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A real‑world data validation 
of the value of early‑stage SIR 
modelling to public health
Taoran Liu 1,8, Jian Huang 2,3,8, Zonglin He 4, Yin Zhang 5, Ni Yan 6, Casper J. P. Zhang 7 & 
Wai‑Kit Ming 1*

Performance of Susceptible‑Infected‑Recovered (SIR) model in the early stage of a novel epidemic may 
be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease 
progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting 
in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on 
the early‑stage SIR projection using COVID‑19 as an illustration to evaluate the application of early 
infection models. We constructed a modified SIR model using discrete‑time Markov chain to simulate 
daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of 
COVID‑19 epidemic. We compared eight scenarios of SIR projection to the real‑world data (RWD) and 
used root mean square error (RMSE) to assess model performance. According to the National Health 
Commission, the number of beds occupied in isolation wards and ICUs due to COVID‑19 in Wuhan 
peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case 
rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth 
in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public 
health efficacy, the model based on parameters estimated using data from the day reaching 3200 to 
the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in 
isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early 
cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to 
decline as more updated data were used. Very‑early‑stage SIR model, although simple but convenient 
and relatively accurate, is a useful tool to provide decisive information for the public health system 
and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding 
the issue of delay‑decision and extra deaths.

In late 2019, a novel coronavirus disease (COVID-19)1 outbreak caused by a pathogen later identified as severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)2 emerged in Wuhan, Hubei Province, China. Human-
to-human transmission was confirmed by National Health Commission in China in January  20203, and the virus 
has since spread over 218 countries with nearly 70 million confirmed cases by the end of  20204. Societies are 
facing enormous challenges regarding health systems and economy. Many countries have witnessed exponential 
increases in the number of COVID-19 cases during the pandemic. Some has experienced multiple waves of 
 outbreak5–7. As such, timely infectious disease control is crucial to safeguard public health and mitigate economic 
and social impacts. Therefore, infectious disease modelling to project the severity of a novel disease outbreak 
needs to be constructed to inform  policymaking8.

Compartmental models have been widely used to predict the trend in the transmission of infectious dis-
eases. For instance, several previous studies which aimed to model for SARS  propagation9,10, predict the trend 
of SARS pandemic, have proved compartmental models to be the effective tool to provide essential information 
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of infectious diseases and guidelines for implementation of containing measures. However, in the early stage 
of a novel disease outbreak, knowledge about the virus and transmission is limited, which result in a greater 
uncertainty of such modelling, and disease progress may be oversimplified using traditional compartmental 
models. Additionally, the reporting system and data release might not be updated timely due to limited testing 
capacity and other logistic  issues11,12. Taken together, the  application13 of compartmental models in the early 
stage of epidemic needs further validation.

In this study, we aimed to evaluate the application of compartmental models in the early stage of a novel 
infectious disease outbreak. Specifically, we constructed modified SIR models based on data at different stages 
of the COVID-19 epidemic in Wuhan and investigated the impact of model input on the projection. We also 
compared the early-stage SIR projections with real-world data (RWD).

Methods
Data resources. We obtained the daily number of newly confirmed cases, cumulative number of confirmed 
cases, daily number of new deaths, cumulative number of deaths, daily number of new recoveries and cumula-
tive number of recoveries in both Wuhan city and Hubei province from January 10, 2020 to March 30, 2020 from 
the Outbreak Notification of National Health Commission (NHC) of People’s Republic of  China14,15. Challenges 
we faced were the accessibility of existing cases in ICU, therefore, we included existing number of cases in ICU 
only in Hubei  province15 from January 10, 2020 to March 30, 2020 in our further study. We estimated the actual 
daily number of beds needed in isolation ward and ICU by subtracting the cumulative number of deaths and 
recoveries from the cumulative number of confirmed cases.

Model construction. In our modified SIR model, we divided the whole population of Wuhan (11 million) 
into three  compartments16–19, i.e., susceptible (S), infectious (I) and removal (R). Individuals who die of or 
recover from the infection would be moved into the removal compartment and we assume recovered individuals 
would have acquired  immunity20,21. Specially, we constructed a SIR model using discrete-time Markov  chain22–24 
to simulate daily epidemic dynamics and transition between different compartments to predict the burden on 
the public health system in the early stage of the COVID-19 epidemic in Wuhan. In the discrete-time Markov 
chain, one cycle in our model represents one day in actual time. Given that early investigation has suggested 
human-to-human transmission occurred among close contacts since the mid-December  201925, we set the first 
day of our model on 15th December 2019. Since we aimed to investigate the application of SIR model in the early 
stage of an epidemic, we ended our projection on 31st March 2020, when the peak of epidemic has passed, and 
the daily number of newly confirmed cases dropped to a relatively low level.

Table 1.  Parameters, interpretation, and sources included in SIR Model. ICU intensive care unit, RWD Real-
world data. a All probabilities are probabilities within one cycle in the model. b Wu et al. Real-time tentative 
assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as on 22 
January 2020. Eurosurveillance.

Sources Parametersa Base-case value

Population census Population (Wuhan) 11 million

National Health Commission

Number of daily new confirmed cases (Wuhan)
Average number of new confirmed cases of the time peri-
ods = Sumof daily new confirmed cases(Wuhan)

Days in the periods

Beds needed in isolation ward and ICU (RWD) Cumulative confirmed cases -cumulative deaths-cumulative-cumulative recoveries

Number of daily existing confirmed cases (Wuhan)
Average number of existing confirmed cases of the time peri-
ods = Sum of Beds needed in isolation ward and ICU (Wuhan)

Days in the periods

Number of daily existing confirmed cases (Hubei)
Average number of existing confirmed cases of the time peri-
ods = Sum of Beds needed in isolation ward and ICU (Hubei)

Days in the periods

Number of daily existing ICU (Hubei) Average number of existing ICU cases of the time periods = Sum of existing ICU (Hubei)
Days in the periods

Number of daily removal (Hubei) Average number of daily removal cases = Sum of number of daily new death+ Sum of deaily new recovery
Days in the periods

DailyNewCase.Rate (Based on Wuhan)
Rate of infectious individuals being diagnosed from total popula-
tion = Number of daily new confirmed cases (Wuhan)

Population (Wuhan)

DailyRemoval.Rate (Based on Hubei) Rate of existing cases being death or recovery = Number of daily removal (Hubei)
Number of existing confirmed cases (Hubei)

ICU.Rate (Based on Hubei)
Ratio of daily existing ICU cases to daily number of existing 
cases = Number of daily existing ICU (Hubei)

Number of daily existing confirmed cases (Hubei)

Published research Risk of fatality among hospitalised  casesb 14%

Assumptions

Dx.Rate Assuming 50%, 70%, 90% of the infected population can be accurately diagnosed

Days undiagnosed Days for undiagnosed cases to recover = 12.5 days

Self.Recovery.Rate Rate of self-recovery for individuals who were undiagnosed = 1

Days undiagnosed

UnDx2Case.Rate Days for undiagnosed cases switching to confirmed cases = Dx.Rate
Days undiagnosed

Public health efficacy Assuming 30%, 50%, 70%, 90% efficacy of public health intervention
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Parameters and scenarios. The parameters fed into the SIR model represent the transition probabilities 
from one status to another within each cycle (Table 1). In our analysis, we considered eight scenarios based on 
the progression of the epidemic. Different scenarios used parameters estimated based on the data available at 
different stages of the epidemic (from 100 to 12,800 cumulative confirmed cases). The parameters affected by the 
scenarios are “DailyNewCase.Rate”, “DailyRemoval.Rate” and “ICU.Rate”. “DailyNewCase.Rate” was estimated 
based on daily number of newly confirmed cases in Wuhan city, while “DailyRemoval.Rate” and “ICU.Rate” were 
estimated based on daily number of removal cases, daily number of existing confirmed cases and daily number 
of existing ICU cases in Hubei province since such data were not released at the city level.

Specifically, Scenario 1 estimated these parameters based on data on the day when the reported cumulative 
confirmed cases reached 100; Scenario 2 estimated these parameters based on data between the day of 100 and 
the day of 200 cumulative confirmed cases; Scenario 3 estimated these parameters based on data between the day 
of 200 and the day of 400 cumulative confirmed cases; and the remaining five scenarios were constituted by the 
intervals in which the number of cumulative confirmed cases doubled (Supplementary Table 1). Additionally, 
we performed a sensitivity analysis based on parameters estimated using data from the day of 800 to the day of 
3200 cumulative confirmed cases.

Considering that undiagnosed infectious individuals would most likely experience mild symptoms, we 
hypothesized the average time needed for recovery (Days undiagnosed) for undiagnosed infectious individuals 
to be 12.5  days26 and the probabilities of self-recovering (Self.Recovery.Rate) without hospitalization within 
any given day to be 1/12.5. Additionally, we assumed three scenarios of diagnosis rate (Dx.Rate), i.e., 50%, 70%, 
and 90%. Therefore, the undiagnosed rate was calculated using diagnosis rate divided by ‘days undiagnosed’. An 
overall death rate of 14% among the hospitalized cases was used according to the investigation by researchers 
from the University of Hong  Kong27. Additionally, to model the effect of public health intervention implemented 
in Wuhan, we assumed 30%, 50%, 70%, and 90% efficacy in each scenario when comparing to the RWD. All the 
model inputs of different scenarios are shown in Supplementary Table 1.

The number of beds needed in isolation ward was the sum of daily total isolation ward patients and daily total 
undiagnosed cases. While the number of beds needed in ICU was equal to the number of daily total ICU cases.

Transition and Markov chain. Specifically, in our model, as shown in Fig. 1, “susceptible” population in 
Wuhan is categorized into the susceptible compartment (S). When the susceptible become infected (I) with the 
rate of DailyNewCase.Rate (Wuhan)

Dx.Rate  , they will be categorized into either the “undiagnosed” state with the rate of “1-Dx.
Rate” or “confirmed cases” state with the rate of “Dx.Rate”. Meanwhile, some confirmed cases will be categorized 
into “isolation ward” state with the rate of “1-ICU.Rate (Hubei)”, and others will be categorized into “ICU” state 
with the rate of “ICU.Rate (Hubei)”.

Undiagnosed cased will remain undiagnosed and self-recover with rate of “Self.Recovery.Rate”, or become 
confirmed cases with rate of “UnDxCase.Rate”, and be admitted to isolation ward or ICU. Confirmed cases in 
the isolation ward will recover (R) or be admitted to ICU if their symptoms deteriorate. Confirmed cases in the 
ICU will recover (R) or die of the infection (R). We considered “Removal” as those recovered or dead from the 
health system. The total number of removals (recovered plus dead from the health system) should be calculated 
as total number of daily confirmed cases times the rate “DailyRemoval.Rate (Hubei)”.

Susceptible, infected and removal compartments are three discrete states that defined as state 0, 1 and 2. 
Assuming that, the number of individuals at any state and any time t is Xt , then Xt should be the stochastic 
process of state 0, 1, 2. Then the first order time-homogeneous Markov dependency should be formulated as:

Comparison of SIR projection and RWD. We compared our projection of scenarios of different public 
health interventions to the RWD to validate the application of our model. Specifically, we calculated the Root 
Mean Square Errors (RMSEs) to check how our projection result fit the RWD. For each scenario, we calculated 

P(Xm = im|Xm−1 = im−1, . . . ,X1 = i1,X0 = i0) = P(Xm = im|Xm−1 = im−1)

Figure 1.  Simulation of COVID-19 epidemic dynamic in Wuhan using SIR model.
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RMSE for the projection from the first day of which data for parameter estimation were available to the day of 
RWD peak (18th Feb 2020), e.g., RMSE for Scenario 1 was calculated based on projection from the day reached 
100 cumulative cases to the day of RWD peak and RMSE for Scenario 5 was calculated based on projection from 
the day reaching 1600 cumulative cases to the day of RWD peak.

Patient and public involvement. Patients or the public were not involved, and it was not appropriate or 
possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our 
research.

Results
Scenarios with different diagnosis rates. Supplementary Figs. 1 and 2 show our simulation of num-
ber of beds needed in the isolation ward and ICU from 15th December 2019 to 31st March 2020 in Wuhan. 
Heterogeneity existed between projection models based on parameter estimated from data collected during 
different stages of the epidemic. In Scenario 1, we estimated a daily new case rate of 0.0005%, daily removal 
rate of 6.3830% and ICU rate of 38% using data of the day reached 100 cumulative confirmed cases. Our model 
projected 1721 beds needed in isolation ward and ICU by 31st March 2020, assuming a 50% diagnosis rate. In 
Scenario 2, we used data collected from the period between 200 and 400 cumulative confirmed cases. The daily 
new case rate was estimated to be 0.0006%, which is close to that in Scenario 1; however, daily removal rate and 
ICU rate decreased to 1.9881% and 28%, respectively. Scenario 2 predicted a total of 4386 beds would be needed 
in isolation ward and ICU by the end of March in 2020. In general, as the epidemic developed, we observed an 
increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed 
to the growth in the needs of bed in both isolation ward and ICU. However, such increasing trend reached a 
seemingly turning point between the periods of 800–1600 cumulative cases and 1600–3200 cumulative cases, 
which are reflected in Scenarios 5 and 6. Daily new case rate in Wuhan increased from 0.0019 to 0.0055%, and 
daily removal rate decreased from 1.7244 to 1.4368% in Scenario 5, followed by a drop from 0.0055 to 0.0037% 
in daily new case rate and increase from 1.4368 to 3.0341% in daily removal rate in Scenario 6. Also, the daily 
new case rate, the daily removal rate and the ICU rate of the additional scenario (parameters based on the day of 
800–3200 cumulative confirmed cases) are 0.0046%, 1.3126 and 22% respectively.

Scenarios with public health intervention and real‑world data (RWD). NHC of People’s Republic 
of China began to release the epidemic data from 10th January 2020. RWD shows that the daily number of beds 
occupied in Wuhan’s hospitals due to COVID-19 increased from 10th January 2020, peaked on 18th February 
2020 at 37,746, and dropped to 1456 by 30th March 2020 (Fig. 2). To compare our analysis to the RWD, we 
considered a 50% diagnosis rate and applied different public health intervention efficacies (30%, 50%, 70%, and 
90%) to each scenario (Fig. 2). And the SIR projection based on data obtained during different stages of the 
epidemic (Starting from the day of which data were used for parameter estimation in each scenario to the day of 
real-world data (RWD) peak) has been shown in the Supplementary Table 2. In the scenarios where parameters 
were estimated based on data collected before 800 cumulative cases (i.e., Scenarios 1–4), the simulation largely 
underestimated the number of beds needed during the epidemic. However, Scenario 5 with 30% and 50% public 
health efficacy, Scenario 6 with 30% public health efficacy, Scenario 7 with 50% and 70% public health efficacy, 
and Scenario 8 with 70% public health efficacy returned a projection closer to the RWD peak. In general, RMSEs 
showed a decreasing trend as we used more updated data to estimate our model input (Table 2). In Scenarios 7 
and 8, we also found a decreasing trend of RMSEs when public health efficacy increased from 30 to 70%.

Discussion
In this study, we synthesized publicly available data from NHC of People’s Republic of China and Health Com-
mission of Hubei Province during the early stage (mid-December 2019 to the end of March 2020) of COVID-19 
epidemic in Wuhan. We constructed a modified SIR model based on parameters estimated using data at different 
stages of the epidemic, and projected daily number of beds needed. We acknowledge that a single model with 
time-varying parameters may be used to show the overall evolution of the outbreak; however, in this study we try 
to mimic the situation during a novel outbreak, when data and knowledge on the infection are limited. We design 
the scenarios based on the number of cumulative cases because this is what will be observed by the infectious 
disease control authority. In other words, this reflects the real situation during the early stage of the outbreak.

By comparing our model to RWD, we found that very early-stage projection (Scenarios 1–4) can be largely 
affected by the model input based on limited data. However, as the epidemic progressed and more data were 
available, SIR projection (Scenarios 5–8) showed better performance. The RMSEs showed that, in general, Sce-
nario 1–4 have higher RMSEs than Scenario 5–8, except that, Scenarios 7 and 8 with 30% and 50% efficacy of 
public health intervention had RMSEs higher than the corresponding Scenarios 5 and 6. Additionally, RMSEs 
of Scenarios 7 and 8 increased as efficacy of public health intervention increased from 30 to 70%, which may 
suggest the governmental measures and public health intervention achieved a relatively high level in these time 
periods. Also, we found that estimation of 90% efficacy of public health intervention generally have high RMSEs, 
which may indicate that a 90% efficacy of public health intervention is too optimistic.

During the epidemic of a novel infectious disease, revision of diagnosis criteria, expanding of testing capacity, 
resource allocation, and newly implemented government measures and interventions, etc. can influenced data 
availability and updates, which affects analyses such as our SIR projection. The unexpected trend in Scenarios 5 
and 6 using data from the period with 800–1600 and 1600–3200 cumulative cases respectively may be explained 
by the abovementioned factors. Specifically, on 27th Jan 2020, the cumulative number of cases jumped from 698 
to 1590, we found it closely related to the new policies introduced, which directly resulted in that individuals 
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Figure 2.  Comparison between early-stage SIR projection and real-world data (RWD) (assuming 50% 
diagnosis rate). Notes Scenario 1: parameter estimation based on data from the day when cumulative confirmed 
cases reached 100; Scenario 2: parameter estimation based on data between the day of 100 and the day of 200 
cumulative confirmed cases; Scenario 3: parameter estimation based on data between the day of 200 and the day 
of 400 cumulative confirmed cases; Scenario 4: parameter estimation based on data between the day of 400 and 
the day of 800 cumulative confirmed cases; Scenario 5: parameter estimation based on data between the day of 
800 and the day of 1600 cumulative confirmed cases; Scenario 6: parameter estimation based on data between 
the day of 1600 and the day of 3200 cumulative confirmed cases; Scenario 7: parameter estimation based on 
data between the day of 3200 and the day of 6400 cumulative confirmed cases; Scenario 8: parameter estimation 
based on data between the day of 6400 and the day of 12,800 cumulative confirmed cases.
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with symptoms of COVID-19 getting tested timely. First, the government’s requirements of “early detection, early 
isolation, early reporting, and early treatment” was further implemented in Wuhan from 18th January  202028. 
Second, more resources had been allocated to assist the screening of fever patients, 24-h consultations at fever 
clinics, and accelerated testing, etc. Third, direct reporting by medical institutions to NHC also improved the 
efficiency of data sharing and information updates. Following this sharp increase in the number of cases, daily 
removal rate in Scenario 6 almost doubled comparing to Scenario 5 (Supplementary Table 1), this may be due to 
the nation-wide effort in sending medical equipment and personnel from all around China to Wuhan, most of 
whom arrived between 28th January 2020 and 29th January  202029. However, daily removal rate dropped imme-
diately in Scenarios 7, implying a higher uncertainty in the projection of Scenario 6. Taken together, mathemati-
cal modelling such as SIR model could be an effective and useful tool to provide guidance about the infectious 
disease containing measures on the early stage of the epidemic. Furthermore, our study shows that despite its 
simplicity, the SIR model still has good accuracy and can predict general epidemic trends. This also implies that 
in the early stage of the spread of new infectious diseases in the future, the use of this simple SIR model will be 
convenient and effective in predicting the possibility and severity of disease outbreaks, and timely provide key 
information for the public health system. Nevertheless, model inputs should be frequently revisited consider-
ing the fluctuation of early-stage data and the impacts of policy-related factors should be reviewed cautiously.

Our analysis highlights the importance of achieving a timely and effective public health intervention during 
the course of epidemic. In Wuhan, various non-pharmaceutical interventions (NPIs) to significantly reduce the 
transmission of SARS-CoV-2 and human-to-human contacts were implemented after the outbreak, including the 
lockdown in Wuhan on 23rd January 2020, mandatory face masks wearing, social distancing  policies19, etc. At the 
same time, Chinese government and Wuhan government also made some other considerable efforts to relief the 
demand for hospital beds in isolation ward and ICU, including the construction of the first Wuhan field  hospital30 
(Wuhan Huoshenshan Hospital) and open on 3rd February 2020, and later the second Wuhan field  hospital31 
(Wuhan Leishenshan Hospital) open on 8th February 2020. With the strong and effective intervention, Wuhan 
achieved its success in containing the pandemic, the hospital beds occupied declined evidently, and the daily new 
case declined to 0 on 18th March 2020. Additionally, our study highlighted and gave an important public health 
message that, the latent hazards of waiting for a complicated model (e.g., extra deaths) and delay-decision may 
be far greater than the benefits at the very-early stage of the outbreaks (i.e., January–March of 2021), although 
complicated models may provide more insights and better estimation and simulation. Therefore, the present study 
highlighted that early-stage simple model has the potential to show the scale of the outbreak and urge the govern-
ments to take immediate action. Only with the initial public health measures (including active data collection), 
can more complicated models be constructed. In addition, early action may save numerous lives by providing 
a sufficient number of hospital beds, which is another focus of our work. We acknowledge that evidence-based 
policymaking is necessary; however, we should not expect policymaking to be based on perfect or near-perfect 
modelling. Therefore, early-stage simple model helps policymakers to avoid issue of delay-decision at the very-
early stage of the outbreak and take the initiative to hinder extra deaths using very-early-stage data. While these 
messages have not been discussed in the previous studies, and thus indicate the implacable of this study.

Our study also highlighted that the effective method to control the infectious diseases outbreaks at the very-
early stage cannot solely rely on the prediction of the trend of the outbreaks, while policymakers and medical 
system managers should also actively collaborate with medical agencies to effectively allocate a sufficient number 
of hospital beds to ensure timely treatment for patients. While it is also important to refer to the latest data in 

Table 2.  Number of beds needed as at the real-world data (RWD) peak and root mean square errors (RMSEs) 
of all scenarios. a RMSE for Scenario 1 was calculated based on projection from the day reached 100 cumulative 
cases to the day of RWD peak, for Scenario 2 was calculated based on projection from the day 200 cumulative 
cases to the day of RWD peak, for Scenario 3 was calculated based on projection from the day 400 cumulative 
cases to the day of RWD peak, for Scenario 4 was calculated based on projection from the day 800 cumulative 
cases to the day of RWD peak, for Scenario 5 was calculated based on projection from the day 1600 cumulative 
cases to the day of RWD peak, for Scenario 6 was calculated based on projection from the day 3200 cumulative 
cases to the day of RWD peak, for Scenario 7 was calculated based on projection from the day 6400 cumulative 
cases to the day of RWD peak, for Scenario 8 was calculated based on projection from the day 12,800 
cumulative cases to the day of RWD peak.

Scenarios

Public health interventions

30% 50% 70% 90%

Beds needed at 
the RWD peak RMSEa

Beds needed at 
the RWD peak RMSEa

Beds needed at 
the RWD peak RMSEa

Beds needed at 
the RWD peak RMSEa

Scenario 1 1191 17,012 851 17,224 510 17,440 170 17,660

Scenario 2 2574 16,749 1839 17,192 1103 17,648 368 18,115

Scenario 3 3145 16,988 2247 17,541 1348 18,111 449 18,698

Scenario 4 8526 15,377 6090 16,799 3654 18,378 1218 20,075

Scenario 5 26,786 13,755 19,133 12,118 11,480 14,145 3827 18,679

Scenario 6 12,995 14,127 9282 16,216 5569 18,745 1856 21,561

Scenario 7 52,764 27,663 37,689 15,558 22,613 10,727 7538 19,603

Scenario 8 82,278 51,969 58,770 30,268 35,262 11,301 11,754 18,317
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a timely manner. Public health policies require the awareness of planning remedial measures and resources in 
advance and setting up departments and mechanisms incorporation such as crisis management.

Some limitations exist in this study. First, several assumptions were made to construct an SIR model. Popula-
tions are divided into three compartments and the transmission process of the disease may not reflect the real 
situation and thus may be oversimplified to some extent. For example, latency  period32 to the infectious transition 
between susceptible status and infectious status is not considered in the model in view of the model simplicity. 
Also, the constant total population and several rates between different compartments were assumed, such as 
constant contact rate and constant fraction rate for infectious compartment individuals to remove. However, 
with limited data and information at the early stage of an epidemic, overcomplicated model may neither serve 
well. Second, the SIR model assumes a closed and homogeneous mixing  population32, which means that the 
probability of people’s contacting is equal, which is unrealistic. Third, the SIR model simulation largely relies on 
the availability and update from the government webpage such as NHC and CDC, especially the RWD. Fourth, 
knowledge about COVID-19 may be very limited in the early stage, and the change of case  definition33 exists 
throughout the epidemic, and potentially resulted in the prediction bias, therefore, it is essential incorporating 
data from various sources, including clinical and epidemiological data, to improve the accuracy of the model. 
Last but not least, the applicability of the SIR model is typically limited at the very-early stage of the outbreak, 
since it is very natural and reasonable to reconstruct more accurate dynamics (if we assume most of the infected 
individuals were confirmed or assumed the constant under-ascertainment rate over time), uncertainty during 
the early stage of the disease outbreak may introduce bias into the infectious disease model, which may thereby 
lead to less effective public health control measures, while we still can convert this limitation to an opportunity 
to reduce the extra deaths and avoid delay-decision issue, using very-early-stage epidemiological and clinical 
data. Since, for example, in January to March of 2021 in Wuhan China, high case-fatality rate (CFR) of wild-
type SARS-CoV-2 is relatively higher, and there were very restricted information on wild-type SARS-CoV-2; 
even in January of 2021, the transmission mode and incubation rate of the virus also remains unknown. Thus, 
complicated models for dynamic prediction may not show a good performance due to limited parameters feed-
ing into the model. In contrast, a simple model is very convenient and has a relatively low requirement for the 
number of parameters.

Conclusion
Our study indicates that at the very-early stage of the infectious disease, the SIR model performs relatively 
soundly and accurately, so policymakers can avoid delay-decision, and many countries’ public health systems 
can avoid breakdown. However, due to the nature of the SIR model, when we know more about the diseases 
and have more epidemiological data, a more complicated model may typically provide a better estimation and 
prediction of the epidemic.

Data availability
All data relevant to this study are included in the article and supplemental information. Some data were acquired 
from the National Health Commission of the People’s Republic of China, from the website of: http:// www. nhc. 
gov. cn/ xcs/ yqtb/ list_ gzbd. shtml.
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