dams and weirs while only 60% of streamflow stations in the NR basin were downstream of multipurpose dams 

Figure 7.  Scatterplots between observed and predicted streamflow for (a) scenario #1, (b) scenario #2, (c) 
scenario #3, and (d) scenario #4 at the streamflow station (4008660).
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and weirs (Table 2). Therefore, when dam/weir operational data were added to predict streamflow using deep 
learning models, understanding of their operational characteristics.

Implications and limitations. The findings from this study have practical implications for the water 
resources sector, as more accurate streamflow predictions can support better decision-making in water resources 
management, including flood prevention, water allocation, and ecosystem preservation. By incorporating dam/

Figure 8.  Comparisons between observed and predicted streamflow for (a) scenario #1, (b) scenario #2, (c) 
scenario #3, and (d) scenario #4 at the streamflow station (4008660).
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weir operational data, the proposed LSTM model can help water resource managers to make more informed 
decisions on dam/weir operation, reducing the risk of water-related disasters and enhancing the sustainability 
of water resources.

This study demonstrated the benefits of incorporating dam/weir operational data into the LSTM model for 
improved streamflow predictions. While process-based models were often reported to provide accurate predic-
tions on  streamflow55, there are several advantages on using the deep learning (DL) models over process-based 

Figure 9.  Comparisons between observed and predicted streamflow during the year of 2019 for (a) scenario #1, 
(b) scenario #2, (c) scenario #3, and (d) scenario #4 at the streamflow station (4,008,660).

Figure 10.  Boxplot of performance differences between (a) scenario #1 and scenario #2, and between (b) 
scenario #3 and scenario #4, depending on dam/weir types.
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models. Firstly, DL models can capture complex nonlinear relationships between input and output variables 
that may not be simulated by traditional process-based approaches. This enables more accurate streamflow 
predictions even in situations where the underlying processes are not entirely understood or are too complex to 
be represented in a process-based  model56. Secondly, DL models are computationally efficient and can be used 
for real-time predictions, which is crucial for effective water resources management in response to rapid chang-
ing  conditions57. Lastly, DL models often require less domain-specific expertise and extensive data compared 
to process-based models. Process-based models typically necessitate a deep understanding of the underlying 
physical processes and require substantial data for calibration and validation. In contrast, DL models can be more 
easily applied across various situations without the need for extensive domain knowledge and can be trained 
effectively with relatively less  data58.

The LSTM model has been frequently used to prevent natural disasters. Poornima and  Pushpalatha59 applied 
LSTM to enhance rainfall prediction models, aiming to support decision-making processes for disaster preven-
tion. Cho et al.60 used LSTM and GRU to improve flood predictions for preventing economic and human loss. Le 
et al.61 designed a model for flood prevention, utilizing LSTM to predict the rapidly changing downstream flow 
due to discharge from upstream hydropower  reservoirs62. These studies highlighted LSTM as an effective tool in 
disaster prediction. As shown in our results, LSTM’s performance for the test period was highly dependent on 
the data patterns during the train period (Fig. 7). The data patterns during the train period were substantially 
different from those during the test period in this study and thus such discrepancies led to decreased NSE and 
increased RMSE during the test period relative to those during the train period (Fig. 7). To make full use of LSTM 
for natural disasters including flooding, the train period should be long-term and include multiple natural dis-
aster events for accurate predictions during the train period. The high dependence of LSTM on the train-period 
data should be carefully considered for future studies to make accurate predictions.

Following previous studies, this study evaluated the LSTM prediction performance for streamflow using 
 NSE19. Since this static (NSE) has been most used to assess the streamflow prediction performance using process-
based  models63 or deep learning  models64,65, the use of NSE could allow to compare similar previous studies. 
The focus of this study was to recommend suitable input data for streamflow prediction using the LSTM model 
in the regions with strong climatic seasonality and prevalent dams/weirs. Therefore, the NSE-based assessment 
could provide insight on future similar studies.

For future research, it is recommended to explore the influence of various human activities, such as agricul-
tural practices and water treatment facilities, on streamflow predictions. This could be achieved by incorporat-
ing diverse datasets that capture the effects of these activities on streamflow Understanding the limitations and 
possible reasons for these failures will help in refining the model and improving its performance in predicting 
extreme streamflow events.

Conclusion
In this study, four scenarios were compared and evaluated to quantify how dam/weir operational data affect 
streamflow prediction performance. The results showed that the LSTM performance was improved by incorpo-
rating the dam/weir operational data. When comparing the LSTM models with and without dam/weir opera-
tional data, the NSE values were improved by 0.182–0.206 and the RMSE values were reduced by 78.27–79.6. 
In particular, the LSTM model with dam/weir operational data outperformed the LSTM model without data 
on peak streamflow. However, the LSTM model with the dam/weir operational data showed a varying degree 
of performances. The frequency and amount of water discharged from the dams/weirs downstream differed. 
When the dam/weir operational data were added to the LSTM model, the degree of prediction improvement 
tended to increase with dams/weirs that frequently released water. Overall, the LSTM model with weather and 
dam/weir operational data represented a better prediction performance relative to the model with only weather 
data. However, not all regions may benefit equally from the addition of dam/weir operational data due to these 
variations in operational characteristics and their impact on streamflow predictions. Therefore, the dam/weir 
operational data should be carefully incorporated, considering the dam/weir operational characteristics.

Data availability
The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable 
request.

Table 2.  The number (percent) of streamflow stations affected by different dam/weir for the individual three 
basins. HR, NR, and YSR represent the Han River, Nakdong River, and Youngsan/Seomjin River, respectively. 
The numbers outside and inside the parenthesis indicate the number and percentage of streamflow stations, 
respectively.

Type HR NR YSR

Multipurpose dam 6 (75%) 4 (40%) 6 (85.7%)

Water supply dam 0 (0%) 4 (40%) 1 (14.3%)

Flood control dam 1 (12.5%) 0 (0%) 0 (0%)

Weir 1 (12.5%) 2 (20%) 0 (0%)

Total 8 (100%) 10 (100%) 7 (100%)
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