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County augmented transformer 
for COVID‑19 state hospitalizations 
prediction
Siawpeng Er , Shihao Yang * & Tuo Zhao *

The prolonged COVID‑19 pandemic has tied up significant medical resources, and its management 
poses a challenge for the public health care decision making. Accurate predictions of the 
hospitalizations are crucial for the decision makers to make informed decision for the medical 
resource allocation. This paper proposes a method named County Augmented Transformer (CAT). 
To generate accurate predictions of four‑week‑ahead COVID‑19 related hospitalizations for every 
states in the United States. Inspired by the modern deep learning techniques, our method is based 
on a self‑attention model (known as the transformer model) that is actively used in Natural Language 
Processing. Our transformer based model can capture both short‑term and long‑term dependencies 
within the time series while enjoying computational efficiency. Our model is a data based approach 
that utilizes the publicly available information including the COVID‑19 related number of confirmed 
cases, deaths, hospitalizations data, and the household median income data. Our numerical 
experiments demonstrate the strength and the usability of our model as a potential tool for assisting 
the medical resources allocation.

Since its first outbreak in January 2020, COVID-19 has continued to spread with the emergence of many variants 
(alpha, delta, omicron and  etc1,2). The spread of the COVID-19 has resulted in deaths and detrimental effect 
towards the  economy3,4 in the United States. Policymakers in every states, and decision makers in companies, 
educational institutes and many other parties have tailored their decisions and resource allocation at different 
stages of COVID-19. As the pandemic progresses, the allocation of the medical resources becomes an important 
consideration for the policymakers, often based on the accurate predictions of the number of hospitalizations 
for every state.

With the concerted efforts from many  parties5–9, researchers can assess to these publicly available data that 
are important for them to design their models. Such data include COVID-19 related information such as the 
confirmed cases, deaths, hospitalizations information, mobility, as well as other general information such as 
the demographics and the household median income data in every state and county. In COVID-19 related 
predictions, different research groups design different models based on their expertise. Examples of the avail-
able models include compartmental models such as the different variants of Susceptible-Infectious-Recovered 
(SIR)  models10–14 and statistical models that use sophisticated regression  approaches15,16,16. Besides, there are 
also computational  simulation17,18 and deep learning  models19–21 for predicting COVID-19 dynamics. Moreover, 
the Centers for Disease Control and Prevention (CDC) has been leading a collaborative effort to produce an 
ensemble model from different research  groups9,22 (See more detailed discussions of the related work in COVID-
19 dynamics prediction in a later section).

In the medical resources allocation, one of the key metrics used is the total number of hospitalizations. With 
accurate forecasts of the number of hospitalizations, decision makers can be well prepared for the incoming 
patients. Such accurate predictions can help them to make informed decision based on the available resources, 
and identify critical areas that need additional resources from the less severe areas. The prediction of the number 
of hospitalizations can be modelled as a time series prediction problem. We first collect COVID-19 related data 
for the past 7 days as the input, and design a model to predict the number of hospitalizations for the next four 
weeks. As we continue to obtain new data for each additional day, our model will update predictions for the next 
four weeks starting from the new date. Our model uses a fully data-driven predictive approach. Specifically, we 
build a self-attention deep learning model, which takes the input data from multiple sources and predicts the state 
level number of COVID-19-related hospitalizations for the future four weeks in the United States. We carefully 
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evaluate our proposed method for different periods and compare our best model with other benchmark models 
to show its strength and usability.

In a time series prediction problem, there exists several choices of deep learning models, for example recur-
rent neural networks (RNN) such as LSTM-RNN23, and the more recent transformer models. Our proposed 
approach is based on a current state-of-art self-attention model in Natural Language Processing, also known as 
the transformer model. With the attention mechanism, a transformer model is able to capture both the short-term 
and long-term dependencies within the time series while enjoying computational efficiency. The self-attention 
module allows a transformer model to capture the dependencies on previous time steps by assigning atten-
tion scores. A large score between two events implies a strong dependency, while a small score implies a weak 
one. With such a scoring mechanism, the transformer model is able to capture both short-term and long-term 
dependencies by adaptively selecting time steps that are at any temporal distance from the current time step. 
Because of the non-recurrent structure of the transformer, it is easy for a transformer model to stack multiple 
attention layers without the risk of gradient explosion and gradient vanishing. The gradient explosion and 
gradient vanishing phenomena are common among RNN-based models, rendering such models more difficult 
to be trained. Stacking of multiple attention layers allows a transformer model to better capturing higher order 
dependencies, that is harder to be achieved in a shallow RNN-based model. Since the computation for any two 
time steps is independent of each other in a transformer model, computational efficiency can be achieved as full 
parallelism is allowed when calculating dependencies across all time steps.

Our goal in this paper is to predict the weekly total number of hospitalizations at the state level for the next 
four weeks, given the current week data. Our model predicts both the point estimation and the probabilistic 
distribution, with predictions for a total of 23 quantiles (from 0.01 to 0.99 according to the CDC submission 
requirement). Our input data includes the number of confirmed cases, the number of deaths, the household 
median income data, and the hospitalizations data. We build a self-attention model, also known as the trans-
former model in Natural Language Processing, that is able to capture both the short and long term dependencies 
within the input time series data. In additional, our model includes a residual  connection24 that connects the 
embedding from input layer to the linear decoder layers. Our models has two main ideas. Firstly, we augment 
the state level training data with the county level data. Such an addition of county level training data provides 
critical training signal for the model to learn from the input data itself. Secondly, we include a residual connec-
tion in our transformer model. We find that such a residual connection helps to improve the overall quality of 
the predictions. Moreover, the inclusion of a residual connection is crucial for the first two weeks predictions, 
where a model without such a connection may predict worse than a Naive model. When compared with other 
benchmark models, our model shows strong performance across different periods, showing its strength and 
usability for the prediction of the COVID-19 related number of hospitalizations.

Related work. There are four main classes of predictive models in the number of hospitalizations predic-
tion: compartmental models, simulation modeling, statistical models, and deep learning models. At the CDC 
website, the final CDC predictions are obtained by ensembling predictions from all the submitted  models9,22.

• Compartmental model characterizes the disease spread dynamics using systems of ordinary differential equa-
tions. Several research groups use Susceptible-Infectious-Recovered (SIR) model in the number of hospitali-
zations predictions. In the  SIR13,25,26 model, the population of the area is assigned to Susceptible (S), Infec-
tious (I), or Recovered (R) mode. Another variant of SIR model is the SEIR  model10,12,27,28 which introduces 
additionally Exposed (E) mode. In these compartmental models, the transitions from one mode to another 
mode (i.e., the disease spreading dynamics) are modeled as differential equations, often in the form of a transi-
tion matrix. Compartmental models are often selected for good interpretability of their  results29,30, and they 
require serious domain expertise to design accurate differential equations to capture the underlying disease 
transmission dynamics.31. On the other hand, research  group32 may use discrete-time difference instead of 
ordinary differential equations to model the transition matrix.

• Simulation modeling is another modeling approach that uses computer simulation to model different com-
ponents in the studied environment and observes their interactions. Two typical simulation modeling tech-
niques are cellular  automata33, and agent-based  simulation17,18 where agent-based simulation is the more 
common choice for a complex system. Most simulation modelings require research groups to assess to the 
intensive computational resources, and the researchers may need to conduct multiple  simulations33.

• Conventional statistical models, include ARIMA, Gaussian process regression, and linear regression use 
regression methods to fit the data directly. Such models are more flexible than the compartmental models. 
A statistical model often requires dedicated effort in feature engineering and input  selections16. One of the 
very first statistical models used in COVID-19 related predictions is the CLEP  model15 that uses an ensem-
ble model of an exponential predictor and a linear predictor. One of the recent models for the number of 
hospitalizations prediction, the model from Ref.16 uses autoregressive model on the Google Search Data to 
make predictions.

• Deep Learning models are deep neural networks that learn directly from their input data. These models are 
highly flexible and take advantage of their representation capability. Such models need a less sophisticated 
handcrafting preprocessing of the input data. The nature of the time series prediction problem requires the 
deep learning models to have the ability to capture the intrinsic information from a sequential data. Some 
common deep learning models include Long short-term memory (LSTM)23, Gated Recurrent Unit (GRU)34, 
and  transformer35,36. While being a highly flexible model with a powerful representation capability, a deep 
learning model often requires larger training data. Concurrently with our work, there are other deep learning 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9955  | https://doi.org/10.1038/s41598-023-36378-9

www.nature.com/scientificreports/

models including models from Ref.19 and Ref.21 that utilize attention mechanism from transformer architec-
ture in their predictions of the number of hospitalizations.

Our contribution. Our goal in this paper is to predict the weekly total number of hospitalizations at the 
state level for the next four weeks, given the current week data. Our model predicts both the point estima-
tion and as well as the probabilistic distribution, with predictions for a total of 23 quantiles (from 0.01 to 0.99 
according to the CDC submission format). Our input data include the number of confirmed cases, the number 
of deaths, median income data, and hospitalizations data. We build a self-attention model that is able to capture 
both the short and long term dependencies within the time series input data. The main contributions of our 
paper are as follows: 

1. We propose a novel application of the transformer model, which is primarily used in Natural Language 
Processing, to the problem of predicting COVID-19 related hospitalizations. The self-attention mechanism 
of the transformer model enables efficient and accurate capturing of short-term and long-term dependencies 
in the input time series data.

2. We introduce the concept of county augmentation, wherein we augment our state-level training data with 
county-level data. This addition of county-level training data provides a critical training signal for the model, 
allowing it to learn from the input data more effectively and improve prediction accuracy.

3. We incorporate a residual connection in our transformer model, which we found to significantly enhance the 
overall quality of predictions. The residual connection is particularly crucial for the first two weeks predic-
tions, where a model without such a connection may fail to predict better than a Naive model.

4. Our extensive experiments demonstrate that our model outperforms several benchmark models across dif-
ferent periods, highlighting the strength and usability of our proposed method for predicting COVID-19 
related hospitalizations. This accurate prediction can greatly assist decision-makers in allocating medical 
resources more effectively, ultimately benefiting public health.

By addressing the limitations of existing models and proposing novel techniques to improve prediction accu-
racy, our paper presents a valuable contribution to the field of COVID-19 hospitalizations prediction.

Results
To evaluate our proposed method, we compare point predictions among several baseline models with mean 
absolute error (MAE) as our comparison metrics. We compare the predictions from our CAT model with a few 
baseline models to better understand the CAT model. All model details are listed below.

• CAT  - our proposed model that uses both state and county level data for training, and with a residual con-
nection that connects the embedding after the input layer to the linear decoder layer.

• WR - a sub-model that uses the same settings as the CAT model, but Without the Residual (WR) connection 
that connects the embedding after the input layer to the linear decoder layer. The contrast will help us to 
understand the power of residual connection.

• STATE - a sub-model that uses only state level training data for training, thus the name “STATE”. The STATE 
model uses the same settings as the CAT model, but during the training phase, we only use the state level 
data to train the model. The contrast will help us to understand the power of county-level data.

• Naive - a model-free approach that does not require any training and it simply uses the current week’s 
reported total number of hospitalizations as the predictions for the next four weeks. The contrast will evalu-
ate the predictive power in addition to the time series persistence.

In the CAT and WR models, county augmentation is performed by incorporating county-level data (and pre-
dictions) during the training phase. This approach enables the models to leverage the additional granularity and 
data size provided by county-level data in order to enhance the overall prediction performance. During the data 
preprocessing, we aggregate the county-level data and combine it with the state-level data to create an expanded 
dataset. Both the CAT and WR models are then trained on this combined dataset, effectively utilizing the county-
level data augmentation in their training phases. The CAT model benefits from the county level augmentation as 
compared to the STATE model, and further benefits from the residual connection as compared to the WR model. 
We separate our predictions according to the training period, corresponding to 50% , 60% , 70% , and 80% of the 
total dataset, where we present the performance of each model across the non-overlapping periods in Table 1. We 
follow by comparing our model with the models at the COVID-19 forecast hub  website9. Besides point prediction 
comparison, we compare quantile predictions with the available models at the COVID-19 forecast hub website. 
We use the weighted interval score (WIS)37,38 for the quantile prediction comparison. There are two groups of 
the available models at the forecast hub, with their forecasting dates differ by 1 day. We present comparisons of 
our model with CDC baseline models using Table 2 for point prediction and Table 3 for the quantile prediction 
comparison. We present the full comparisons, including different constituent models inside the COVIDhub 
ensemble, using Tables S1, S2, S3 and S4 at the Supplementary section. Among the models, the Hub-Baseline is 
a naive method based model, and the COVIDHub-CDC-ensemble and COVIDhub-trained-ensemble are both 
weighted ensemble of different constituents. The models submitted to COVID Hub encompass all different 
types of methods in the Related Work, and we refer the readers to Table S5 and  reference9 for the details of their 
implementations. In general, all methods proposed have different performances for different prediction time 
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intervals. However, COVIDhub ensemble model tends to have best overall performance among all benchmark 
models, and is thus highlighted here as our main benchmark.

Point prediction at different periods. We show the number of hospitalizations point prediction for 
different periods in Table 1. Since we use different amount of data points as our training set, we can take the 
non-overlapping period from each testing set as a separate out of the sample prediction period. CAT model 
can provide better predictions than Naive models in all periods. This model also performs the best in most 
prediction periods across different models. WR model is less consistent in its performance across different non 
overlapping periods, especially at the first two weeks predictions where it performs worse than the Naive model. 
We can assume WR model is focusing on the Week 3 and Week 4 predictions, than a more balanced and accu-
rate prediction in CAT model. We also train our model without the county level data and present the model as 
STATE model. STATE model, similar to WR model, produce less consistent predictions across different predic-
tion intervals. As more training data provided, CAT model continues to learn better and provides overall better 
predictions. We illustrate our predictions across different intervals using Fig. 1 and additional plot Fig. S2 in the 
Supplementary section. CAT model is able to produce better predictions than all other models, with the red line 
(CAT model) following more closely orange line (Target) in most of the periods.

Point prediction comparison with benchmark models. We compare CAT model with the models at 
the COVID-19 forecast hub website. We first take the non overlapping forecast date among different portion of 
training dataset. From there, we compare the forecasting performance among different models with the same 
forecast dates. We found that there are two groups of models with their forecast dates differ by 1 day. We present 
the comparison of our model with the COVID-19 forecast hubs baseline models using Table 2 and present the 
full comparison using Tables S1 and S2 in the Supplementary section. We rank the models by the average of the 
prediction performance for four weeks. In all the predictions intervals, CAT model outperforms all the baseline 
models.

Quantile prediction comparison with benchmark models. In order to assess probabilistic forecast 
accuracy, the weighted interval score (WIS) is a proper score that combines a set of prediction interval score and 
can be interpreted as a generalization of the absolute error to probabilistic  forecasts37. A smaller WIS indicates 
a better performance. WIS is defined as

In the above equation, K is the number of prediction interval, with αk is the coverage of the prediction interval, 
w0,wk are the weights, IS is the interval score of a given observation y by the forecast F.

We compare our predictions with the available predictions at the COVID-19 forecast hub website in term of 
weighted interval score (WIS). Similar to the point prediction comparison, We present the comparison of our 
model with the COVID-19 forecast hubs baseline models using Table 3 and present the full comparison using 
Tables S3 and S4 in the Supplementary section. We rank the models by the average of the prediction performance 
for four weeks. In all the predictions intervals, CAT model outperforms all the baseline models.

WISα{0:K} (F, y) =
1

K + 1/2
×

(

w0 × |y −m| +
K
∑

k=1

{

wk × ISαk (F, y)
}

)

Table 1.  Different prediction periods for the weekly total number of hospitalizations. The prediction metrics 
reported is MAE.

Training intervals Prediction intervals Method Week 1 Week 2 Week 3 Week 4

2020-05-02
to
2021-01-03

2021-01-04
to
2021-03-14

CAT 166.18 325.45 454.54 570.93

WR 336.12 385.02 470.92 567.53

STATE 524.65 491.93 488.68 502.58

Naive 188.46 357.94 510.26 636.22

2020-05-02
to
2021-03-14

2021-03-15
to
2021-05-22

CAT 66.98 134.48 205.78 262.82

WR 104.91 169.06 237.79 296.49

STATE 81.56 127.44 181.69 229.46

Naive 81.57 144.14 199.09 245.24

2020-05-02
to
2021-05-22

2021-05-23
to
2021-07-31

CAT 93.84 204.07 336.10 483.83

WR 105.01 215.41 352.61 504.09

STATE 121.79 240.50 386.50 543.69

Naive 125.28 265.39 418.07 572.04

2020-05-02
to
2021-07-31

2021-08-01
to
2022-01-01

CAT 152.09 303.76 462.52 617.66

WR 233.77 354.77 488.38 613.61

STATE 256.15 380.07 513.14 636.30

Naive 206.99 401.12 575.11 723.45
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Figure 1.  New York’s weekly total number of hospitalizations for Week 1 (upper left) predictions, Week 2 
(upper right) predictions, Week 3 (lower left) predictions, and Week 4 (lower right) predictions. Vertical lines 
separate different prediction periods as in Table 1. “Target” is the true reported number of hospitalizations of 
New York. “CAT” is our proposed model. “WR” is the model without the residual connection. “Naive” is the 
Naive model prediction. More plots for other major states are presented in Supplementary Information.

Table 2.  Point prediction of hospitalizations for different models at different forecast intervals in terms of 
mean absolute error (MAE).

Prediction intervals Method Week 1 Week 2 Week 3 Week 4

2021-01-04  to 2021-03-08

CAT 161.1100 321.5719 462.8001 595.8786

COVIDhub-CDC-ensemble9 202.3043 336.7702 485.7064 621.6681

Hub-Baseline9 230.2340 349.3596 491.2659 619.9851

Naive 190.7447 357.8362 519.3383 655.3255

2021-03-15 to 2021-05-17

CAT 68.3769 135.1611 205.0764 262.7986

Naive 82.0596 145.1532 199.0277 246.1851

COVIDhub-CDC-ensemble9 92.2255 145.9404 199.5511 241.6404

Hub-Baseline9 125.7149 181.3617 232.0106 277.8106

2021-05-24 to 2021-07-26

CAT 88.2248 195.2382 325.8849 473.8845

Naive 117.1936 251.3085 401.5298 555.8957

COVIDhub-trained-ensemble9 121.4660 248.0660 399.9468 558.8745

COVIDhub-CDC-ensemble9 133.3979 260.3340 412.8787 572.0617

Hub-Baseline9 147.1809 274.6021 420.5809 571.3851

2021-08-02 to 2021-12-27

CAT 145.3961 290.3554 439.6925 591.5398

Naive 201.8472 394.8433 572.2553 718.7079

COVIDhub-CDC-ensemble9 214.1973 396.3191 575.9497 733.2573

COVIDhub-trained-ensemble9 233.6248 399.0174 575.8936 733.2747

Hub-Baseline9 258.9778 445.3337 613.9816 756.4381
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Discussion
From our result, we can see that CAT is a strong model that can produce accurate hospitalizations predictions 
for all 4 weeks across different periods. This shows that we could use this model across different periods of time. 
Our model is build upon two main ideas, that are augmented training signal from the county level data, and the 
inclusion of a residual connection in the model.

Our goal is to predict the state level hospitalizations, so it is natural to use the state level data as our training 
data. The STATE model is the model that uses only the state level data in its training. However, in the limitation 
of the available data, the STATE model will perform worse than that of Naive model. When we augment our 
training data with the county level data, the additional training signal helps to improve the model’s predictions. 
With the addition of the county level data, the WR model is able to produce better predictions than the STATE 
model. This justify our first idea of data augmentation using the county level data in our training process. Nev-
ertheless, the predictions from the WR model are not always more accurate than that of Naive model for all the 
four weeks. We observe WR model is particularly struggling at the Week 1 predictions, and have better Week 
3 and Week 4 predictions than that of Naive model. The reason may be due to the signal from the encoder is 
more useful for the Week 3 and Week 4 predictions. Because of that, we include a residual connection to bypass 
the encoder in the original model. Our final model, CAT model is able to produce accurate predictions across 
different prediction intervals for all the four weeks predictions. Moreover, for most of the predictions where 
other models perform better than that of Naive model, CAT model can further improve the overall prediction 
performance. In summary, the CAT model outperforms the STATE model by leveraging county-level augmen-
tation, and it further surpasses the WR model by incorporating the residual connection, thus demonstrating 
the benefits of both proposed techniques in enhancing prediction performance. Other baseline models, such 
as COVIDhub-CDC-ensemble, COVIDhub-trained-ensemble, and Hub-Baseline, are models for which only 
prediction results are directly submitted to the CDC, limiting our ability to experiment with adding county 
augmentation or residual connection to these models.

While our CAT model shows strong results, one of the limitations of our current model is that the self-
attention matrix from the encoder is not easily translated to an explainable pattern. The input of our model are 
the confirmed cases, deaths, household median income data and hospitalizations data. These inputs are encoded 
by the encoder, with self attention as a key mechanism to produce the final hidden representation for the decod-
ers to produce the point predictions and the quantile predictions. In a transformer model, this attention repre-

sentation is the weight matrix ( 
QKT

√
MK

 ) in Equation (4). The practitioners of the transformer  model35 may repre-

sent this weight matrix in a heatmap to visualize the relative importance of each factor on the final predictions. 
This is often the case if there exists a distinct pattern in such a heatmap. However, we do not find a distinct pattern 
that can be easily interpreted in this study. It will be beneficial to see how different factors contributes to the final 
predictions from the attention matrix.

As a deep learning model, CAT requires a large number of training dataset for the model to learn properly the 
trend. If there is a drastic change of trend, for example when there is an drastic increase then a drastic decrease, 
then the model may also fail to learn. In Fig. 1, we can see such a failure in the last period of time (December 
14, 2021 to January 18, 2022). The trend is an increase that spans for several weeks before a huge decrease hap-
pen (Target line, orange color). However, CAT fails to react towards such a change and continues to predict an 
increment (CAT line, red color). This may due to the new trend from the Omicron, causing an introduction of 
new latent factor that failed to be captured in the previous training data. It is a future direction to quickly adapt 
the model for turning points in COVID-19 time series data.

In this project, we aim to capture the short term effects (of current week input) towards the future four weeks 
of predictions. As such, we use only 7 days of inputs when making the predictions. As a direction of future work, 

Table 3.  Prediction of hospitalizations for different models at different forecast intervals in terms of weighted 
interval score (WIS).

Prediction intervals Method Week 1 Week 2 Week 3 Week 4

2021-01-04 to 2021-03-08

CAT 101.2701 195.1030 291.2037 381.1156

Hub-Baseline9 171.8772 228.0203 314.5714 407.2351

COVIDhub-CDC-ensemble9 132.4239 220.0190 332.1019 445.7753

2021-03-15 to 2021-05-17

CAT 46.1973 85.8555 126.0659 158.2434

COVIDhub-CDC-ensemble9 66.8859 95.0672 129.3859 160.1336

Hub-Baseline9 124.7826 146.6162 170.7729 193.1620

2021-05-24 to 2021-07-26

CAT 71.1846 153.7234 260.0116 379.9787

Hub-Baseline9 128.5375 205.0822 307.1347 420.4822

COVIDhub-CDC-ensemble9 85.3851 191.8497 333.7217 487.2623

COVIDhub-trained-ensemble9 83.4784 181.7284 420.4202 474.6177

2021-08-02 to 2021-12-27

CAT 109.1547 214.5480 326.6200 430.4874

COVIDhub-CDC-ensemble9 149.5939 280.9419 428.9707 566.2292

COVIDhub-trained-ensemble9 163.8719 293.9078 443.3500 582.9796

Hub-Baseline9 185.7358 316.1545 448.9840 567.2913
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we can make use of a longer time series data as input. It is possible to discover cyclic or seasonality effect from a 
longer inputs and improve the current model. Besides, our CAT model predicts the 4 weeks ahead predictions 
together. In our current setup, our model predicts the total number of weekly hospitalizations for four weeks at 
once. Another direction for future research involves making predictions in an auto-regressive manner, which 
will require modifying the decoder component of the current model. Specifically, the model will first produce 
week 1 predictions, then use these outputs as input to the decoder to generate predictions for the second week. 
This process will be repeated until predictions for all four weeks are obtained. However, the exploration of this 
auto-regressive prediction approach is outside the scope of the current study and will be left for future research. 
Another future research direction involves incorporating more relevant data at the county level, such as mobil-
ity patterns or Google search  data39, to improve the model’s performance. Specifically, for mobility data, while 
we have not included it in the current study due to our expectations regarding the return-to-normal mobility 
trends following the introduction of  vaccinations40,41, we propose exploring the integration of mobility data into 
our CAT model in the future. To account for potential changes in mobility patterns due to vaccinations, we can 
design a strategy to assign different weights to mobility data based on the time span or the vaccination status of 
the population. Overall, incorporating more relevant data could help our model capture other information that 
may exist in the data and potentially improve prediction performance. Finally, our model makes predictions only 
from the temporal data. In our future work, we plan to extend our work to include spatial information such as 
interaction among states, counties or major cities. We expect that the inclusion of the geographical information 
would further improving our model’s predictions.

Methods
In this section, we present our data sources and data processing procedure used in this paper. We also present 
the details of our transformer-based model and our training procedure.

Data sources. Three comprehensive datasets are used in this study, including the confirmed cases, deaths, 
household median income data and the hospitalizations data from four sources. This paper focuses on the states 
in the mainland of the United States and do not consider Hawaii, Alaska, and other unincorporated territories. 
We use data from 47 states and their corresponding counties.

Confirmed cases and deaths of Covid-19    We obtain the confirmed cases and deaths data from the JHU CSSE 
Covid-19  dataset6. The dataset is a publicly available curated dataset from different sources. We use data from 
January 22, 2020, to January, 2022. We use both the confirmed cases and deaths from every targeted states and 
their corresponding counties.

Hospitalizations data    We obtain hospitalizations data from HealthData.gov42,43. These data are two separated 
time series datasets, that are the state level time series data and the facility level time series data. We also obtain 
another state level time series data from the COVID Tracking  Project3.

Household median income data    We obtain Year 2019 US household median income for every states from 
the official website of United States Census  Bureau44.

Data preparation. We identify input features required for the training of our model, including the number 
of confirmed cases, the number of deaths, the number of hospitalizations and the household median income 
information from our datasets. We consolidate all input data into state-level and county-level datasets. We also 
include the smoothed (averaged over past seven days) confirmed cases, deaths and hospitalizations as our input 
features.

For the hospitalizations data, we use three datasets from two sources. Both datasets have records for the 
number of hospitalizations. Prior to March 2021, COVID Tracking  Project3 has a more complete initial data. 
They have less missing data and have earlier records. Public health data were carefully gathered and processed to 
produce the data that was closest to the real  incidents3. The COVID Tracking Project stopped after March 2021. 
Subsequently, the official hospitalizations data that we use is from the HealthData.gov42,43. These data are from 
the official reports from all the hospitals (or similar facilities) from states and counties. We perform a regression 
to impute missing data prior March 2021 for the HealthData.gov datasets. Then we use the official hospitalization 
data from HealthData.gov throughout our project.

The total data are separated into training and testing datasets for each corresponding county and state. To test 
our method for different amount of data and time intervals, we use different amounts (50%, 60% and 70%, and 
80%) of the total data as our training dataset, and the remaining data as our testing dataset. As we use multiple 
features as inputs, we apply standardization to the inputs to accommodate differences in scale for each input.

Transformer‑based model. The prediction of COVID-19 hospitalizations of a given sequence of input is a 
time series modeling problem. For a typical time series prediction, a sequence of previous days’ number of hos-
pitalizations is given, and the goal is to predict the number of hospitalizations for the future day. In our current 
article, our prediction problem is different from this typical time series prediction setting. Our 11-dimensional 
input consists of the current week’s number of deaths, number of confirmed cases, smoothed (averaged over 7 
days) number of confirmed cases, smoothed number of deaths, household median income data, total (adult and 
pediatric) hospitalizations, pediatric hospitalizations, adult hospitalizations, smoothed (averaged over 7 days) 
total hospitalizations, smoothed pediatric hospitalizations and smoothed total hospitalizations. That is, a single-
day data vector kj ∈ R11 . Instead of predicting the daily number of hospitalizations, our model predicts the 
weekly total number of hospitalizations for the next four weeks (Week 1, Week 2, Week 3 and Week 4), using 
only the current week (Week 0) input data. We are given a sequence {kj}7j=1 of 7 days data, where each single-day 
data kj ∈ R11 , occurs at time j. One current week data (Week 0) can be viewed as any 7 days data, e.g. from Sun-
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day to Saturday. Then Week 1 is the next Sunday to Saturday, Week 2 is the second Sunday to Saturday , Week 3 is 
the third Sunday to Saturday, and Week 4 is the fourth Sunday to Saturday. Table S6 in the Supplementary section 
shows examples of dates for Week 0, Week 1, Week 2, Week 3 and Week 4. Week 0 is the current week and data 
from this week are the inputs, Week 1-4 are the future 4 weeks prediction date ranges. As the prediction weeks 
are continuous, we do not show the full list of dates in the table to prevent cluttering. In this article, our one day 
input data is a data vector of dimension 11 of the current week input information, and the weekly input for our 
COVID-19 prediction problem can be viewed as a sequence (7 days) of 11-dimensional vectors.

One key ingredient of the transformer-based model is the self-attention module. Unlike a RNN based model, 
the attention mechanism does not have a recurrent structure. In this work, we use the original positional encod-
ing  method35 to our data vector to incorporate the temporal information into the inputs. Besides, other positional 
encoding methods such as relative positional  method45 can be used to provide the temporal information for each 
of single-day data vector in our input sequence.

The input sequence of single-day data vectors is first transformed using a matrix U ∈ RM×11 , which will 
later be learned during the training phase with M = 8 . After the transformation, for any single-day data kj and 
its corresponding time stamp j, the temporal vector zj and the single-day data vector Ukj both reside in RM . For 
the positional encoding, we precompute using the trigonometric functions to define a temporal encoding for 
each time stamp, zj ∈ RM35.

where j ∈ {1, 2, 3 · · · 7} is the position, and l ∈ {1, 2, 3 · · · 11} is the dimension.
Given a sequence of 7 days data {kj}7j=1 , we get

where E = [k1, k2, . . . , k7] ∈ R11×7 is a sequence of single-day data vectors, Z = [z1, z2, . . . , z7] ∈ M× 7 is the 
concatenation of the temporal vectors.

Then, the X is passed through the self-attention module and the attention output S is computed by

Here Q , K , V are the query, key and value matrices obtained from different linear transformations of X with 
WQ , WK ∈ RM×MK , WV ∈ RM×MV . WQ , WK and WV are the respective weights for each linear transformation. 
Multi-head attention is often used in practice to increases the model flexibility and for a better data fitting. In the 
multi-head attention, different sets of weights {WQ

h ,W
K
h ,W

V
h }

H
h=1 are used to compute different attention outputs 

S1, S2, . . . , SH . By concatenating all the attention outputs and passing through the final linear transformation, 
we obtain the final attention output

where WO ∈ RHMV×M is an aggregation matrix. In the experiment, MK , MQ , MV and H are all set to 8.
The self-attention mechanism allows the selection of any single-day data whose occurrence time is at any 

distance from the current time. The j-th column of the attention score from the Softmax(QKT/
√
MK ) indicates 

the extent of dependency of j-th single-day data ( kj ) on its history. As such, attention mechanism allows the cap-
turing of short and long term dependencies of the sequence data. For RNN-based models, such models encode 
the data’s history sequentially via hidden representations of events. In RNN-based models’ representation, the 
state of j depends on that of j − 1 , which in turn depends on j − 2 , etc. At any point of time, when a RNN-based 
model fails to learn sufficient information for any single-day data at j, the subsequent hidden representation of 
any other single-day data at t where t ≥ j will be adversely impacted.

The attention output S is passed through a position-wise feed forward neural network to generate a hidden 
representation h(j) of the input data sequence:

At the above equation, WFF
1 ∈ RM×MH , WFF

2 ∈ RMH×M , b1 ∈ RMH,b2 ∈ RM are the corresponding weights and 
biases of the feed forward neural networks. The resulting matrix H ∈ R7×M encodes hidden representations of 
all the information in the input sequence, where each row corresponds to a particular information. This final 
representation is used as an input to the linear decoder layers and to obtain the predictions of the weekly total 
number of hospitalizations for next four weeks. We set MH to 16 in the experiment. In our design, we have two 
linear decoders. Each decoder is a two layers network, with one decoder predicts the point estimation of the next 
4 weeks, and the other decoder predicts the corresponding quantile predictions.

In a typical time series prediction, a model will forecast the next day prediction for a given current week 
data. In such a typical time series prediction, the model needs to have a masking for the attention mechanism 
to prevent “peeking into the future” issue. Such a masking allows any j-th data to attend only to any t-th data 
where t ≤ j . As compared, our model in this article predicts the weekly total number of hospitalizations for the 
next four weeks (Week 1, Week 2, Week 3 and Week 4), given the current week (Week 0) input data. This setting 

(1)
[

z j
]

2l
= sin

(

j/100002l/M
)

(2)
[

z j
]

2l+1
= cos

(

j/100002l/M
)

(3)X = (UE + Z)T ,

(4)S = Softmax

(

QKT

√
MK

)

V, where Q = XWQ ,K = XWK ,V = XWV .

(5)S = [S1, S2, . . . , SH]W
O

(6)H = ReLU(SWFF
1 + b1)W

FF
2 + b2, h(j) = H(j, :).
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frees us from such a masking requirement since the model is implicitly masked from accessing the future total 
number of hospitalizations from the current week data.

In order to capture high level dependencies, a transformer based model also allows us to stack multiple 
self-attention modules together, and inputs are passed through each of these modules sequentially. However, 
such a stacking in RNN-based model is susceptible to gradient explosion and gradient vanishing, rendering the 
stacked model more difficult to train. Figure S1 in the Supplementary section illustrates the architecture of our 
transformer-based model used in this project.

Residual connection. Residual  network24 is a well established model in computer vision. Residual network 
(and its variants) contributes to the state of the art performance in computer vision. In a residual network, one 
of the main feature is the residual skip connection.

where c is the input, d is the output from the residual network, F(c, {Wi}) is the residual mapping to be learned. 
Residual skip connection can help to prevent vanishing gradient and accuracy degradation for deep models. 
The additional of a residual skip connection adds no additional parameters or computational cost. Residual skip 
connection also allows the model to have the choice to use the original identity mapping (c) or the output with 
additional transformation using the Wi . In our model, we connect the embedding after the input layer to the 
linear decoder layer using a residual connection.

Training objective. Our network comprises of a shared encoder and two decoders. We design our problem 
as a multi-task learning with point estimation and quantile estimation as two separate tasks. Multi-task learning 
can help our model to learn better shared representations. Following common practices from the deep learning 
 community46,47, we have two decoders and two loss functions. One decoder is used for point estimation. We 
train the transformer model for point estimation by using the Huber loss  function48 . Specifically, the training 
objective is defined as

For the decoder that performs quantile estimation, we use the quantile loss  function49. The training objective 
is defined as

The final objective function for our network is

In the above equations, our model’s shared encoder is represented by h, and the corresponding linear decoders 
are represented by f and g. In both the quantile loss and Huber loss functions, X and Y are the input space and 
the target space, with a pair of testing sample as (xi , yi) . We have n samples, αj is a quantile. Following the CDC’s 
report standard, we have 23 different quantiles αj ∈ {0.010, 0.025, 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 
0.400, 0.450, 0.500, 0.550, 0.600, 0.650, 0.700, 0.750, 0.800, 0.850, 0.900, 0.95, 0.975, 0.990}. In the huber loss 
 function48, zi is the loss obtained from the i-th sample input xi and sample output yi using the huber loss function. 
xi is the input and has the form of xi ∈ R11×7 . yi is the 4 weeks hospitalizations ground truth of the future, and 
has the form yi ∈ R4 . In the quantile loss  function49, rij is the loss obtained from the i-th sample input xi , sample 
output yi , and j-th quantile αj . xi and yi has the same form as the huber loss’s definition. Both δ and β are tuning 
hyperparameters. In our experiment, we set δ to 1.0 and β to 3.0. From a statistical perspective, the βQ part of 
the network can be viewed as a regularizer, which helps to ensure the encoder to capture useful information both 
for the point prediction, as well as for the distribution estimation.

Training details. The transformer used in this paper has an encoder model dimensions of 8, 1 encoder layer 
with 8 attention heads and 16 feed forward dimensions. We connect the encoder layer’s output to a linear layer 
decoder for predicting weekly hospitalizations for the next 4 weeks using the current week input data for the 
point predictions. We connect the output from the encoder layer to another linear layer decoder for the quan-
tile predictions. We have a residual skip connection from the input layer to each of the decoder layers. We use 
 Adam50 optimizer and set 0.0075 as our initial learning rate, with a batch size of 512 and decay the learning rate 
by half after running for 250 epochs. We run our model for a total of 500 epochs. During the training phase, the 
transformer-based model will predict both county-level and state-level hospitalizations, with the corresponding 

(7)d = F(c, {Wi})+ c

(8)

min L
�

f (h(X)),Y
�

=
1

n

n
�

i=1

zi ,

where zi =
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2
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�
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�

, otherwise
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∑
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{
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(
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)
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(
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)(
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)

, otherwise
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county level and state level training input. Upon the completion of the training, we use our model to predict 
the state level hospitalizations for the next 4 weeks. Following the convention at the CDC forecast website, our 
model outputs both point predictions and predictions at different quantiles (total number of quantiles is 23, 
ranging from 0.01 to 0.99). Figure 2 illustrates our training process.

Ethics approval and consent to participate. This study did not involve human participants, data, or 
tissue. It was conducted using only aggregated and anonymized data. Institutional review board approval was 
not required.

Conclusion
In summary, this article presents the new model CAT for COVID-19 hospitalizations predictions at the state level 
for the United States. We use county-level data to provide additional training signal to our model. We include a 
residual connections in our transformer model to produce accurate prediction of COVID-19’s related hospitaliza-
tions. While we are in the process of recovering from COVID-19, resource allocation due to COVID-19 is still 
a challenging task. We hope through our model, we can improve the hospitalizations prediction and continue 
to provide insight for resource allocation and disease control planning.

Data availability
The datasets generated and/or analysed during the current study are publicly available in a GitHub Repository 
at https:// github. com/ esppe ace/ Covid_ Hospi taliz ations.
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