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Physics‑informed reinforcement 
learning for motion control 
of a fish‑like swimming robot
Colin Rodwell  & Phanindra Tallapragada *

Motion control of fish‑like swimming robots presents many challenges due to the unstructured 
environment and unmodelled governing physics of the fluid–robot interaction. Commonly used low‑
fidelity control models using simplified formulas for drag and lift forces do not capture key physics 
that can play an important role in the dynamics of small‑sized robots with limited actuation. Deep 
Reinforcement Learning (DRL) holds considerable promise for motion control of robots with complex 
dynamics. Reinforcement learning methods require large amounts of training data exploring a large 
subset of the relevant state space, which can be expensive, time consuming, or unsafe to obtain. 
Data from simulations can be used in the initial stages of DRL, but in the case of swimming robots, 
the complexity of fluid–body interactions makes large numbers of simulations infeasible from the 
perspective of time and computational resources. Surrogate models that capture the primary physics 
of the system can be a useful starting point for training a DRL agent which is subsequently transferred 
to train with a higher fidelity simulation. We demonstrate the utility of such physics‑informed 
reinforcement learning to train a policy that can enable velocity and path tracking for a planar 
swimming (fish‑like) rigid Joukowski hydrofoil. This is done through a curriculum where the DRL agent 
is first trained to track limit cycles in a velocity space for a representative nonholonomic system, and 
then transferred to train on a small simulation data set of the swimmer. The results show the utility of 
physics‑informed reinforcement learning for the control of fish‑like swimming robots.

The locomotion of fish and other aquatic swimmers has many desirable characteristics such as energy efficiency, 
agility, and  stealth1,2, which have inspired the design of many biomimetic robots. Designs for fish-like robots 
include those that are assemblages, rigid links actuated by motors imitating the motion of tails and  fins3, motor-
driven flexible  links4,5, elongated snake and eel like  robots6,7, soft robots making use of dielectric elastomers, 
electroactive polymers or fluidic elastomer  actuators8–10, or robots with internal reaction  wheels11,12. In all such 
designs, the small size of the fish-like robots and the resulting constraints on actuation and power require that 
the robots harness the fluid structure and fluid–structure interaction for efficient and agile motion. The control 
of such robots therefore requires modeling of the fluid–structure interaction that determines the forces and 
moments on a robot. Motion control of robots, either physical or simulated with high fidelity, moving in unstruc-
tured environments with complex or unmodelled governing physics has traditionally presented many challenges. 
Low-fidelity models using simplified formulas for drag and lift forces lead to models that are amenable for control, 
but do not capture key physics that can play an especially important role in the swimming of small-scale robots 
with limited actuation. Deep Reinforcement Learning (DRL) holds considerable promise for motion control of 
robots with complex dynamics, such as swimming robots. Reinforcement learning can be particularly useful 
when precise governing models are  absent13–15.

Reinforcement learning requires the acquisition of large amounts of data from the robotic system in the form 
of states, control actions, and the resulting state updates. Such data can be acquired either through experiments, 
field tests, or simulations of the robot and its interaction with the environment. In the case of mobile robots, 
experiments and field tests could prove to be very expensive or unsafe to the robot. As a result, simulations play 
an important role in reinforcement learning for  robotics16–18. Simulations can in theory generate large amounts 
of data at low cost, exploring a large subset of the state space that is challenging to explore in experiments. This 
is true in the case of robotic manipulators, inverted pendulums and other toy systems whose physics is well 
understood and can be efficiently and quickly computed. However, where the governing physics is complex or 
the state space is high-dimensional with possibly discontinuous dynamics, high fidelity simulators are often 
impractical and significant model reduction or the use of surrogate models is  essential18.
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The control of swimming robots is an important example where the governing physics is complex enough that 
reinforcement learning should be a tool of choice for control, but the dynamics of the fluid-structure interaction 
can be challenging to simulate. While reinforcement learning is being widely applied in many areas of  robotics14,19 
and fluid  control20,21, swimming robots have for the most part not received much attention. A few notable recent 
exceptions employed reinforcement learning for tasks such as predicting efficient schooling configurations for 
pairs of  swimmers22 or larger  schools23, gait  generation24, or efficient start and escape  patterns25 . However, 
important problems related to mobile robotics such as station keeping, velocity tracking under disturbances, or 
path tracking have not been addressed in the area of fish-like swimming robots due to the computational chal-
lenges of running a large number of high-fidelity simulations.

We address this challenge with curriculum  learning26,27 and transfer  learning28, in the context of a swimming 
robot. It has been observed that when applying reinforcement learning using the Deterministic Policy Gradient 
(DPG) algorithm for complex tasks, much of computational time is spent going from the initialized random 
policy to an intermediate policy that, while sub-optimal, has qualitative similarities to the optimal  policy26–28. 
Going from this policy to the optimal policy is often very fast. The intermediate policy does not have to be 
trained using high-fidelity state data, and can instead be cheaply trained using lower-fidelity simulations or 
models, before being transferred to a higher-fidelity environment to complete the final steps of training. Efficient 
multi-model training has been demonstrated in fluids for flow  control29, and here we extend it to the swimming 
problem. Here we utilize knowledge of the physics of fish-like swimming, specifically two important qualitative 
features of swimming, to estimate these intermediate policies, from which finding an optimal policy is faster. 
The first feature is that fish-like propulsion is enabled by periodic ‘tail beating’ (for carangiform fish) or body 
undulations (anguiliform fish)30,31, at least in steady state motion. In a suitable reduced velocity space this feature 
can be modelled by limit cycles created by periodic forcing. A second surprising feature is that swimming by 
a hydrofoil, which resembles a cross-section of a fish-like body, can be approximately modelled as motion of a 
nonholonomically constrained system. This surprising feature arises because the Kutta condition, which creates 
vorticity at sharp corners of a body moving in an otherwise approximately inviscid fluid, acts as a nonholonomic 
constraint on a swimming  hydrofoil32,33.

The swimming robot in this paper is modeled as a free-swimming Joukowski hydrofoil, propelled and steered 
by an internal reaction  wheel11,12. A particularly simple surrogate model that emulates the dynamics of such a 
swimmer is a nonholonomic system known as the Chaplygin sleigh. Periodic torque on the Chaplygin sleigh 
produces ‘figure-8’ limit cycles in the velocity space, which are similar in structure to the observed limit cycles of 
swimmers. Analytical approximations for these limit cycles as a function of the forcing frequency and amplitude 
of the torque, as well as the inverse dynamics problem of finding the periodic torque to generate a limit cycle, 
have been shown  in34. Torques for steering the Chaplygin  sleigh12,34 and path tracking for the Chaplygin sleigh 
using a vector pursuit method were demonstrated  in35. Since we are interested in transfer learning using the 
low-dimensional model of the Chaplygin sleigh, we revisit the problem of simultaneous velocity tracking and 
steering using a reinforcement learning framework. A DPG  agent36,37 is trained to generate the action (torque) 
to steer a Chaplygin sleigh which has parameters that have been fit to match the dynamics of the swimming 
Joukowski foil. The agent is trained on the Chaplygin sleigh model to track a limit cycle in the velocity space at a 
specified translational velocity. This DPG agent of the Chaplygin sleigh is then transferred to a fluid simulation 
for training to steer the hydrofoil and track a speed. This second training requires fewer simulations to fine tune 
the DPG agent’s precision in tracking a reference velocity. This step-by-step curriculum reinforcement learning 
circumvents the problem of high computational time to simulate the physics of the  system26,27 and allows a way 
to imprint qualitative physics into a DPG agent.

This paper sets forth a framework for using physics-informed surrogate models to train a DPG agent which 
is then subsequently trained using data generated from fast simulations of fluid–robot interaction. A very high 
fidelity computational method need not be used in the second step for two reasons: going from an intermediate 
sub-optimal policy to an optimal policy can be slowed down significantly, but more importantly the computa-
tion of the fluid–robot interaction is intended to be another intermediate step before actual experiments. The 
paper is organized as follows: in Section “Nonholonomic constraints: Chaplygin sleigh and the Joukowski foil in 
an inviscidfluid” a short review of nonholonomic constraints with particular reference to the Chaplygin sleigh 
is provided and the Kutta condition on a Joukowski foil is shown to be formally similar to this constraint. In 
Section “Periodic forcing and limit cycles in reduced velocity space” limit cycles are shown to exist via simula-
tions in a reduced velocity space for the Chaplygin sleigh and a hydrofoil excited by a periodic torque. Here 
we make use of a panel method to simulate the motion of the hydrofoil. In Section “Parameter estimation for 
the Surrogate model” we select two sets of Chaplygin sleigh parameters that model the swimming hydrofoil at 
different translational velocities. In Section “Reinforcement learning” we describe the reinforcement learning 
framework with a curriculum to enable path tracking by a Chaplygin sleigh and the transfer of this skill to the 
simulated swimming hydrofoil.

Nonholonomic constraints: Chaplygin sleigh and the Joukowski foil in an inviscid 
fluid
Chaplygin sleigh. The Chaplygin  sleigh38 or cart, shown in Fig. 1, has a knife edge or a small inertia-less 
wheel at the rear at point P and is supported on a single castor or wheel at the front that allows motion in any 
direction. The sleigh is also assumed to have an internal reaction wheel whose angular acceleration can apply a 
torque τ to the sleigh. The configuration manifold of the physical system is Q = SE(2)× S1 . Because the rotor 
angle and angular velocity are not coupled with the rest of the system, we eliminate the rotor coordinate except 
for the torque τ , reducing the system to Q = SE(2) . This is parameterized locally by q = (x, y, θ) , where (x, y) 
denote the position of the sleigh center of mass and θ denotes its fixed frame angle relative to the horizontal. 
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The generalized velocities are q̇ = (ẋ, ẏ, θ̇ ) . The tangent space to Q at q is denoted by TqQ ∼= R
3 and spanned by 

combinations of the generalized velocities; the standard basis being {[1, 0, 0], [0, 1, 0], [0, 0, 1]} . These three basis 
vectors are respectively translations ẋ , ẏ and rotation θ̇ . The spatial frame is denoted by FS with axes X − Y  and 
the body frame, which is collocated at the mass center C and rotated by the yaw angle θ with respect to the spatial 
frame, is denoted by FB with axes Xb − Yb . The velocity (ẋ, ẏ) in the spatial frame transforms to velocity (u, v) 
in the body frame as [u v]⊺ = R(θ) · [ẋ ẏ]⊺ , where R(θ) is the rotation matrix.

We assume that the rear wheel at P prevents slipping in the transverse (Yb) direction but rolls freely in the 
longitudinal direction along (Xb) . While dim(TqQ) = 3 , the velocity constraint at point P is given by

or in the body frame v − bθ̇ = 0 . In terms of the standard basis for TqQ , the velocity of sleigh is restricted to lie in 
the subspace W = span{[cos θ , sin θ , 0]⊺, [−b sin θ , b cos θ , 1]⊺} , with the complementary subspace being defined 
by (1), W⊥ = span{− sin θ , cos θ ,−b} . Physically, this means that the allowable motions are such that the sleigh 
can translate along its longitudinal (Xb) direction and have no spin velocity i.e. in the fixed frame the velocity 
of the center of the sleigh is cos θ ẋ + sin θ ẏ , or if the spin angular velocity of the sleigh is θ̇ and the constraint 
point does not translate, then the center of the sleigh can only translate with (ẋ = −b sin θ θ̇ , ẏ = b cos θ θ̇) . The 
distribution (a smooth assignment of a subspace of the tangent space at each q ∈ Q ) D(q) = {w ∈ W(q) ⊂ TqQ} 
is nonholonomic if and only if D(q) is closed under the Jacobi-Lie brackets of the vector fields in D(q). The 
Lie-bracket of two vector fields w1 and w2 is formally defined as [w1,w2] = (∇w2) · w1 − (∇w1)w2 . Set-
ting the vectors w1 and w2 as the basis vectors defining the span of W respectively, their Lie bracket yields 
[w1,w2] = [− sin θ , cos θ , 0]⊺ /∈ W showing that the constraint (1) is nonholonomic,  see33 for further details.

Nonholonomic constraints and swimming in an inviscid fluid. Nonholonomic constraints on the 
locomotion of a body in a fluid are easiest to realize if one considers the motion of a body with corners in an 
inviscid fluid. One such common example of a body relevant to both flight and fish-like swimming is the motion 
of a Joukowski foil whose geometry is described by mapping its boundary from a circle of radius rc centered at 
the origin in the mapped plane through the Joukowski transformation

where ζc ∈ C and a ∈ R are geometric parameters. We refer to the plane of the foil’s motion as the foil plane and 
the plane of the circle’s motion as the circle plane. For the symmetrical shape of the foil shown in Fig. 1b, ζc ∈ R . 
The pre-image of the sharp trailing edge of the foil is given by ζt = a− ζc . We assume the fluid could contain 
singular distributions of vorticity in the form of N point vortices as shown in Fig. 1b. The motion of the fluid is 
governed by a linear superposition of potential functions. Following Milne-Thomson39, the complex potential 
W(z) = w(ζ ) describing the velocity of the fluid in a body frame of reference ( Xb − Yb ) (see Fig. 1b) may be 
decomposed in terms of its dependence on the translation of the foil, the rotation of the foil, and each of the N 
point vortices in the form

Here w1 , w2 and w3 are the rigid-body (Kirchoff) potential functions due to the translation of the foil in the 
Xb and Yb directions and rotation about the out-of-plane Z axis, respectively. The potential function wn

v (ζ ) due 
to the nth point vortex with circulation Ŵn located at ζn outside a circular cylinder can be constructed according 

(1)− sin θ ẋ + cos θ ẏ − bθ̇ = 0

(2)z = F(ζ ) = ζ + ζc +
a2

ζ + ζc
,

w(ζ ) = W(z) = V1w1(ζ )+ V2w2(ζ )+�w3(ζ )+

N
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Figure 1.  (a) A Chaplygin sleigh shaped as a Joukowski foil with a no slip constraint at P in the transverse 
( Yb ) direction. The internal reaction wheel is shown by the grey circle. (b) A Joukowski foil with singular 
distributions of vorticity (red circles corresponding to positive (counterclockwise) vorticity, and blue circles 
corresponding to negative (clockwise) vorticity) in an otherwise inviscid flow.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10754  | https://doi.org/10.1038/s41598-023-36399-4

www.nature.com/scientificreports/

to the Milne–Thomson circle theorem39 in terms of an image vortex of circulation −Ŵn located inside the cylinder 
at r2c /ζ̄n . Thus wn

v (ζ ) =
Ŵn
2π ı

(

log (ζ − ζn)− log
(

ζ −
r2c
ζ̄n

))

 .
The image vortex inside the cylinder introduces a net circulation around the cylinder, consistent with Kelvin’s 

circulation theorem. This development of net circulation around the foil introduces a lift force on the foil and is 
essential to its propulsion. The complex velocity of the fluid in the foil plane in a body fixed frame is related to 
the complex velocity of the fluid in the circle plane by the equation,

where F ′(ζ ) = 1− a2

(ζ+ζc)2
 . Since the fluid has been modeled to be inviscid, the boundary conditions on the body 

of the foil allow the fluid to slip along the surface. An additional constraint on the velocity of the fluid is neces-
sitated by the geometry of the foil. The pre-image of the trailing edge of the foil is a singularity of the Joukowski 
transformation, i.e., the derivative F ′(ζt) = 0 . It can be seen from Eq. (3) that the complex velocity of the fluid 
in the circle plane has to be zero to ensure that the velocity of the fluid at the trailing edge of the foil in the foil 
plane does not become undefined; this is the Kutta condition. The Kutta condition requires that at the pre-image 
ζt of the trailing edge,

A formal calculation shows that dw1
dζ

∣

∣
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= 0 and dw2
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 , subsequently denoted 

by −b , is a constant that is determined by the numerical values of the parameters a and ζc . Denoting the velocity 

of the fluid at the trailing edge due to the distribution of point vortices uv = 1
2

∑n=N
1

dwn
v

dζ

∣
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∣

ζ=ζt

 , the Kutta condi-

tion can be re-written as

Equation (4) constrains the velocity of the foil and it is an affine-nonholonomic constraint. This 
condition constrains the velocity in the system’s phase space to an affine distribution A of the form 
A(q) = {w − w0 ∈ We(q)|w0 = [−uv sin θ , uv cos θ , 0]

⊺} , where We(q) = span{W ,V1, . . . ,V2N } is the sub-
space containing the allowable vector fields w1 and w2 associated with the motion of the foil and the vector field 
V1, . . . ,V2N being the velocities of each of the N point vortices. This is an affine-distribution not simply on 
SE(2) but on the Cartesian product of SE(2) with configuration manifold R2N for the vortices. The vector fields 
V1, . . . ,V2N represent translational velocities of the vortices, potentially dependent on (x, y, θ) , that are compat-
ible with the constraint when the position and orientation of the foil are fixed.

Periodic forcing and limit cycles in reduced velocity space
Limit cycles in reduced velocity space of the Chaplygin sleigh. The equations of motion of the 
Chaplygin sleigh can be calculated in a straightforward manner. Here we will assume that the Chaplygin sleigh 
experiences viscous resistance as it moves on the ground and that it is actuated by periodic torque generated 
by the periodic oscillation of the reaction wheel. The Lagrangian of the system is L = 1

2m(ẋ2 + ẏ2)+ 1
2 Ic θ̇

2 
where m is the mass of the sleigh, I is its moment of inertia, and x and y are the coordinates of the center 
of mass. Assuming a viscous resistive force to motion described by the Rayleigh dissipation function 
R = 1

2 (cu(ẋ cos θ + ẏ sin θ)2 + cωθ̇
2) , where cu and cω are viscous damping coefficients for the translational 

and rotational velocity respectively. The Euler–Lagrange equations are

where B = [− sin θ , cos θ ,−b] (obtained from W⊥ , the complementary space of W), �j is the Lagrange multiplier 
for each j constraint and τi are any external forces or torques acting on sleigh. Here i varies from 1 to 3 and j = 1 , 
so only τ1 is nonzero and consequently it is denoted henceforth as just τ . The equations can be transformed to a 
body frame using [u v]⊺ = R · [ẋ ẏ]⊺ to obtain the dimensionless reduced velocity equations

where u = ẋ cos θ + ẏ sin θ is the translational velocity at the constraint. Due to the nonholonomic constraint, 
the evolution of the velocities is governed by two equations instead of three. The evolution of the configuration 
variables is given by

(3)
dW
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=
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When the torque due to the reaction wheel is periodic, τ = τ0 sin�t , a limit cycle exists in the reduced veloc-
ity  space40 and the sleigh moves along a serpentine path with its time averaged path converging to a straight line 
illustrated by a sample result in Fig. 2a.

Limit cycles in reduced velocity space of a hydrofoil. We consider a hydrofoil modeled as a NACA 
0018 symmetrical airfoil that contains an internal reaction wheel with a moment of inertia Ir and angular 
velocity �r . The oscillatory motion of the reaction wheel generates a periodic torque on the hydrofoil given by 
τ = −Ir�̇r . We simulate its motion due to a periodic torque τ using a vortex panel method. Panel methods are a 
form of computational fluid dynamics (CFD) that relies entirely on potential flow theory with point and line vor-
tices. In these methods boundary (structure) surfaces are decomposed into discrete panels with source and vor-
tex distributions on each panel such that flow does not pass through the surface. While the lack of viscous effects 
can reduce simulation fidelity compared to modern meshed Navier–Stokes solvers, panel methods have lower 
computational cost and easily incorporate body movement due to the lack of meshing. For these reasons, panel 
methods continue to be the preferred simulation tool for high Reynolds number fluid interaction  problems41,42, 
where the flow is largely dominated by inertial effects which are easily captured by the panel method, and the 
neglected viscous effects are comparatively insignificant. This includes the dynamics of swimming of large and/
or fast swimmers, where experimentally validated panel methods have long been used from quantifying the effi-
ciency of flipper  shapes43 or flapping airfoil  kinematics44 and explaining the flow dynamics of full fish  models45. 
Though the decreasing cost of computing power has lead to increasing use of meshed finite volume techniques in 

(8)θ̇ = ω

(9)ẋ = u cos θ − ωb sin θ

(10)ẏ = u sin θ + ωb cos θ .
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Figure 2.  (a) (left) A sample serpentine trajectory for the Chaplygin sleigh where the mean converges to a 
straight line. (right) In the reduced velocity space the trajectory converges to a ‘figure-8’ limit cycle in (u,ω) . (b) 
A sample trajectory of the simulated swimmer starting from rest when forced by a periodic torque τ = A sinωt . 
The inset figure shows convergence to a limit cycle in the reduced velocity, (u,ω) , space that is similar to the that 
of the Chaplygin sleigh, indicating similar underlying dynamics. The velocity is scaled into body lengths per 
second ([BL/s]). The swimmer moves along a serpentine path (in black) with the average path converging to a 
straight line.
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swimming problems, new panel methods are still in  development46, and they are still widely used for swimming 
problems, including  anguilliform47 and  cetacean48 swimming.

In a vortex panel method, each of the N panels has a source distribution of strength σi , which varies between 
panels, and a vortex distribution of strength γ which is constant over the body. The Neumann boundary condition 
is applied, which stipulates that no flow passes through a panel midpoint, or �ui , ηi� = 0 ∀ i ∈ {1, . . . ,N} , where 
ui is the flow velocity vector at the center of panel i relative to the body, and ηi is the surface normal unit vector 
at the same control point. The Kutta condition enforces the condition that static pressure p is continuous at two 
panel midpoints adjacent to the tail, i.e., p1 = pN . To enforce this condition, vortex shedding occurs at the tail, 
by calculating the change in circulation about the body at every time step and applying an opposite circulation 
to a wake panel at the tail, which is then shed as a point vortex of equal circulation at its center. The structure of 
the system allows γ to be solved independently, and because the flow velocity due to a specific source or vortex 
panel is linear in its unknown strength, the N unknown σi values can be found by solving the linear system of N 
equations arising from the Neumann boundary condition. With γ and the σi found, the flow field is fully deter-
mined, and the pressure distribution around the body can be computed from the unsteady Bernoulli equation. 
This is implemented by calculating the velocity potential at each point on the body relative to the leading edge 
via a path integral of fluid velocity along the body, neglecting circulation. The time derivatives of these potentials 
are calculated by finite differences. The moving potential reference point results in a value that varies with time 
but is equal across the body added to all of the pressures, but because of body closure, this value has no effect on 
the calculated forces or moments. From the pressures, the resultant torques and forces acting on the body can 
be computed. An additional linear dissipation force is applied on each body degree of freedom linearly propor-
tionally to the velocity, which prevents drag-free gliding that would otherwise be possible without skin friction. 
A snapshot from a sample simulation of the motion of the vortex wake due to a periodic torque on a Joukowski 
foil is shown in Fig. 2b. The panel code was validated in steady flow by comparing computed lift coefficients to 
known experimental values for a range of angles of  attack49. It was also validated in unsteady  flow34 where it was 
compared to a rotor-driven swimming hydrofoil experiment, and it was found that the swimming model results 
in similar trajectories to the experimental system.

Parameter estimation for the Surrogate model
The similarity of the limit cycles of the Chaplygin sleigh and the hydrofoil and their trajectories in the plane, 
in response to periodic control input (torque) together with the similar nonholonomic constraints on the both 
the systems, motivates the use of the Chaplygin sleigh as a surrogate model for the swimming foil. The limit 
cycles of the Chaplygin sleigh in the reduced velocity space depend on the parameters p = (m, I , b, cu, cω) . 
For an accurate surrogate model, these parameters need to be chosen such that resultant limit cycles due to 
periodic torques are nearly the same (with the same mean value and amplitudes) as those of a hydrofoil. This is 
accomplished by first gathering data from simulating the motion of the hydrofoil, with each simulation being 
100 seconds long with data acquired at time increments dt = 0.1 with forcing τ = A sin t . Two different models 
are fit, one where A = 1.0 and another where A = 1.2 , and the sensitivity of the results to the forcing amplitude 
used to fit the surrogate model is explored. The surrogate model fit from simulations using the lower forcing 
amplitude resulting in a smaller u0 = 0.606 (of the swimmer) will be referred to as the “low speed surrogate 
model”, while the latter model fit from simulations using the higher forcing amplitude with a higher u0 = 1.90 
will be referred to as the “high speed surrogate model”. For each time step, the current state s = (u,ω) , action τ , 
and next state s+1 = (u+1,ω+1) are stored in buffer B. An optimization routine is then performed to minimize 
the least squares error
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Figure 3.  (a) Limit cycles of the surrogate Chaplygin sleigh (red) and the swimmer (blue) for the same periodic 
forcing, demonstrating convergence to similar limit cycle trajectories in the reduced velocity space. Two sets 
of limit cycles are shown, one due to applied periodic torque τ = sin t (limit cycles on the left) and the other 
due to τ = 1.2 sin t (limit cycle on the right). (b) The vector field of the governing equations for the surrogate 
Chaplygin sleigh (red) and the swimmer (blue) at the lower velocity. The units shown are for the simulated 
swimmer, the Chaplygin sleigh states are dimensionless.
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Figure 3a shows the trajectories of the swimmer (blue) and the surrogate model (red) obtained from (11) 
for the low speed model (on the left) and the high speed model (on the right). In both the cases the surrogate 
models’ trajectories in the reduced velocity space converge to limit cycles that are qualitatively similar to those 
of the swimmers. In the pair of limit cycles on the left, the apparent mismatch of the limit cycles is largely due 
to an error (about 10% ) in the mean value of the speed u0 . This is evident in Fig. 3b which shows the evolution 
(in red) of u̇ and ω̇ for the low speed surrogate model. The evolution of these state variables for the hydrofoil 
are also shown in Fig. 3b in blue. The error in the angular velocity (and its derivative) is negligible between the 
hydrofoil and its nonholonomic surrogate model and the error in u̇ is small, with a value of 0.021 for the low 
velocity surrogate, which results in an error in mean translational velocity u0 of 0.066. Error in u0 for the higher 
velocity surrogate model is significantly lower, at 3.11× 10−5.

Here we note that the surrogate modeling fits the parameters of a three degree of freedom rigid body model 
to approximate the complex high-dimensional interaction with the vortex wake of a hydrofoil. Therefore, the 
mapping from the dynamics of a swimmer to that of a Chaplygin sleigh cannot be unique. The same surrogate 
model can be mapped non-uniquely to the dynamics of different swimmers. For example, for the low speed sur-
rogate model, the dimensionless parameter values are found to be m = 0.93 , I = 0.98 , b = 0.068 , cu = 0.041 , 
and cω = 0.0043 . For the high speed surrogate model, the corresponding parameters are m = 0.36 , I = 0.93 , 
b = 0.17 , cu = 0.026 , and cω = 0.058 . Moreover, the error between the dynamics of the surrogate model and the 
true swimmer it models, increases with changing the velocity or forcing. We use both of these surrogate models 
in the subsequent curriculum learning to demonstrate that the qualitative similarity between the physics (mainly 
that efficient motion lies on an invariant manifold) is more important to the training than quantitative similarity, 
as the two surrogate models have quantitatively dissimilar parameters.

Reinforcement learning
Control for fish robots is challenging due to the high complexity of the fluid–body interaction and the need for 
periodic motion. The most popular current approach is based on the central pattern generator (CPG), a neural 
assembly found in vertebrates that has periodic outputs which provide the rhythm for periodic  locomotion50. 
Artificial attempts to reproduce this functionality often determine the deflection of each actuator as an oscil-
lator, where parameters determine the amplitude, frequency, and relative phases of the  actuators51. While this 
does typically result in swimming behavior, the exact oscillator parameters are typically chosen heuristically, 
and though formal parameter optimization can result in large improvements in swimming speed, they must be 
performed by algorithms such as particle-swarm optimization that select parameters to optimize the reward 
over entire trajectories in an open-loop  fashion52. Reinforcement learning has emerged as a more efficient way to 
optimize controller parameters than pure trajectory optimization because it can utilize knowledge about inter-
mediate states within the trajectory to improve the controller (policy), provided that the control action is only 
a function of the states and controller parameters. Here, we teach the controller to perform oscillations based 
on feedback using a curriculum, instead of encoding the oscillator directly into the controller architecture. This 
allows parameter optimization to be performed on comparatively few trajectories of the simulated swimmer.

We apply a Deterministic Policy Gradient (DPG) algorithm with curriculum learning to control the foil in 
the panel method simulated swimming environment to track a reference path at a reference velocity. This path 
tracking algorithm is decomposed into two parts: a pure pursuit  algorithm53,54 that determines a target turning 
angle given the path geometry, and a DPG-trained actor that performs the specified turn at the desired velocity.

The pure pursuit algorithm is the simpler of the two: given a sequential list of points (X, Y) defining a path, 
a list of vectors r̄ spanning from the center of the pursuer to each point can be constructed, and a target point 
(Xi ,Yi) with vector r̄i can be selected with i initialized at 0. At every time interval, all vectors r̄ are reconstructed 
based on the current pursuer position, and if |̄ri| < d , where d is a constant which specifies the sight horizon, 
then i is increased iteratively until the inequality becomes false. The vector r̄i is then taken as the pursuit vector, 
and the angle of r̄i in the fixed frame is recorded as θtarget , and in the local frame the error between the current 
and desired heading is defined as θe = θtarget − θ . In the limit as (d, θe) → 0 and for a continuous path (X, Y), the 
tracking error goes to zero. Such a pursuit algorithm was implemented for path tracking by a Chaplygin sleigh 
in  Fedonyuk35. The trajectory (x(t), y(t), θ(t)) , of the Chaplygin sleigh in the plane when the torque is periodic 
is serpentine, but the time averaged trajectory converges to a straight line. If the sight horizon d is too small, 
i.e. ( d

ur
≪ 1

�
) for a reference velocity ur and stroke frequency � , the pursuit vector r̄i and θtarget oscillate rapidly 

to direct the body back to the path, which interferes with the agent’s derived stroke frequency. In contrast, a 
control method chasing a more distant point tends to smooth the small-scale features of the path and minimize 
oscillations of the trajectory, but where the desired path is sharply curved, track a chord cutting through the 
required path. Here we take d = 10 body lengths, such that d ∼ ur

�
 for speeds considered, which we find to be 

appropriately small to capture the details of the paths considered, while not small enough to interfere significantly 
with the frequency of oscillations.

Curriculum learning. The curriculum learning has three training steps: a supervised step of pre-training 
the policy to model a given control on the surrogate Chaplygin sleigh, a DPG training step to optimally control 
the surrogate Chaplygin sleigh model, and a third step transferring the same trained model into the fluid–robot 
simulation environment for further training.
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p
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The supervised step of pre-training the sleigh to model a given control on the Chaplygin sleigh imprints into 
an actor a known control algorithm as an initial policy from which further exploration can enable the actor to 
learn policies for other reward functions (control goals), as will be seen by results in Fig. 5 in the following sec-
tion. The first supervised step is inspired by previous work to control the surrogate Chaplygin sleigh, such  as35 in 
which velocity tracking with a purely sinusoidal input and  in55 where steering with a purely proportional control 
was investigated. Initializing the actor to perform a superposition of these control methods with arbitrarily 
chosen constants is a better starting point than a fully random actor. The initial control function is selected as

which, with constant θtarget converges to a limit cycle and θ̄e −→ 0 and u0 −→ 0.32 for any initial conditions 
(u(0), θe(0)) in a neighborhood of zero. This pre-training control function is arbitrary and any other target veloc-
ity within a pre-defined feasible range u0 ∈ [0, umax] could have been achieved without affecting the subsequent 
algorithm. The pre-training generates a deterministic policy µ(s|θ1) with weights θ1 and no explicit time depend-
ence that generates a similar periodic gait to that generated by the time-dependent prescribed forcing in (12). 
This is achieved by collecting state and action vectors (s, a) of a trajectory using the latter time-dependent policy, 
and finding θ1 (the network architecture corresponding to these weights is explained in Section “Deterministic 
policy gradient for tracking limit cycles and heading angle by Chaplygin sleigh”) that minimize the sum of the 
error (a− µ(s|θ1))

2 over the points sampled from the trajectory using stochastic gradient descent. The chosen 
trajectory has length t = 100 seconds at intervals dt = 0.1 s. This optimization is done in 5 epochs which pre-
vents over fitting, which is particularly important as data is used from only one trajectory. A schematic of this 
pre-training procedure is shown in Fig. 4a.

Deterministic policy gradient for tracking limit cycles and heading angle by Chaplygin 
sleigh. Knowing θe and prescribing a target velocity ut , the optimal control problem can be reduced into a 
regulation problem: find a policy µ(u,ω, θtarget , ut) such to maximize the cumulative reward

(12)τ = 0.3 sin t − 0.05θe ,

(13)r = −(u− ut)
2 − 0.2|u− ut | − 0.5(θe)

2 − 0.1|θe|

Figure 4.  (a) A schematic of pre-training to encode the limit cycle features of the reduced velocity space and 
periodic gaits into the policy output of an actor. (b) A schematic illustration of the application of the modified 
DPG algorithm to train a policy that can make the surrogate Chaplygin sleigh track a limit cycle and heading 
angle.
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which can otherwise be denoted as

regulating u → ut and θe → 0 . The policy µ(u,ω, θe , ut) is the same as the (control) torque τ with state feedback 
of (u,ω, θe , ut) . Though ut is not strictly a state of the system and does not have any dynamics except for those 
prescribed to it (variable speed tracking for instance), it must be relayed to the policy together with the states to 
allow appropriate control, so from the perspective of the DPG algorithm it is a state, and we will henceforth refer 
to it as such. This reward function is designed to simultaneously minimize the error in angle and velocity track-
ing, which are mutually exclusive goals: maintaining the target velocity requires “flapping” motion that results in 
periodic deviation from the desired heading angle. While the L2 norm is traditionally used in cost functions for 
regularization problems and regression, it penalizes large deviations from the target value much more harshly 
than small ones, which makes it impossible to select a weight on the angle tracking reward that will adequately 
penalize small biases, while not penalizing flapping oscillations too much, which would result in swimming 
speeds well below the velocity target. However, allowing small biases to exist in the tracking angle can cause the 
swimmer to deviate from the prescribed path over time. This problem is alleviated by introducing an L1 term 
on the angle tracking error to penalize those small biases. Similarly, an L1 term is included in the velocity track-
ing reward to reduce the small negative bias in the velocity that results from the oscillation magnitude-velocity 
tradeoff. Specific weights were tuned on the surrogate model by repeated trials.

Approaches to this and similar problems include using an analytical harmonic balance calculation to solve the 
inverse problem of finding a biased sinusoidal input capable of reaching desired limit cycles for the Chaplygin 
sleigh such as  in40. An extension for the case of a hydrofoil tracking a limit cycle was shown  in34 but this approach 
cannot be extended for path tracking or tracking variable velocities. The approach  in55 successfully uses propor-
tional control on the heading angle, but there is not clear way to expand this approach to simultaneous velocity 
tracking. In the absence of a standard control method for even the path tracking problem for the Chaplygin 
sleigh, and the associated difficulty in carrying a similar approach to a swimmer we consider this problem well 
suited for reinforcement learning. Since the action space (allowable control) τ is continuous, DPG has the ability 
to utilize the entire action  continuum36,37, which makes it suitable for this problem. Our DPG implementation 
is explained graphically in Fig. 4b, and explained in text below.

Denote s = (u,ω, θe , ut) and define the policy µ(s) as a neural network with weights w . The reward maximiza-
tion problem can be approached with any sufficiently general numerical optimization algorithm, by perturbing 
the weights of µ , then recalculating the trajectory and its associated cumulative reward. While this Monte–Carlo 
approach will typically arrive at a maximum, it requires many trajectory iterations and an extensive training 
process, which combined take a long time to achieve convergence to any optimal policy. Policy gradient methods 
make this much faster by also calculating the value of a given state-action pair using a critic network Q(s, a). 
Quantifying the value of an action in the context of a specific state allows for specific updates to the policy to 
perform higher-value actions, which requires fewer trajectories than the Monte–Carlo approach because there is 
only one cumulative reward per simulation, but many actions, generating more data that allows for finer training. 
In simple terms, it is more effective to promote and curtail specific actions than it is to promote or curtail a set 
of weights based on the value of its average action.

In a traditional policy gradient algorithm, the policy π is a probability distribution that estimates the appropri-
ate action out of a discrete pre-determined set. While this is effective in many benchmark problems that feature 
discrete (and often small set of)  actions56,57 or more commonly in games with discrete on/off  controls58, it is a 
limitation where a continuous spectrum of allowable actions is available. DPG has the ability to utilize the entire 
action  continuum36,37, which makes it an intuitive choice for this problem.

More formally, the traditional DPG algorithm features two function approximators: an actor µθ1(s) and a critic 
Qθ2(s, a) where θ1 and θ2 are weights that define the approximation. The approximators used with this algorithm, 
such as  in37, are typically neural networks due to their utility as universal function  approximators59 and the ill-
suitedness of competing discrete approximators, such as tables, to a continuous state and action space. These 
weights are typically initialized in a Gaussian distribution, and an empty experience buffer R is also generated. 
We use an ǫ greedy exploratory policy β(s) , which when sampled has a 1− ǫ chance of returning µ(s) and an ǫ 
probability of returning a random value pulled from a normal distribution with deviation σ . The environment 
is simulated and the results stored in the experience buffer in the form (s, r, a, s+1) , where s+1 is the next state 
which is transitioned into. The discounted expected future reward Q(s, a) can be updated to equal the sum of 
the current reward and the discounted approximated future reward for the known next state, a process known 
as bootstrapping which can be written as

where γ is the discount factor. A new set of actions can then be selected that maximize expected reward by 
performing one step of gradient ascent:

where the gradient can be computed efficiently along one dimension by a finite difference approximation

(14)argmax
µ

∫ tf

t0

r(u,ω, θe , ut)dt

(15)Qtarget(s, a) = r + γQθ2(s
+1,µθ1(s

+1)),

(16)µtarget(s) = µθ1(s)+ α
∂Qθ2(s, a)

∂a
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This gradient can also be computed by automatic differentiation, which is more efficient than finite dif-
ference methods for higher-dimension action spaces. Updating both networks Qθ2(s, a) → Qtarget(s, a) and 
µθ1(s, a) → µtarget(s, a) is then a supervised learning problem, where we minimize the least-square-error using 
5 epochs of the adam  algorithm60, which is a stochastic gradient descent algorithm with momentum. This 
supervised approach is a departure from the original algorithm, which instead updates both sets of weights 
with a single step of gradient descent; we find that higher optimization speed of the adam algorithm compared 
to deterministic gradient descent makes this supervised approach faster on this problem. We use the adam 
parameters recommended in page 2  of60, except with ε = 10−7 . These updates are repeated n times before a new 
batch of m environment simulations are generated and appended to the experience buffer, ensuring that there is 
enough data about perturbations local to the current trajectories to allow local optimization.

We selected initial parameter values of n = 10 , m = 10 for the Chaplygin sleigh training, and n = 10 and 
m = 1 for the fluid simulation training. Additionally, we used values of α = 0.01 , γ = 0.99 σ = 3 , a = 10−5 , 
and an experience buffer of size up to 3× 105 . As the training progresses, the values of ut for each simulations 
are drawn from a widening probability distribution. At first, training is performed with ut = 1 . After 500 itera-
tions, the target velocity for each trajectory is drawn from a uniform distribution such that 0.8 ≤ ut ≤ 1.2 , and 
the target velocity is held constant within a trajectory. This is broadened to 0.6 ≤ ut ≤ 1.6 , 0.4 ≤ ut ≤ 2.0 , and 
0.2 ≤ ut ≤ 3.0 after 1000, 1500, and 2500 iterations, respectively. This gradual introduction of different target 
velocities serves as another layer of curriculum, and reduces the risk of non-convergence. One modification is 
made to the DPG algorithm described thus far: because the critic is initialized with random weights but the actor 
is pre-trained, actor updates are disabled by defining α = 0 for the first 10 iterations, at which point the critic 
has grown consistent with the actor and the learn rate can be reset to α = 0.01.

When the episode reward on the sleigh environment qualitatively is seen to reach a peak or asymptotic 
convergence to a solution, the actor and critic are transplanted to the fluid simulation. The states used as policy 
inputs remain the same, however in the Chaplygin sleigh they correspond to full state feedback; in the simulated 
swimmer, the limited state feedback is insufficient to even fully describe the motion of the rigid body, let alone 
the high-dimensional fluid. This lack of observability makes training on the swimming simulations more data 
expensive, as the underlying Markov assumption that every state-action pair has a fixed probability distribu-
tion of states that it will transition to is not accurate. Though the overall system is Markov in that a complete 
state-action pair does transition deterministically to a specific next state, because the “state” given to the policy 
is a small subspace of the true state, it appears as if the system is non-Markov from the perspective of the agent. 
This reduced data efficiency, combined with the increased computational cost of generating data, makes training 
very slow in terms of wall-time.

Dense neural networks are the most popular choice of function approximator for DPG. A dense network 
contains one or more layers of neurons, and the value of each neurons is computed as a weighted sum of the 
neurons of the previous layer, with different weights for each neuron. The values are then passed through an 
activation function before being passed to the next layer, where the process is repeated until it reaches a neuron 
that is read as the output. We selected a 6-layer dense neural network, featuring an input layer of size 3 for the 
actor and size 4 for the critic, 5 layers of 40 neurons each with rectified linear unit (ReLU) activation, and a single 
output node with linear activation. In the policy a function τ = τm tanh a

τm
 was used to smoothly attenuate the 

prescribed output a to a bounded torque value τ , which improves convergence. We select τm = 4 as the range 
of allowed forcing, which we find to be large enough to perform effective control but small enough to not cause 
numerical problems in the fluid simulation.

The reinforcement learning uses an in-house implementation of DPG in Python with Tensorflow, accessed 
through the Keras API. Both of the neural networks are implemented in Keras, and the supervised updates of 
both the actor and critic networks are performed with Model.fit(), the Keras supervised learning utility, on batches 
of 1000 state transitions from the experience buffer. Both environments are implemented in Python with state 
transitions saved at interval �t = 0.1 s. The sleigh simulations are trained with an ǫ-greedy exploration strategy 
with ǫ = 0.2 . The fluid simulations instead follows a Gaussian exploration approach, where normally distributed 
noise of deviation 0.2 is added to every action during exploration, which reduces the large discontinuities in 
torque that are seen in ǫ-greedy exploration, because they in turn cause large magnitudes of shed vorticity which 
results in an unrealistic wake.

Results: velocity and path tracking
The supervised step of pre-training the sleigh to model a given control on the Chaplygin sleigh imprints into an 
actor a known control algorithm as a starting policy from which further exploration can enable the faster learning 
of policies for other reward functions (control goals). Figure 5a shows the reward during training by the low speed 
surrogate model that has been pre-trained to output periodic control actions [given in Eq. (12)]. The red curve 
shows the reward while the agent is learning a policy to track a high speed (ut = 2.5) while the blue graph is for 
tracking a low speed (ut = 0.8) . Figure 5b shows the reward function during training of an actor without pre-
training to a sub-optimal policy and instead using an actor network with weights initialized to Gaussian noise.

The pre-training torque has an amplitude of only 0.3 while the torques required to track the low and high 
speed velocities are 1 and 1.2 respectively. Despite pre-training with such a suboptimal policy, the pre-trained 
actor learns faster and better, with the reward converging to higher values −350 (blue) for lower speeds while 
the reward for the agent without pre-training converges to −800 while also taking more epochs.

(17)
∂Qθ2(s, a)

∂a
≈

Qθ2(s, a+ da)− Qθ2(s, a− da)

2da
.
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The limit cycles generated in the reduced velocity space as a result of this trained policy are shown for three 
different target velocities ut = (0.8, 1.5, 2.5) in Fig. 5c along with the limit cycle produced in pre-training where 
u0 = 0.32 . It can be seen that the actor adapts from generating a quazi-periodic trajectory to generating consist-
ent limit cycles near the desired velocities. It also becomes more efficient at converting rotation into translation; 
the blue (trained) and green (untrained) trajectories have similar maximum amplitudes of ω , but the trained 
trajectory achieves a higher velocity u.

The mean value of the velocity u for the limit cycles shown in Fig. 5c have an error that does not decay, due 
to the fact that the reward function is a sum of the rewards accrued by minimizing the error u− ut as well as the 
error θe . The serpentine motion of the sleigh results in a necessary non-zero error in the heading angle, which 
can be reduced by smaller amplitude torques which slows down the sleigh. The learned policy, with the reward 
shown in Fig.5d, is a compromise between achieving ut and minimizing the error in the heading angle θ.

In the next stage of the curriculum learning, the agent trained on the surrogate Chaplygin sleigh is transferred 
to train in the fluid-hydrofoil simulation environment using the panel method, for the velocity and heading angle 
tracking problem with the aim of improving the sub optimal policy of the surrogate sleigh actor. A total of 150 
trajectories of the swimmer and 7500 DPG iterations were used to adapt the policy of the Chaplygin sleigh to 
the swimmer, at a rate of 16.1 mins per 1000 DPG updates and 5.49 mins per trajectory generated on an Intel 
Xeon Gold 6148F processor. For comparison, a batch of 10 Chaplygin sleigh trajectories can be generated in 6.1 
s. As a result, the training time with the curriculum is much smaller than what would usually be required if the 
swimmer were to be directly trained without the intermediate training on the surrogate Chaplygin sleigh model. 
Figure 6a shows the reward function during each epoch using the low speed surrogate sleigh model to track a 
high (red) speed of ut = 2.5 and low (blue) speed of ut = 0.8.

The reward at the beginning of the first epoch is due to the optimal policy learned on the surrogate sleigh. 
The reward during the training on the fluid–hydrofoil interaction simulation does not change significantly. 
However this seeming lack of learning is deceptive, as borne out by examining the velocity of the hydrofoil. 
Figure 6c shows the trajectories in the reduced velocity space (ignoring a 50 second transient solution) for a 
swimmer produced by the optimal policy of the actor trained only on the surrogate sleigh model while Fig. 6d 
shows the same trajectories for a swimmer produced by the optimal policy of the actor trained further on the 
fluid–hydrofoil simulations. The trajectories in the reduced velocity space visit a larger range of u values after 
training on the fluid simulation. While the velocity of the swimmer does not converge to the target velocities, 
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Figure 5.  Total reward during epochs of training on the low-speed Chaplygin sleigh surrogate model for (a) the 
pre-trained actor and (b) an actor without pre-training. The red and blue lines show the reward while learning 
a policy to track a high speed ( ut = 2.5 ) versus a low speed ( ut = 0.8 ) respectively. (c) Limit cycles resulting 
from the policy learned on the surrogate model for target velocities of 0.8, 1.5 and 2.5 (blue, black, and red 
respectively) as well as the policy before training (green), and (d) The reward function for this policy in each 
case.
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it does oscillate with a mean value close to the target velocity, when the target velocity is high (red) as shown 
in Fig. 6d. This strategy forgoes the compromise between oscillation angle and velocity seen in the Chaplygin 
sleigh training, and instead features intervals of high-torque, low-reward periods of acceleration, followed by 
high-reward periods of low-torque coasting. The low-frequency periodic component of the velocity and pitch 
angle for the high-velocity tracking in this swimming strategy are shown in Fig. 6e and f, respectively. This style 
of ‘burst-and-coast’ swimming is frequently observed in  fish61, and is consistent with other results in the RL 
swimming  literature25. This strategy does not emerge during training on the surrogate model, but does emerge 
for high swimming velocities after transfer to the swimming simulation, even before continuing training. The 
continued training on the fluid simulations expands the range of target velocities for which the ‘burst-and-coast’ 
strategy is used.

A similar result is seen when the policy trained on the high speed surrogate model is further trained using 
the fluid-hydrofoil simulations to learn a policy to track different velocities and a heading angle of 0°. The reward 
function during the training does not increase significantly or can in fact decrease as seen in Fig. 7a. Picking the 
optimal policy using the actor that produces the highest epoch reward as described in Section “Deterministic 
policy gradient for tracking limit cycles and heading angle by Chaplygin sleigh”, produces a reward shown in 
Fig. 7b. The burst and coast technique is once again seen in Fig. 7c,d when tracking a high velocity (red) while 
a steady error is seen when tracking a lower velocity (blue).

It is to be emphasized that the lack of a significant increase in the reward function during the training on 
the fluid-hydrofoil simulations, compared to the reward obtained from the just the optimal policy of the sur-
rogate sleigh actor is not a failure of the training; it can be attributed to two reasons. The first reason is that the 
reward function consists of a sum of terms that individually seek to minimize the error in the tracking velocity 
and heading angle. The oscillatory nature of the motion resulting in an oscillating heading angle, guaranteeing 
that the reward is always negative. The second reason is more subtle: the states s used in training the actor for 
swimming are merely a subset of the kinematic variables of the swimmer and do not include the distribution of 
vorticity in the fluid. The kinematics of a swimmer can be the same (or nearly so) for two different distributions 
of the vortex field. Moreover, an action (torque) for a given state s can produce a transition to completely differ-
ent states that depend on the distribution of the vortex field. Since the vortex field is not an observed variable 
or state in the training, the state-action pair do not have a constant probability distribution, making the system 
seemingly non Markov from the perspective of the agent.

The combination of the surrogate model and curriculum learning outperforms direct reinforcement learning 
of a policy using fluid-hydrofoil simulations for tracking velocity and heading angle. Figure 8a shows the learning 
curve during such direct training, and Fig. 8b–d shows the trajectory generated by the trained policy after 4750 
training iterations. The reward converges to a lower value than seen in Fig. 6a or 7a. The reward per step due to 
the optimal policy ≈ −3 (shown in 8b) is also lower than the reward due to the optimal policies seen in Fig. 6b 
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Figure 6.  Trajectories on the hydrofoil after training on a low speed surrogate model actor. (a) Reward function 
during the epochs of training on fluid-hydrofoil simulations and (b) reward while executing the optimal policy 
tracking velocities and heading angle starting from rest. (c) Trajectories in the reduced velocity space due to 
the optimal policy of an actor trained on just the surrogate model and (d) produced by the optimal policy by 
an actor trained on additional fluid-hydrofoil simulation. (e) Velocity tracking by the hydrofoil for two tracking 
velocities and (f) simultaneously tracking 0° heading angle. Color legend—tracking speed ut = 0.8 blue , 
ut = 1.5 black and ut = 2.5 red.
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or 7b, which have a value of > −1 per step. This is a result of poor velocity and angle tracking, and consequently 
graphs of u(t) and θ(t) show large errors from the target velocities and heading angles.

The last step in path tracking is to give the time dependent θe(t) determined by a pure pursuit algorithm as an 
input (amongst the other states s) to the DPG agent trained in the fluid–robot simulation environment. We show 
the results of three such simulations of the agent tracking a path while also simultaneously tracking a specified 
time-varying velocity. Figure 9 shows the swimming hydrofoil tracking (pa) a straight line, (pb) a sinusoidal 
path and (pc) a circle. In each case the reference velocities for the hydrofoil are shown in Fig. 9va–vc. The refer-
ence velocities are piecewise constant and either increase or decrease midway during the simulation time. The 
action (torque) due to the policy before attenuation by the inverse tangent in each case is shown in Fig. 9Ta–Tc. 
The control torques are not just sinusoidal as in the pre-training, but have significant amplitude modulation and 
multiple harmonics, as a result of the series of training with different models and curriculum which fine tuned 
the policy into a ’burst-and-coast’ strategy.

Conclusion
Reinforcement learning methods in mobile robotics, particularly swimming robots with complex unmodelled 
physics, require large amounts of data covering a large subset of the relevant state space, which can be expensive 
and time consuming to obtain in both simulations and experiments. The results in this paper show the utility 
of surrogate models and curriculum-based reinforcement learning, wherein a DPG agent is trained in steps, for 
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Figure 7.  Training a high-speed surrogate model actor. (a) Reward function during the epochs of training 
on fluid-hydrofoil simulations and (b) the reward while executing the optimal policy tracking velocities and 
heading angle while starting from rest. (c) Velocity tracking by the hydrofoil for two tracking velocities and (d) 
simultaneously tracking 0° heading angle. Color legend—tracking speed ut = 0.8 blue and ut = 2.5 red.
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the control of a planar swimming robot. In each step the agent learns to generate and control certain features of 
the dynamics of the robot-environment action. An agent was trained to perform a series of increasingly complex 
tasks: tracking limit cycles in a reduced velocity space for a surrogate model, tracking heading angle and speed 
in the surrogate model and then finally transferred to learn doing these same tasks in a fluid–robot interac-
tion environment. This approach reduces computational time, but more importantly creates a physics-informed 
Reinforcement Learning framework.

As a proof of concept, we have demonstrated only a limited range of curriculum on which a DPG agent can be 
trained. For instance, in the path tracking results in Fig. 9 the policy is trained for constant values of θtarget , and 
compensates for the variable θtarget values prescribed by the pure pursuit algorithm with higher torque values, 
resulting in higher velocities and deviations from the reference velocity. Further improvement is possible by 
including variable θtarget cases in a curriculum. While the robot considered in this paper is a planar swimming 
oscillating hydrofoil, more ‘fish-like’ robots can be trained using a similar framework to the one proposed in 
this paper. Fish-like robots usually have more than one body segment in their skeleton with joints that could be 
elastic. Recent work, for  example62, shows that in robots with elastic joints, tunable stiffness enables faster and 
more efficient swimming. Surprisingly, analogous results exist for ground-based multi-segment nonholonomic 
systems, see for  example63,64, where effective stiffness tunable by periodic forcing leads to different limit cycles 
of varying efficiency, and multistable configurations for fast turning. Such nonholonomic systems can be used 
as surrogate models for multi-body fish-like robots using the same curriculum learning framework. With low-
latency velocity feedback (either inertially on the body or from external measurement), the actor trained on 
the fluid surrogate model can be directly transplanted to the physical system, a new experience buffer can be 
generated, and the training can be continued on the physical system with little required setup.

This approach can be extended to three-dimensional swimming with suitable surrogate models. In three 
dimensions, additional control goals such as stabilization of roll and pitch may exist, while simultaneously track-
ing a path and/or a velocity. Both simulations of fluid–robot interactions and acquiring a large experimental data 
set in such cases can be even more challenging, further necessitating physics-based reinforcement learning with 
surrogate models. The current paper describes a preliminary proof of concept for such a framework.
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Figure 8.  RL without surrogate model or curriculum learning. (a) Reward function for epoch training and (b) 
Reward function executing the optimal policy by a hydrofoil starting from rest. (c) Tracking low (blue) speed 
and high speed (red) and (d) simultaneously tracking 0° heading angle. For both cases, reward is lower than 
when trained with a curriculum. This is largely due to higher velocity error, with the swimmer tasked with 
reaching the low target speed instead coasting to a near-stop.
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