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Comparison and fusion prediction 
model for lung adenocarcinoma 
with micropapillary and solid 
pattern using clinicoradiographic, 
radiomics and deep learning 
features
Fen Wang 1,7, Cheng‑Long Wang 3,7, Yin‑Qiao Yi 3, Teng Zhang 2, Yan Zhong 2, Jia‑Jia Zhu 4, 
Hai Li 5, Guang Yang 3, Tong‑Fu Yu 2, Hai Xu 2,6,7* & Mei Yuan 2,6,7*

To investigate whether the combination scheme of deep learning score (DL-score) and radiomics 
can improve preoperative diagnosis in the presence of micropapillary/solid (MPP/SOL) patterns in 
lung adenocarcinoma (ADC). A retrospective cohort of 514 confirmed pathologically lung ADC in 512 
patients after surgery was enrolled. The clinicoradiographic model (model 1) and radiomics model 
(model 2) were developed with logistic regression. The deep learning model (model 3) was constructed 
based on the deep learning score (DL-score). The combine model (model 4) was based on DL-score and 
R-score and clinicoradiographic variables. The performance of these models was evaluated with area 
under the receiver operating characteristic curve (AUC) and compared using DeLong’s test internally 
and externally. The prediction nomogram was plotted, and clinical utility depicted with decision curve. 
The performance of model 1, model 2, model 3 and model 4 was supported by AUCs of 0.848, 0.896, 
0.906, 0.921 in the Internal  validation set, that of 0.700, 0.801, 0.730, 0.827 in external validation 
set, respectively. These models existed statistical significance in internal validation (model 4 vs model 
3, P = 0.016; model 4 vs model 1, P = 0.009, respectively) and external validation (model 4 vs model 
2, P = 0.036; model 4 vs model 3, P = 0.047; model 4 vs model 1, P = 0.016, respectively). The decision 
curve analysis (DCA) demonstrated that model 4 predicting the lung ADC with MPP/SOL structure 
would be more beneficial than the model 1and model 3 but comparable with the model 2. The 
combined model can improve preoperative diagnosis in the presence of MPP/SOL pattern in lung ADC 
in clinical practice.

Lung cancer is the leading cause of cancer mortality worldwide, and adenocarcinoma (ADC) accounts for 
almost half of all lung cancers1. Surgical resection, such as curative-intent surgery, has been shown to be an 
efficient therapeutic option for early-stage lung ADC. However, tumors with micropapillary/solid (MPP/SOL) 
patterns, even with a small amount, have been observed to have an increased risk of postoperative recurrence 
or metastasis2–5. Therefore, preoperative diagnosis of lung ADC with MPP/SOL pattern is critical for developing 
a suitable therapeutic scheme.
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A variety of invasive and non-invasive techniques have been used for the preoperative assessment of lung 
ADC with MPP/SOL patterns. A novel invasive method6 to support the preoperative scheme has been used in 
clinical practice to rapidly diagnose lung ADC with MPP/SOL pattern. Preoperative histologic examination 
using CT-guided percutaneous biopsy cannot accurately represent the entire heterogeneous tumor7. Numerous 
studies have recently demonstrated that radiomics techniques are noninvasive approaches for predicting lung 
cancer based on MPP/SOL patterns via high-dimensional quantitative feature extraction from CT imaging 
modality8–13. Wang et al.10 proposed a method combining radiomics and deep learning (RDL) to discriminate 
between micropapillary and solid patterns in lung ADC expressed as ground-glass opacification. The merged 
radiomics and deep learning (RDL) method outperformed the radiomics method or deep learning alone, with an 
accuracy of 0.913 in the derivation dataset and 0.966 in the independent validation dataset. Chen et al.11 found 
that combing quantitative image analysis with near-pure radiomics values, the presence of micropapillary and 
solid components could be predicted with 90.00 ± 0.00% sensitivity and 77.12 ± 2.67% specificity for the deriva-
tion cohort, and with 100% and 95.35% sensitivity and specificity, respectively, for the external validation cohort. 
He et al.12 developed four radiomics-based models to predict the presence of micropapillary or solid pattern in 
461 lung ADC, achieving comparable prediction performance in terms of area under the curve (AUC) in Internal 
validation vs external validation using a generalized linear model (0.74 vs.0.70); Naïve Bayes, (0.75 vs.0.72); SVM 
(Support vector machine) (0.73 vs.0.73) and random forest (0.72 vs.0.69), respectively. Park et al.13 developed a 
radiomics approach for differentiating the predominant subtype-based prognostic groups of lung adenocarci-
noma (group 0: lepidic; group 1: acinar/papillary; group 2: solid/micropapillary) using CT radiomics features, 
achieving AUCs of 0.892 and 0.895 on the development and validation sets, respectively. Gao et al.14 proposed 
a semi-supervised learning framework that applies semi-supervised learning method to detect micropapillary 
adenocarcinoma, the semi-supervised learning method achieves a precision of 0.775 and recall of 0.896, which is 
better than supervised learning (a precision of 0.762 and recall of 0.884).  Chen et al.15 investigated a new model of 
incorporating solid attenuation component masks with deep learning in the prediction of lung ADC with MPP/
SOL patterns(the components of MPP/SOL > 1%) to optimize surgical strategy preoperatively with AUCs of 0.91 
for the cross-validation, and 0.93 for external validation, significant better than another 3 independent model. 
Each of the preceding studies attempted to classify lung ADC with micropapillary and solid histological patterns 
using unique dataset and special non-invasive technology merely with the radiomics approaches or combined 
technology of radiomics and deep learning or clinic approaches to validate lung ADC with MPP/SOL patterns.

Xia and Hirsch et al.16,17 suggested that additional research be conducted on combining additional data, such 
as clinical data, to improve the performance of the merged scheme in predicting the invasiveness risk of Stage I 
Lung adenocarcinoma. Based on their analysis, we hypothesized a new scheme of combining computed-derived 
radiomics features and deep learning with clinicoradiographic variables for preoperative diagnosis of lung ADC 
with micropapillary and solid patterns.

Materials and methods
Patients.  This respective multicohort study was approved by the Institutional Review Board of The First 
Affiliated Hospital of Nanjing Medical University  (Permit Number: 2021-SRFA-238) and the Institutional 
Review Board of the Affiliated Huaian NO.1 People’s Hospital of Nanjing Medical University (Permit Num-
ber: 2022-0451-01), respectively. And the requirement of written informed consent was waived because that all 
data sources applied (demography, laboratory records, and chest CT) were previously available and analyzed 
anonymously and de-identified using study identifier before reading by the radiologists, model development, 
internally and externally validation. The need to obtain informed consent from all participants was waived by the 
Institutional Review Board of The First Affiliated Hospital of Nanjing Medical University and the Institutional 
Review Board of The Affiliated Huaian NO.1 People’s Hospital of Nanjing Medical University. All methods were 
performed in accordance with the relevant guidelines and regulations.

The study reviewed 2567 cases undergoing CT scans for preoperative assessment from April 2016 to October 
2019. All cases of lung ADC were histologically proven and recorded in our hospital database. The inclusion 
criteria were as follows: (a) no prior history of other cancer; (b) no prior history of radiation therapy or chemo-
therapy before chest surgery; (c) pathologically confirmed to be ADC and without any variant subtypes (colloid, 
mucinous, fatal adenocarcinoma, etc.); (d) CT images with thin section (1.5/1.0 mm) quality were adequate for 
analysis; (e) clinical and imaging data for this study were obtained from the medical records database; (f) the 
patients with tumor was no more than stage III A. Patients were excluded for one of the following reasons: (a) 
no preoperative CT scan at our institution (n = 154); (b) distal metastasis (n = 4); (c) history of radiation and 
chemotherapy before scanning (n = 19); (d) unsatisfactory imaging quality due to respiratory artifact during 
examination (n = 60); (e) insufficient laboratory examination data (n = 296), (f) minimally invasive adenocar-
cinoma (n = 648).

Finally, of 514 pulmonary lesions were recorded in 512 patients (males: females, 228:284; mean age ± standard 
deviation SD, 59.3 ± 10.1 years; range 26–82 years) in our institution. Of these, two lesions were detected in 2 and 
one in 510 patients. The derivation cohort had 360 cases, including 134 MPP/SOL positive and 226 MPP/SOL 
negative. Additionally, 154 cases assigned as the independent internal validation cohort were consisted of 57 
MPP/SOL positive and 97 MPP/SOL negative. We attempted to search data for external validation on the public 
dataset collected in TCIA (https://​www.​cance​rimag​ingar​chive.​net/), but mainly because of the lack of concrete 
pathological results. Therefore, we found another 101 cases (male: female, 48:53; mean age, 60.7 ± 9.4 years; range 
31–75 years) from another hospital as the external validation cohort. Workflow of our study is shown in Fig. 1.

Diagnostic criteria.  The pathologist (author #7, with 6 years of experience in pathological diagnosis) eval-
uated all specimens according to the current 2015 World Health Organization (WHO) classification of lung 
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tumors as heralded by IASLC (International Association for the Study of Lung Cancer)/ATS (American Thoracic 
Society)/ERS (European Respiratory Society). The semi-quantitatively assessment of five histologic patterns of 
lung ADC is based on the percentage of each tumor slides′ components in 5% increments. According to the 
description of the histological growth pattern and histologic classification4,18, the enrolled cases are assigned 
as follows: MPP/SOL Lung ADC with lepidic pattern, acinar pattern, or papillary pattern is included in the 
absence group(MPP/SOL−, n = 323). MPP/SOL lung ADC with micropapillary pattern or/and solid pattern is 
included in the positive group (MPP/SOL+, n = 191). Lesions were classified randomly as derivation set with 
MPP/SOL positive (n = 134) and without MPP/SOL (n = 226). The total of 154 lesions (MPP/SOL positive/nega-
tive:57/97) from our hospital was assigned to the internal validation set. Another 101 cases (MPP/SOL positive/
negative:41/60) from another hospital was identified as the external validation set.

Imaging protocols.  Imaging acquisition was performed at our institution using an unenhanced CT scan-
ner with 64-slice detector (SIEMENS SOMATOM Force; SIEMENS Definition AS+; GE MEDICAL SYSTEMS 
Revolution) and 128-slice detector (Philips iCT 256). All CT scans were performed in the supine position from 
the thoracic inlet to the margin of the kidney. All image protocol shared the following parameters: slice thick-
ness,1.5 mm; tube voltage, 100–120 kVp; tube current, 80–300 mAs; matrix size, 256 × 256; and field of view, 

Figure 1.   Workflow of our study show the pathway of patient inclusion and exclusion and flowchart of 
proposed models.
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252 × 252 mm, voxel size, 1 × 1 × 1 mm. A high-resolution algorithm was used to continuously reconstruct all 
images with a thin-section of 1.5/1.0 mm intervals. Another institution enrolled cased were scanned by SIE-
MENS SOMATOM Force 64-row CT machine with following scanner parameters: Tube voltage 100–120 kV, 
tube current 60–100  mA. Matrix, 256 × 256; and field of view, 252 × 252  mm. All images had lung windows 
(width, 1500 HU, level, 600 HU) and mediastinal windows (width, 350 HU, level, 50 HU).

Establishing the clinicoradiographic model.  The CT images were evaluated independently by two 
radiologists (author #1 and author #4, 3 and 8 years of experience in thoracic imaging diagnosis, respectively). 
High-resolution CT (HRCT) images (qualitative and quantitative) using to evaluate morphological features. The 
morphological features such as maximum tumor diameter consolidation/tumor diameter (C/T) ratio calculated 
by twice decoding, density (pure ground glass, mixed ground glass or solid), margin (lobulation and spiculation: 
absent or present), lung-tumor interface(clear or blur); internal manifestation (cavity, calcification, and honey-
comb sign: absent or present), pleural tag and indentation (absent or present)19, change in the vessels (absent or 
present), relation to bronchus (absent or present). The term "change in the vessel" was defined as the formation 
of a collection of blood vessels adjacent to the tumor, and multi-planar reconstruction (MPR) was used to deter-
mine whether the change was present. According to Qiang et al.20, the tumor-bronchus relationship assessment 
criteria have been modified to include visual evaluation of a positive manifestation of tumor-bronchus as bron-
chus extension into the lesion with a tapered lumen and interruption, or bronchus abrupt obstruction on the 
margin of the lesion. The clinic data involves gender, age, smoking history, family history and serum biomarkers 
including carcinoembryonic antigen (CEA) value, neuro-specific enolase (NSE) value, cytokeratin fragment 
21-1(CYFRA21-1) value, which are recorded and categorized according to the level of 4.70 ng/ml, 16.30 ng/
ml and 3.30 ng/ml, respectively. Kappa values and intra-class correlation coefficients (ICCs) were calculated to 
assess the consistency of the two authors′ radiology evaluations.

Univariate analyses were used to determine the differences between MPP/SOL negative and positive groups 
on the derivation set. Logistic regression analysis was adopted to build clinicoradiographic model.

Radiomics model built.  The radiomics model was built including four steps, that is, volumes of interest 
(VOI) segmentation, radiomics features extraction, feature selection and radiomics signature establishment and 
assessment. The VOIs encompass the entire tumor information. Semi-automatic contouring was performed in 
thin-section (1.0/1.5 mm) CT images with in-house software (MULTILABEL; ECNU, Shanghai, China). The 
semiautomatic identification of the VOI of the lesions relies on radiologists to locate the lesion, and then were 
implemented with a cooperation of semi-automatic segmentation thresholding algorithm and a manual adjust-
ment approach of delineation on every section of the CT scans, containing two major steps as reported in fore-
passed literatures15. The initial segmentation is followed by the step of removal of surrounding vessel, bronchus, 
and calcification. The radiologists with 3 years of thoracic diagnosis experience (authors #1) and another one 
with 8 years of experience (author#4) blinded to experimental design reviewed the image and annotated VOIs 
avoiding necrosis, calcification, vascular structure, etc8. Once the true tumor boundary cannot be deduced pre-
cisely from the image, another radiologist with 10 years of experience in chest CT interpretation reviewed and 
confirmed the delineation of the lesion. The disagreements would be resolved by the observer′s investigation and 
comprehensive assessment. To ensure the stability of the radiomics feature extraction, the VOI of each lesion was 
drawn twice by each of two independent radiologists. The radiologists (author#1) annotated the VOIs of 60 cases 
randomly selected from the study after 3 months. The intra- and inter-class correlation coefficients were calcu-
lated after the segmentation. VOI segmentation information was converted to the NII format, followed by the 
features extraction with the aid of FeAture Explorer Pro (FAE Pro, V0. 3.7, (https://​github.​com/​salan​668/​FAE.​
git) on Python (3.7.6)21. The process of image clip is making that pixel values less than 5% and more than 95% are 
controlled at 5% and 95% respectively to remove the influence of extreme pixel points. The extracted radiomic 
features were normalized to a standard unit using the following equation: f(x) = 1000 * (χ − µχ)/σχ, where µχ 
and σχ denote the mean and standard deviation of the image intensity, respectively. Expounded description 
regarding the initial settings used in FeAture Explorer Pro for the feature extraction process are provided in Sup-
plementary Appendix 1. Image types includes original image and extract feature categories. Eventually, of 107 
radiomics features extracted from the 3D-dimensional region were composed of three types, that is, shape fea-
tures (number of features [m] = 18), first-order features (m = 14) and texture features (m = 75). Texture features 
include 24 Gy level co-occurrence matrix (GLCM) features, 16 Gy level run length matrix (GLRLM) features, 
16 Gy level size zone matrix (GLSZM) features, 5 neighborhood gray tone difference matrix (NGTDM) features, 
14 Gy level dependency matrix (GLDM) features. The intra-class correlation coefficients (ICCs) of the features 
were calculated to evaluate the inter-observer reproducibility and the features with ICC > 0.80 were enrolled 
in subsequent analysis. The derivation and internal validation sets are split in a ratio of 7:3. We up-samples by 
repeating random cases to balance the samples of micropapillary and solid negative and positive. The L2 norm 
was computed and divided by each feature vector. The feature vector was then mapped into a unit vector. We 
examined the similarity of each feature pair and eliminated one if its PCC (Pearson Correlation Coefficient) 
value which was greater than 0.99 to reduce the dimension of the feature space. We used recursive feature elimi-
nation (RFE) to select radiomics features based on a classifier by repeatedly considering a smaller set of features. 
Analysis of variance (ANOVA) was used to investigate the significant features associated with the labels. We 
sorted features according to their corresponding feature value (F-value), which were calculated to determine 
the relationship between features and labels, and selected a specific number of features to build the optimal 
integrated model. To identify predictive features in the model, we used logistic regression with the LASSO (Least 
absolute shrinkage and selection operator). The final lost function was augmented with the L1 norm, and the 
weights were constrained. The radiomics models′ hyper-parameters were based on the model’s performance on 

https://github.com/salan668/FAE.git
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the internal validation data set. Figure S1A–E depicts the automated segmentation process, features′ reproduc-
ibility analysis, feature selection and model development.

The radiomics model derived from the Least absolute shrinkage and selection operator (LASSO) procedure 
using fivefold cross validation in the derivation set without wavelet features.

Deep learning network architecture implementation.  In this study, the deep learning model was 
developed using a derivation set based on the “wide residual network” (WRN) architecture22, The architec-
ture of WRN50 is consisted of 50 convolutional layers with 4 max-pooling layers. We fed 2.5D patches with a 
size of 3 × 3 × 64 pixels into the neural network. Each patch was cropped to contain the maximum area of the 
nodule’s slice. Three adjacent slices were extracted and concatenated to form a 3-channel patch (Fig. 2A). The 
chest images were used as input data, deep learning score (DL-score) is the output of the network which was 
transferred by sigmoid function as the probability of being MPP/SOL negative or MPP/SOL positive subtype. 
All annotated CT images were used as input material to create a heat map illustrating a sensitive region of inter-
est (ROI), which showed the regions with the greatest impact on the final prediction layer of the input images23. 
We used data augmentation techniques to suppress the problem of overfitting in derivation phase. Stochastic 
gradient descent (SGD) optimizer was employed to train the network with binary cross-entropy loss. Five-cross 
validation was used to evaluate the quality of proposed model and avoid over fitting and under fitting. PyTorch 
(version 1.6.0; https://​pytor​ch.​org) was used to implement the algorithm. A gradient-weighted activation map-
ping (Grad-CAM)15,23 is a commonly used method in computer vision field to provide interpretability. In this 
work, we used Grad-CAM to visualize the important regions of the input image data (Fig. 2B). Higher value 
indicated the more indicative CT areas for associated prediction-making. The Grad-CAM algorithm was imple-
mented by our deep learning framework "Strix" (https://​github.​com/​Proje​ct-​Strix/​Strix) constructed in PyTorch 
(version 1.6.0; https://​pytor​ch.​org). The output of the final dense layer was our deep learning signature, which 
was transferred with the sigmoid function as the DL-score and built DL model.

Combined model built.  Logistic regression analysis was conducted to develop the model 4 with the incor-
poration of the selected meaningful clinical features, DL-score and R-score to construct the combined model on 
the derivation set.

Figure 3 illustrates the steps involved in our study, including clinicoradiographic features selection, seg-
mentation of CT images, feature extraction and selection from radiomics, deep learning network construction, 
combined model construction and model analysis.

Clinical utility and prediction nomogram.  We internally assessed the models’ performance in inde-
pendent internal validation data using the receiver operating characteristic (ROC) curve analysis. The prediction 
nomogram was plotted based on logistic regression based on the combined model. Consistency between the 
nomogram was implemented with Hosmer–Lemeshow goodness-of-fit (GOF) test using calibration curves via 
bootstrapping with 1000 resamples24. The clinical usefulness was estimated with decision curve analysis and with 
the visualization of decision curve and clinical impact curve25.

Figure 2.   The architecture of WRN network and the prediction diagnosis of DL-score for the MPP/SOL 
positive lesion. (A) The illustrated WRN50 architecture was presented in our study which is conducted by 
PyTorch (version 1.6.0; http://​pytor​ch.​org). (B) From the left, the first column represents 2.5D patches with 
a size of 3 × 3 × 64 pixels that is locally exhibited the tumor and the second column reveals the activation heat 
maps. Last column makes a good visual reference for the prediction probability of MPP/SOL negative/positive, 
that is DL-score, which is observed by the importance of each part of tumor generated by ("Strix" (https://​github.​
com/​Proje​ct-​Strix/​Strix)). WRN wide residual network; DL-score deep learning score. 

https://pytorch.org
https://github.com/Project-Strix/Strix
https://pytorch.org
http://pytorch.org
https://github.com/Project-Strix/Strix
https://github.com/Project-Strix/Strix
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Statistical analysis.  Statistical analyses were carried out using IBM SPSS software (version 22.0, http://​
www.​ibm.​com), R software (The R Founding: http://​www.r-​proje​ct.​org; Version 4.1.2), MedCalc (version 15.0, 
Mariakerke, Belgium), PyTorch (version 1.6.0; https://​pytor​ch.​org) and FeAture Explorer Pro (FAE Pro, V0. 3.7) 
on Python (3.7.6). The rms package in R software was implemented for calibration analysis, ResourceSelection 
package for Hosmer–Lemeshow test, rmda for DCA curve analysis. PyTorch (version 1.6.0; https://​pytor​ch.​org) 
was adopted to construct the deep learning model and Grad-CAM. The characteristics were compared using 
the Student t test or Mann–Whitney U test (for continuous parameters expressed as mean ± standard deviation 
or median ± interquartile range) and Chi-square or Fisher’s exact tests or (for categorical variables expressed as 
numbers). The criteria of intra-class correlation coefficient (ICC) value are graded as reported by the precious 
study26: 0 ~ 0.20, slight; 0.21 ~ 0.40, fair; 0.41 ~ 0.60, moderate; 0.61 ~ 0.80, substantial; 0.81 ~ 1.00, almost perfect 
agreement. Five-fold cross validation was employed to estimate the performance of the radiomics and deep 
learning model in the training procedure. Moreover, external validation set was performed for these models′ 
validation. The AUC comparison was processed with DeLong′ s test.

Results
Supplementary Table S1 presents that there were no statistically significant differences in clinic-radiographic 
characteristics between the derivation and internal validation sets (P all > 0.05).

Model‑development.  Table 1 shows the contribution of clinicoradiographic, radiomics, and DL-score fea-
tures along with their associated coefficients in different models.

Model 1: clinicoradiographic features.  The consistency analysis of radiographic variables between two radiolo-
gists are listed in Table 2. Comparison of clinical and radiographic features between MPP/SOL positive and 
MPP/SOL negative in derivation and internal validation set are presented in Tables 3 and 4. The finally selected 
features with logistic regression in derivation set revealed that the independent predictor for MPP/SOL posi-
tive lesions included serum CEA level, maximum-tumor diameter, lobulation and spiculation. The calculation 
formula was as follows: (− 1.897) * CEA (≥ 4.70 ng/mL) + 0.053*maximum-tumor diameter + (− 1.589) * lobula-
tion + (− 1.378) * spiculation + 1.900.

Model 2: Radiomics model.  The 107 features whose ICC value in intra-observer (0.802 ~ 0.999) and inter-
observer (0.809 ~ 0.999) were included in the subsequent analysis. Feature selection includes 16 radiomics fea-

Figure 3.   Workflow of the development of different models. Left: Top row; (A) The step of radiomics analysis 
includes segmentation of CT images, feature extraction and selection by FeAture Explorer Pro (FAE Pro, Version 
0.3.7, (https://​github.​com/​salan​668/​FAE.​git). Bottom row; (B)The clinicoradiographic model development. (C) 
Deep learning model was developed by PyTorch (version 1.6.0; http://​pytor​ch.​org) and DL -score generated 
from ("Strix" (https://​github.​com/​Proje​ct-​Strix/​Strix)). Right: Top row; (D) The ROC comparison between 
different models. Middle row; (E) The DCA curve plotted by rmda package in R software (The R Founding: 
http://​www.r-​proje​ct.​org; Version 4.1.2); Bottom row; (F) The nomogram and calibration analysis executed by 
rms package in R software, ResourceSelection package for Hosmer–Lemeshow test.

http://www.ibm.com
http://www.ibm.com
http://www.r-project.org
https://pytorch.org
https://pytorch.org
https://github.com/salan668/FAE.git
http://pytorch.org
https://github.com/Project-Strix/Strix
http://www.r-project.org
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tures (Fig. S1C) and eventually, 5 non-zero coefficient features (Fig. S1D) were remained. Radiomics score was 
calculated by the following formula:

(R-score) = 0.989*CT_original_firstorder_90Percentile + 3.881* CT_original_firstorder_Mean + 0.261* 
CT_original_gldm_SmallDependenceHighGrayLevelEmphasis + 2.974 * CT_original_glszm_SizeZoneNon 
UniformityNormalized + (-3.245) * CT_original_shape_SurfaceVolumeRatio + (− 0.0570).

The R-score existed significant differences between the MPP/SOL + and MPP/SOL− groups in the deri-
vation set (0.164(0.707,0.382) vs 0.846(0.681,0.913), p < 0.001) and the same result in the internal validation 
set (0.127(0.070,0.306) vs 0.829(0.700,0.884), p < 0.001) and external validation set (0.135(0.020,0.825) vs 
0.900(0.680,1.000) (Fig. 4A–C). The cut-off value of R-score is 0.582 chosen to maximize the Youden index of 
the ROC analysis from the derivation set.

Model 3: Deep Learning model.  The model was constructed based on the DL-score. Both the DL-score of deri-
vation set (0.216(0.102,0.421) vs 0.918(0.781,0.942), p = 0.001) (Fig. 4A,B, p < 0.001) and that of internal valida-
tion set ((0.197(0.100,0.400) vs 0.888(0.735,0.938), p < 0.001), and external validation set ((0.063(0.003,0.432) vs 
0.98(0.058,0.998), p < 0.001) showed significant statistical significance in DL-score between the MPP/SOL+ and 
MPP/SOL− groups. (Fig. 4D–F). The cut-off value from derivation set is 0.656 chosen to maximize the Youden 
index of the ROC analysis.

Model 4: combined model.  The features′ dimensionality was reduced from 107 to 16 features. And non-zero coef-
ficients of the finally calculated as R-score combined with clinicoradiologic variables and DL-score in derivation 
set revealed that serum CEA (≥ 4.70 ng/ml), DL-score and R-score were independent predictor for MPP/SOL posi-
tive lesions based on logistic regression. The calculation formula = 3.722*DL-score + 2.405*R-score + 1.966*serum 
CEA level (≥ 4.70 ng/ml) + (− 4.173).

Table 1.   The coefficients of features of four models. CEA carcinoembryonic antigen.

Models Features coefficient in model Coefficients P value intercept

Model 4

Combination − 4.173

R-score 2.405 0.0134

CEA (≥ 4.70 ng/ml) 1.966 0.0002

DL-score 3.722  < 0.001

Model 3 DL-score –  < 0.001 − 

Model 2

Radiomics signature − 0.057

CT_original_firstorder_90Percentile 0.989  < 0.001

CT_original_firstorder_Mean 3.881  < 0.001

CT_original_gldm_SmallDependenceHighGrayLevelEmphasis 0.261  < 0.001

CT_original_glszm_SizeZoneNonUniformityNormalized 2.974  < 0.001

CT_original_shape_SurfaceVolumeRatio − 3.245  < 0.001

Model 1

Clincoradiographic feature 1.900

CEA (≥ 4.70 ng/ml) − 1.897  < 0.001

Maximum-tumor diameter 0.053 0.012

Lobulation −1.589   < 0.001

Spiculation − 1.378  < 0.001

Table 2.   The consistency analysis of radiographic variables between two radiologists. ICC intraclass 
correlation coefficient.

Variables ICC (95%CI) Kappa values(95%CI)

Maximum-tumor diameter(:mm) 0.928 (0.915 ~ 0.940)

Lesion type 0.880 ± 0.021(0.840 ~ 0.921)

Spiculation 0.755 ± 0.033(0.690 ~ 0.820)

Lobulation 0.722 ± 0.029(0.665 ~ 0.778)

Bubble-like appearance 0.872 ± 0.036(0.801 ~ 0.943)

Lung-tumor interface 0.792 ± 0.031(0.731 ~ 0.852)

Change in vessels 0.769 ± 0.032(0.706 ~ 0.832)

Pleural tag and indentation 0.890 ± 0.013(0.864 ~ 0.916)

Tumor-bronchus relation 0.880 ± 0.022(0.864 ~ 0.930)

Cavity 0.703 ± 0.081(0.544 ~ 0.862)
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Performance and comparison of the different models.  Table 5 shows the AUC (95%CI), accuracy, 
sensitivity, specificity, PPV and NPV of different models in the derivation, internal validation and external vali-
dation sets. The ROC curve and AUC values comparison associated with the derivation, internal validation and 
external validation set are shown in Fig. 5A–C. In the internal validation dataset, Table 5 demonstrated that the 
model 4 based on 3 features had the maximum AUC. The AUC and accuracy could be as high as 0.921 (95% 
CI 0.866 ~ 0.958) and 84.7%, respectively. Internally, the combined model (model 4) demonstrated a sensitivity 

Table3.   Comparison of clinical features between MPP/SOL positive and MPP/SOL negative. Data are 
numbers of patients and parentheses indicate the proportion. CEA carcinoembryonic antigen, NSE neuro-
specific enolase, CYFRA21-1 cytokeratin fragment 21–1.

Features

Derivation set (134 /226)

p value

Internal validation set (57/97)

p valueNo. of LUNG ADC with MPP/SOL+/− No. of LUNG ADC with MPP/SOL+/−

Tumor location

 RUL 41(30.6)/62(27.4) 0.151 16(28.1)/27(27.8) 0.119

 RML 28(20.9)/27(12.0) 3(5.3)/18(18.6)

 RLL 33(24.6)/76(33.6) 22(38.6)/38(39.2)

 LUL 10(7.5)/18(8.0) 7(12.3)/5(5.2)

 LLL 22(16.4)/43(19.0) 9(15.8)/9(9.3)

 Age 61.0 ± 9.4/58.3 ± 10.6 0.016 61.0 ± 10.0/58.6 ± 9.9 0.139

 Male 77(57.5)/85(37.6)  < 0.001 33(57.9)/33(34.0) 0.004

 Family history 5(3.7)/6(2.7) 0.566 1(17.5)/2(2.1) 1.000

 Smoking history 100(74.6)/28(12.4) 0.002 18(31.6)/12(12.4) 0.004

 Serum CEA value 49(36.6)/10(4.4)  < 0.001 18(31.6)/4(4.1)  < 0.001

 Serum CYFRA21-1 value 25(18.7)/21(9.3) 0.010 9(47.4)/16(59.8) 0.09

 Serum NSE value 69(51.5)/109(48.2) 0.550 27(47.4)/58(59.8) 0.134

 CEA level(ng/ml) 3.2(1.9,6.2)/1.8(1.3,2.7)  < 0.001 1.9 (1.2, 2.6)/2.7(1.9,5.6)  < 0.001

 NSE level(ng/ml) 16.5(13.9,21.1)/16.0(13. 5,20.4) 0.233 17.1(15.0,18.8)/16.1(13.9,19.9) 0.288

 CYFRA211level(ng/ml) 2.5(1.8,3.0)/2.0(1.6,2.5)  < 0.001 2.0(1.6,2.7)/2.3(1.8,3.0) 0.135

Table 4.   Comparison of radiographic features between MPP/SOL positive and MPP/SOL negative. Data are 
numbers of patients and parentheses indicate the proportion. C/Tratio consolidation/tumor diameter ratio, 
pGG pure Ground Glass density, mGG mixed Ground Glass density.

Features

Derivation set (134/226)

p value

Internal validation set (57/97)

p valueNo. of LUNG ADC with MPP/SOL+/− No. of LUNG ADC with MPP/SOL+/−

Maximum-tumor diameter(:mm) 16.32(11.30,22.23)/10.69(8.50,14.70)  < 0.001 12.95(15.4,20.25)/11.10(8.25,13.65)  < 0.001

C/T ratio  0.44(0.81,1.00)/0.87(0.34,1.00) 0.847  0.90(0.38,1.00)/0.88(0.46,1.00)  0.905

Lesion type

pGG 22(16.4)/27(11.9) 1(1.8)/17(17.5)

mGG 63(47.0)/103(45.6) 0.367 7(12.3)/51(52.6)  < 0.001

Solid 49(36.6)/96(42.5) 49(86.0)/29(29.9)

Lung-tumor interface (blur) 106(79.1)/96(42.5) 0.001 16(28.1)/21(21.7) 0.369

Spiculation (present) 72(53.7)/30(13.3)  < 0.001 32(56.1)/12(12.4)  < 0.001

Lobulation (present) 106(79.1)/96(42.5) 0.001 45(79.0)/43(44.3)  < 0.001

Cavity (present) 15(7.6)/12(5.3) 0.025 2(3.5)/1(1.0) 0.284

Bubble-like appearance (present) 4(3.0)/11(4.9) 0.038 9(15.8)/7(7.2) 0.093

Change in vessels (present) 42(31.3)/66(29.2) 0.699 15(26.3)/28(28.9) 0.734

Tumor-bronchus relation(present) 75(56.0)/54(23.89)  < 0.001 35(61.40)/22(22.7)  < 0.001

Pleural tag and indentation (present) 86(64.2)/70(31.0)  < 0.001 35(61.4)/24(24.7) 0.734

Predominant histologic subtypes  < 0.001

Lepidic 5(3.7)/76(33.9) 4(7.0)/35(36.1)

Acinar 38(28.4)/102(45.5) 9(15.8)/44(45.4)

Papillary 1(0.7)/6(2.7) 0(0)/3(3.0)  < 0.001

Micropapillary 17(12.7)/0(0) 7(12.3)/0(0)

Solid 44(32.8)/0(0) 25(43.9)/0(0)

Mixed type 29(21.6)/42(18.8) 12(21.0)/15(15.5)
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of 91.2%; specificity of 83.5%; a PPV of 76.5%; and an NPV of 94.2%. And the external validation achieved a 
sensitivity of 83.9%, specificity of 70.0%; a PPV of 65.4%; and an NPV of 85.7%. The clinicoradiograhic model 
for classifying MPP/SOL negative vs. positive obtained an accuracy of 80.9% and 72.3% in internal and external 
validation set. The radiomics model and DL models performed with an accuracy of 88.3% and 85.7%, respec-
tively. We had performed DeLong’s test to analyze the difference between the AUCs of different models in the 
internal and external  validation and derivation datasets, respectively. Table  6 showed merely significant dif-
ference between model 4 and model 3 (p = 0.022), model 4 and model 1(p = 0.010) in the internal validation 
set. Externally, the diagnostic performance of the combined model (0.827, 95% CI 0.739–0.895) was higher 
than those of radiomics model (0.801, 95% CI 0.710–0.874) (P = 0.047), DL model (0.730, 95% CI 0.633–0.814) 
(P = 0.036) and clinicoradiographic model (0.700, 95%CI 0.601–0.787) (P = 0.016). The DL model showed com-
parable predictive performance to the radiomics model internally and externally. Note however, the AUCs of 
radiomics and DL models are superior to that of clinicoradiographic model, but there were no significantly 

Figure 4.   Dot diagram of R-score and DL-score for differentiating the lung lesion with MPP/SOL positive. 
Dot diagrams show that the value of the R-score is significantly higher in patients of lung ADC with MPP/SOL 
positive in the derivation set (A), the Internal validation set (B) and external validation set (C) (p all < 0.001). 
The value of DL-score is also obviously higher in patients of lung ADC with MPP/SOL positive in the derivation 
set (D), the Internal validation set (E) and external validation set (F) (p all < 0.001). R-score = radiomics score; 
DL-score = deep learning score.

Table 5.   The diagnosis of different types of models for lung ADC with MPP/SOL pattern. AUC​ area under 
curve, CI confidence interval, NPV negative predictive value, PPV positive predictive value, SEN sensitivity, 
SPE specificity, ACC​ accuracy.

Models AUC​ 95%CI SEN (%) SPE (%) ACC (%) NPV (%) PPV (%)

Model 1

Derivation set 0.844 0.803–0.880 64.2 89.4 80.0 80.8 78.2

Internal validation set 0.848 0.806–0.919 75.4 86.6 80.9 85.7 76.8

External validation set 0.700 0.601–0.787 53.66 85.0 72.3 72.9 71.0

Model 2

Derivation set 0.896 0.861–0.930 81.3 86.7 84.7 88.7 78.4

Internal validation set 0.906 0.848–0.947 84.2 90.7 88.3 90.7 84.2

External validation set 0.801 0.710–0.874 75.6 73.3 74.3 81.5 75.6

Model 3

Derivation set 0.906 0.865–0.930 85.1 85.4 85.7 92.5 73.1

Internal validation set 0.887 0.826–0.932 77.2 90.7 84.1 87.1 80.0

External validation set 0.730 0.633–0.814 61.0 85.0 75.2 76.1 73.5

Model 4

Derivation set 0.929 0.898–0.954 85.8 86.7 86.1 90.7 79.2

Internal validation set 0.921 0.866–0.958 91.2 83.5 84.7 94.2 76.5

External validation set 0.827 0.739–0.895 83.9 70.0 75.2 85.7 65.4
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statistical differences between models 3 and model 1 (AUC: 0.887 vs 0.848, p = 0.257) in internal validation set 
and between model 2 and model 1 (AUC: 0.906 vs 0.848, p = 0.063), which concomitantly occurred in the exter-
nally validation((P = 0.074, P = 0.649, respectively). Even the integrated model 4 achieved higher AUC (0.929, 
95%CI:0.897 ~ 0.954) in the derivation set and AUC (0.921, 95% CI 0.866 ~ 0.958) in the internal validation 
set than the other 3 models, resulting in a halfway respectable outcome when compared to model 2 (AUC 
0.921 vs 0.906, P = 0.360) internally, when compared externally to model 1 and model 3, the model 4 (AUC 
0.827,95%CI:0.739-0.895) also obtained the same diagnostic efficacy. Additionally, the AUCs of 5-cross valida-
tion in radiomics and deep learning training procedure were 0.907 (95% CI 0.8938–0.9223) and 0.899 (95%CI 
0.859–0.918), respectively.

A prediction nomogram building.  The prediction nomogram was plotted based on logistic regression 
on the basis of the combined model, which is added significant incremental performance to the clinical model 
(Fig. 6A). Favorable calibration of the nomogram corroborated both in the derivation, internal validation set 
(Fig. 6B) and external validation set (Fig. 6B) demonstrated good calibration with p value of 0.921, 0.339 and 
0.205, in the derivation, internal and external validation set in the Hosmer and Lemeshow goodness of fit (GOF) 
test, respectively.

Clinical practice.  Decision curve analysis (DCA) revealed that indicating that the radiomics model, DL 
model or the combined model achieved moderately better net benefits than the clinical and radiographic factors 
or DL -score alone to predict lung ADC with MPP/SOL positive at threshold probability (5–80%) and compa-
rable better net benefits to the radiomics model in internal validation set (Fig. 7A). If the threshold probability 
of a patient in a range of (48–52%) and (56–88%), the combined model used to predict positive lesions would 
be more beneficial than DL model and clinicoradiographic model (Fig. 7B). Clinical impact curve (Fig. S2A,B) 
shows the estimated number who would be affirmed high risk for each risk threshold and visually shows the 
proportion of those true positive cases24.

Figure 5.   The ROC curve and AUC comparison of five different models. left to right: the ROC curve and AUC 
comparison of in derivation (A), Internal validation dataset (B) and external validation (C), respectively. The 
ROC curve in three datasets showed the trend that the DL-score based and radiomics feature based scheme can 
improve the clinicoradiographic model’s performance. Comparison between the DL-score based and radiomics 
feature based scheme (model 3 and model 2) exhibited the DL model is only superior to radiomics model in 
derivation set (0.906 vs 0.896). In a comparison with the combined scheme model 4 yielded moderately higher 
performance (AUC = 0.929 in the derivation set, AUC = 0.921 in Internal validation set and AUC = 0.827 in the 
external validation set, respectively) than model 3 and model 1.

Table 6.   Comparison and evaluation the performance of different models in the three datasets. AUC​ area 
under the curve. Significant values are in bold.

Models (AUC) Derivation set (360) p value Internal validation set (154) p value External validation set (101) p value

Model 2 vs. Model 1 0.896 vs 0.844 0.014 0.906 vs 0.848 0.186 0.801 vs 0.700 0.074

Model 3 vs. Model 1 0.906 vs 0.844 0.012 0.887 vs 0.848 0.257 0.730 vs 0.700 0.649

Model 4 vs. Model 1 0.929 vs 0.844  < 0.001 0.921vs 0.848 0.009 0.827 vs 0.700 0.016

Model 3 vs. Model 2 0.906 vs 0.896 0.496 0.887 vs 0.906 0.320 0.730 vs 0.801 0.193

Model 4 vs. Model 3 0.929 vs 0.906 0.058 0.921 vs 0.887 0.016 0.827 vs 0.730 0.047

Model 4 vs. Model 2 0.929 vs 0.896 0.020 0.921 vs 0.906 0.360 0.827 vs 0.801 0.036
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Figure 6.   The nomogram and calibrate curve based on combined model. (A) The nomogram based on 
combined model was developed in the derivation set. And the R-score, DL-score and CEA were incorporated by 
rms package in R software. (B) Calibration curves of the combined model indicated good agreement between 
predicted probability and actual occurrence in derivation set (Hosmer–Lemeshow test, P = 0.921), internal 
validation set (0.309) and external validation set (P = 0.205).

Figure 7.   Decision curve analysis for the different models. The DCA for the different models showing the 
benefit of following prediction models at diverse probability thresholds for adverse events in the internal 
validation set (A) and external validation set (B). The y-axis indicates the net benefits and the x-axis represents 
the different probability thresholds of being MPP/SOL positive. The black line and gray represent the 
assumption that no patients with MPP/SOL positive and all patients with MPP/SOL positive, respectively.
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Discussion
To date, lots of study has developed invasive preoperative model for assessment of lung ADC with MPP/SOL 
patterns. Our study extended previous work7–10,27,28 by decoding the phenotypes of lung ADC using clinical, 
quantitative radiomics features and DL-score based scheme model separately and combined, attempting to deter-
mine whether an integrated strategy incorporating clinical, radiomics, and DL-score features could be used to 
discriminate lung ADC with MPP/SOL pattern for a more effective surgical approach or subsequent treatment 
scheme. The proposed combined model with a sensitivity of 91.2% and 83.9%, accuracy of 84.7%, 75.2%, AUC 
of 0.921 and 0.827 in internal and external validation, respectively, was significantly superior to deep learning 
and clinicoradiographic model alone (P < 0.05).

Firstly, we developed a clinicoradiographic model (model 1) to classify lung ADC with or without MPP/SOL 
pattern using clinical, imaging, and histopathological profiling data from 625 lung ADC (internal dataset: exter-
nal dataset; 514:101). Morphological CT features, such as lobulation, spiculation and maximum -tumor diameter 
all contribute to the differential diagnosis of MPP/SOL negative and positive. Our study revealed that the more 
lobulation, spiculation and bigger maximum-tumor diameter observed in lung ADC, the higher the probability 
that the lesion is a lung ADC with MPP/SOL pattern, which is comparably consistent with the findings of Park 
and his colleagues13 that solid-predominant adenocarcinomas are more likely to exhibit spiculation or lobulation, 
which could be explained by enrolment bias. Clinical features such as serum biomarkers are widely believed to 
be a useful blood-based diagnosis for lung adenocarcinoma29, particularly the serum CEA level. The findings 
indicated that abnormal serum CEA levels are more prevalent in lung ADC with MPP/SOL positive than in 
MPP/SOL negative, but further study has more samples need to confirm it in future. Several studies11,15 focused 
on measuring the C/T ratio as the main morphological predictor on invasiveness histological lesions in lung 
ADC, especially in part-solid nodules. The C/T ratio calculated in our study showed no statistical significance 
in derivation and internal validation set. It may be resulting from the limited various density nodules sample 
size, even though we attempt to randomly distribute the dataset with the aid of machine operation. Chen et al.15 
investigated the C/T ratio discernibility of lung ADC with MPP/SOL with AUC of 0.850, which is equal to the 
detection ability of radiomics model. Regarding the result of performance of C/T ratio, we considered patient 
selection bias to be the reason, that is the case of lung ADC with MPP/SOL is relatively fewer than another lung 
ADC pattern mainly featuring part-solid density.

Secondly, we compared to models built using DL model (model 3) and radiomics model (model 2) separately, 
the model 3 produced equivalent performance (P = 0.320). It was concluded that a DL model was feasible for 
classifying lung ADC with MPP/SOL pattern. However, the classification performance of the model 3 was inferior 
to that of model 2 in the validation set (AUC 0.906 vs 0.887), but superior in the derivation set (AUC 0.906 vs 
0.896), suggesting that overfitting might occurred during the derivation process14. And previous study30 pointed 
that the opaqueness of deep learning results from implicit feature engineering or modeling makes its applica-
tion a little difficult in clinic practice. In contrast, the radiomics features may be more feasible considering the 
standardized radiomics process, platform of tumor segmentation and model development31.

As we all known, the combination of radiomics features into R-score value can simplify the analysis flow. 
Finally, we attempted to combine R-score and DL-score with selected clinical findings to establish combined mod-
els to determine the predictive power and clinical relevance of lung ADC subtype discrimination. We discovered 
that model 4 had the best performance in preoperatively diagnosing MPP/SOL pattern in lung ADC patients 
with an AUC (0.921) in the internal validation set outperforming the model 3 and model 1, however, achieving 
a halfway decent result compared to model 2. We hypothesized that the radiomics model had sufficient signature 
for prediction and that additional variables could not significantly improve the discriminating capacity. The 
model 2 obtained a high level of accuracy (88.3%, 84.7%) in internal validation and derivation datasets, slightly 
higher than the model 3 (84.1%, 85.7%) and model 4 (84.7%, 86.1%). However, when compared externally, the 
mode 4 yielded the same accuracy with the model 3 (75.2%), which is little higher than model 2 (74.3%). The 
most likely explanation for this phenomenon is insufficient samples and human intervention during the deep 
learning network derivation process29. The combined model is superior to another 3 model alone in external 
validation set (P all < 0.05). We hypothesized that the result indirectly reflected the classification performance 
of the DL model and associated fusion model in lung ADC, which may be affected by the overfitting problem 
during deep learning model’s data processing. Our study demonstrates that combining CT-based radiomics and 
DL-score with clinical implications would be another method for preoperative diagnosis of lung ADC with MPP/
SOL pattern, but it may not be prudent to combine R-score, DL-score and clinical features. Therefore, further 
research and development of novel fusion methods for fusing various types of features will need to be conducted.

As regards the issue of batch effect due to the utility of different CT devices, reported in some study33,34, we 
benefit form Qu et al.34 study, firstly adressing the principal component analysis (PCA) on the selected radiomics 
features to detect the batch effect. The results elucidated that no significant batch effects ware observed among 
the data obtained by different CT scanners (shown in Fig. S3). As a result, statistical harmonization methods 
such as ComBat was not subsequently implemented to calibrate the data.

This study has the following limitations. First, the opaque nature of deep learning mechanism may be a 
source of contention28, as does the information-fusion strategy. Second, we did not pay enough attention in 
our investigation to the component of MPP and SOL structure, and lung ADC with multiple subtypes may be 
possess typical information of hybrid subtypes rather than that of certain subtypes, thus limiting the subtype 
discriminability15 and producing some choice bias. Although we examined the models’ performance internally 
and externally, the performance of the clinicoradiographic model, radiomics model and DL model is similar 
with respect to the prediction of the lung ADC with MPP/SOL pattern, a larger prospective dataset may be 
urgent to affirm these models’ performance30. Additional samples and data processing ways such as mixup, 
cutout, and cutmix are required to confirm the impact of deep learning on lung ADC subtypes detection32. 
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Finally, human-craft features, such as segmentation reproducible, manual outlining determination accuracy35, 
results floating with the variation of the initial segmentation. Therefore, additional work is required, including 
the collection of more representative data, searching for more feasible image visualization platform, attempt to 
other algorithm for image segmentation and more features such as wavelet features need to be further discussed.

Conclusion
In summary, we have established a combined model based on the DL-score, R-score and clinicoradiographic 
features to distinguish lung ADC with MPP/SOL structure. In comparison to the clinicoradiographic, radiomics 
features and DL-score-based scheme model separately, the new combined model enhanced the classification 
performance of clinicoradiologic features and deep learning model. So, the combined model may assist radiolo-
gists in differentiating lung ADC with MPP/SOL pattern. The results are still warranted to be certified in more 
further studies.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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