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Modern machine learning (ML) and deep learning (DL) techniques using high-dimensional data 
representations have helped accelerate the materials discovery process by efficiently detecting 
hidden patterns in existing datasets and linking input representations to output properties for a 
better understanding of the scientific phenomenon. While a deep neural network comprised of 
fully connected layers has been widely used for materials property prediction, simply creating a 
deeper model with a large number of layers often faces with vanishing gradient problem, causing 
a degradation in the performance, thereby limiting usage. In this paper, we study and propose 
architectural principles to address the question of improving the performance of model training and 
inference under fixed parametric constraints. Here, we present a general deep-learning framework 
based on branched residual learning (BRNet) with fully connected layers that can work with any 
numerical vector-based representation as input to build accurate models to predict materials 
properties. We perform model training for materials properties using numerical vectors representing 
different composition-based attributes of the respective materials and compare the performance of 
the proposed models against traditional ML and existing DL architectures. We find that the proposed 
models are significantly more accurate than the ML/DL models for all data sizes by using different 
composition-based attributes as input. Further, branched learning requires fewer parameters and 
results in faster model training due to better convergence during the training phase than existing 
neural networks, thereby efficiently building accurate models for predicting materials properties.

Modern machine learning (ML) techniques using high-dimensional data representations have seen widespread 
success in the field of materials science owing to their ability to efficiently detect hidden patterns in existing data-
sets and link input representations to output properties for a better understanding of the scientific phenomenon 
and accelerating materials discovery process1–11. The process has been catalyzed by the increase in the availability 
of large-scale datasets through experiments and first-principles calculations such as high throughput density 
functional theory (DFT) computations12–17 and the ease to access and analyze them by using various data mining 
tools18,19. Such application of ML techniques has attracted significant attention throughout the materials science 
research community and therefore led to the new paradigm of materials informatics5,20–25 which has helped 
materials scientists better understand materials and predict their properties.

Conventionally, traditional ML techniques such as Random Forest, Support Vector Machine, and Decision 
Tree, have often been applied in materials informatics applications1–8,26. Although limited, we have also seen 
a growing application of more advanced deep learning (DL) techniques in recent years26–29. Harvard Energy 
Clean Project by Pyzer–Knapp et al.8 used a three-layer network for predicting the power conversion efficiency 
of organic photovoltaic materials. Montavon et al.29 predicted multiple electronic ground-state and excited-state 
properties using a model trained on a four-layer network on a database of around 7000 organic compounds. 
Zhou et al.27 used high-dimensional vectors learned using Atom2Vec along with a fully connected network with 
a single hidden layer to predict formation energy. ElemNet28 used a 17-layered architecture to learn formation 
energy from elemental composition but has shown performance degradation beyond that depth. Some research 
performed domain knowledge-based model engineering within a deep learning context in materials science for 
predictive modeling30–33. Montavon et al.26 trained a four-layer network on a database of around 7000 organic 
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compounds to predict multiple electronic ground-state and excited-state properties. SchNet30 incorporated 
continuous filter convolutional layers to model quantum interactions in molecules for the total energy and 
inter-atomic forces which follow fundamental quantum chemical principles. CheMixNet31 has tried to learn 
molecular properties from the molecular structures of organic materials by applying deep learning methods. 
Boomsma and Frellsen introduced the idea of spherical convolution in molecular modeling by making use of 
the structural environments within proteins. Jha et al.32 developed a deep learning framework to predict the 
crystal orientations of polycrystalline materials from their electron back-scatter diffraction patterns. Work in33 
performs deep learning by making deeper layered architecture ranging from 10-layer to 48-layer composed of 
skip connections after every layer using composition and structure based representations to predict materials 
properties across different datasets. There also have been several efforts to learn either the atomic interaction or 
the material embeddings using graph-based networks from the crystal structure and composition34–38. SchNet 
is extended in34 where the authors used an edge update network to allow for neural message passing between 
atoms for better property prediction for molecules and materials. Crystal graph convolution neural networks 
(CGCNN)35 directly learn material properties via the connection of atoms in the crystal structure of the crystal-
line materials, providing an interpretable representation. MatErials Graph Network (MEGNet)36 was developed 
as a universal model for the property prediction of molecules and crystals. Goodall and Lee37 developed an 
architecture that takes stoichiometric attributes instead of crystal attributes as inputs along with matscholar 
embedding obtained from material science literature using advanced natural language processing algorithms to 
learn appropriate materials descriptors from data using a graph-based neural network composed of message-
passing layer and fully-connected layers. Atomistic Line Graph Neural Network (ALIGNN)38 combines atom, 
bond, and angle-based information obtained from the structure of the materials to obtain high-accuracy models 
for improved materials property prediction.

In general, introducing complex input attributes, network components, and architecture design has been 
shown to produce more accurate predictive models for materials properties prediction tasks. However, these 
improvements require higher computational resources and training time which is undesirable, making it hard 
to leverage such complex components to build predictive models. Hence, rather than focusing on introducing 
complex input attributes, network components, and architectural designs in a bid to boost model performance 
as done in recent works34–39, here, we focus on addressing the general issue of how to efficiently build deep neural 
network architectures for more robust and accurate predictive performance by imposing a parametric constraint 
(17-layers in our case) and utilizing the available limited computational resources effectively and efficiently. 
For that, we analyze and propose design principles for a time and parameter-efficient deep learning framework 
composed of deep neural networks that can predict materials properties using numerical vector-based repre-
sentations. Since the model architectures for the regression problem are composed of fully connected layers, it 
is highly non-linear and learning the mapping from input to output is comparatively more challenging than the 
classification problem. To maximize accuracy and minimize training time under parametric constraints using 
a neural network composed of fully connected layers, we present a novel approach based on a combination of 
residual learning with skip connections around a stack of multiple layers 40–42 and branched architecture43–45, 
which were originally proposed for classification problems for text or image classification.

We introduce a novel approach to leverage branching in neural networks with and without residual connec-
tions for each individual layer (BRNet and BNet). BNet comprises of a series of stacks, each composed of a fully 
connected layer and LeakyReLU46 with a branched structure in the initial layers. BRNet uses BNet as the base 
network and adds residual connections after each stack for better convergence during the training. BNet and 
BRNet architectures are designed for the prediction task of learning the formation energy from a vector-based 
material representation composed of 86 features representing a composition-based elemental fraction as the 
model input. When trained using ∼ 345 K samples from the Open Quantum Materials Database (OQMD)15, 
BNet and BRNet achieved a mean absolute error (MAE) of 0.042 eV/atom and 0.041 eV/atom respectively 
compared to an MAE of 0.149 eV/atom using AutoML47. A conference version of this work appeared in Gupta 
et al.48; the current article significantly expands on the conference paper with additional modeling experiments 
on more datasets, and subsequent analysis of results and insights. We compare our proposed architectures 
against traditional ML models, and multiple baselines using deep neural network architectures for regression 
(made using 17 fully connected layers): ElemNet28 with dropout at variable intervals of fully connected layers, 
and individual residual network (IRNet)33 with residual connections, batch normalization, and ReLU activa-
tion function after each layer. We provide a detailed evaluation and analysis of BNet/BRNet on various publicly 
available DFT-computed and experimental materials datasets and show that branched networks consistently 
outperform other ML models and DL networks on the materials property prediction tasks. We also observe that 
the use of branching leads to faster convergence than existing approaches, while reducing the number of model 
parameters significantly. BRNet and BNet leverage a simple and intuitive approach of introducing branching 
with/without residual connections after each layer without using any domain-dependent model engineering, 
which makes it appealing to researchers working not only on materials but other scientific domains to leverage 
it for their predictive modeling tasks.

Results
Datasets.  We use six datasets of DFT-computed and experimental properties in this work: Open Quan-
tum Materials Database (OQMD)15,49 with four properties, Automatic Flow of Materials Discovery Library 
(AFLOWLIB)50 with four properties, Materials Project (MP)14 with four properties, Joint Automated Reposi-
tory for Various Integrated Simulations (JARVIS) with five properties17, Kingsbury Experimental Formation 
Enthalpy (KEFE)51 with 1 property, and Kingsbury Experimental Band Gap (KEBG)51 with 1 property. DFT-
computed datasets (OQMD, AFLOWLIB, MP, and JARVIS) were downloaded from the website of the database, 
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and experimental datasets (KEFE and KEBG) were obtained using Matminer18. The relevant information about 
the datasets used to evaluate our methods are shown in Table 1. Please refer to the corresponding publications 
for further details about each of the listed properties.

In each of the datasets, materials property values correspond to the lowest formation energy among all com-
pounds with the same composition, representing its most stable crystal structure. The datasets are randomly split 
with a fixed random seed into training, validation, and test sets in the ratio of 81:9:10.

Model architecture design.  Many of the existing DL works in materials science focus on introducing 
complex input attributes, network components, and architectural designs to boost model performance34–39. 
Given that computational resources are usually limited, and oftentimes we only see marginal improvements 
in the accuracy of the model as compared to the exponential increase in the number of parameters added to 
the architecture of the deep neural network33, analyzing design principle to improve the accuracy of the model 
under parametric constraints might be a more practical and useful goal to work towards. We thus explore a 
novel approach of using branching at the early stage of the deep neural network architecture composed of fully 
connected layers to maximize the performance of the model under a parametric constraint. Note that paramet-
ric constraint in this work refers to using a fixed number of layers for constructing the architecture of the deep 
neural network, i.e., 17 layers in our case. We design two deep neural networks (BRNet and BNet) which contain 
branching with/without residual connections where both the proposed networks take a numerical vector-based 
representation as model input to predict the materials property of interest.

BRNet and BNet architectures are designed for the prediction task of learning the formation energy from 
a numerical vector-based representation composed of 86 features representing a composition-based elemental 
fraction as the model input. The deep neural network architectures are composed of fully connected layers, where 
each fully connected layer is followed by LeakyReLU46 as the activation function with (BRNet) and without 
(BNet) residual connections. To demonstrate the impact of our approach, we compare our proposed architectures 
against traditional ML models and multiple existing architectures (ElemNet and IRNet) comprised of the same 
number of layers (17 fully connected layers in our case) for fair comparison in terms of parametric constraint. 
In this study, we give ElemNet and IRNet architecture different sets of inputs for model training than what was 
previously used in their respective works to test the generalized performance of the different architectures. For a 
detailed description of the existing architectures (ElemNet and IRNet), the reader is referred to their respective 
publications28,33. We show the performance comparison of the proposed architectures with other existing deep 
neural networks for formation energy as the materials property and composition-based elemental fraction as 
the model input using various datasets in Table 2.

Table 2 shows that the proposed architectures significantly outperform the traditional ML models for all the 
datasets. We also trained existing deep neural network architectures on this prediction task and observed that 
branching significantly reduces the prediction error, which illustrates its benefit over traditional ML models, 
ElemNet, and IRNet for the design task. We observe a relatively small difference between the accuracy of BNet 
and BRNet models, which is due to the presence of residual connections that help prevent vanishing and/or 
exploding gradient issues for deep neural network architectures.

Table 1.   Datasets used in this work.

Dataset Data size List of properties

OQMD15 345,134 Formation energy (eV/atom), band gap (eV), stability (eV/atom), 
volume (A3/atom)

AFLOWLIB50 234,299 Formation energy (eV/atom), density (grams/cm3 ), volume (A3/
atom), band gap (eV)

MP14 89,181 Formation energy (eV/atom), band gap (eV), density (grams/cm3 ), 
volume (A3/lattice)

JARVIS17 19,994 Formation energy (eV/atom), gap OPT (eV), bulk modulus (GPa), 
shear modulus (GPa), gap TBMBJ (eV)

Kingsbury experimental formation enthalpy (KEFE)51 2135 Formation energy (eV/atom)

Kingsbury experimental band gap (KEBG)51 4604 Band gap (eV)

Table 2.   Test MAE of different models for the prediction task of “Model Architecture Design”. Here, we use 
formation energy (eV/atom) as the materials property and composition-based elemental fraction as the model 
input. The lowest MAE values in each row are highlighted in bold.

Dataset Size AutoML ElemNet IRNet BNet BRNet

OQMD 345,134 0.149 0.049 0.042 0.042 0.041

AFLOWLIB 234,299 0.115 0.058 0.051 0.048 0.047

MP 89,181 0.167 0.121 0.117 0.112 0.106

JARVIS 19,994 0.129 0.083 0.094 0.071 0.070
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Other materials properties.  Next, we demonstrate the significance of branching on the prediction mod-
eling tasks of “Other materials properties”. We train BRNet and BNet for predicting materials properties from 
numerical vector-based representation composed of 86 features representing composition-based elemental frac-
tions as the model input. To illustrate the impact of branching, we also compare the performance of our pro-
posed networks against traditional ML algorithms, ElemNet, and IRNet.

We observe in Table 3 that the branched architectures BRNet and BNet almost always outperform other DL 
models and traditional ML algorithms. The performance of traditional ML algorithms is always the worst, except 
for one case where it outperformed other models. Among the branching architectures, BRNet outperforms BNet 
for model training using composition-based elemental fraction as the model input in almost all cases since the 
BNet does not have any residual connections, which makes it susceptible to performance degradation issues due 
to vanishing and/or exploding gradients. BRNet significantly benefits from the use of residual connections, which 
helps with smooth gradient flow during backpropagation. For JARVIS with Gap TBMBJ as materials property 
and data size < 5300, we find that BNet performs better than BRNet. We also plot the percentage change in test 
MAE of the proposed BRNet w.r.t other pre-existing models i.e. AutoML, ElemNet, and IRNet in Fig. 1.

Figure 1 shows that BRNet outperforms the traditional ML algorithms (with up to 70% reduction in MAE) 
and existing DL models (with up to 25% reduction in MAE) with the same number of layers in the architecture 
for almost all materials properties in the four datasets used in this performance evaluation analysis. This clearly 
illustrates the benefit of leveraging the concept of branching for the given prediction task of “Other materials 
properties”. After this exploration, we exclude AutoML from further analysis as it is found to not benefit much 
for this problem.

Other materials representation.  Next, we illustrate the versatility of leveraging branching in the deep 
neural network architecture by building models with different composition-based attributes as model input. We 
train BRNet, BNet, ElemNet, and IRNet similar to the previous analysis, but use 145 composition-based physical 
attributes3 for model input instead of 86 elemental fractions (EF)28. Table 4 demonstrates the performance of 
proposed models using different types of materials representation in the model input for datasets with various 
sizes.

From Table 4, we find that our proposed networks perform better as compared to other DL models in all the 
datasets which shows that the approach involving branching of the deep neural network architecture significantly 
helps in accurately learning the materials properties from the given materials representations as compared to 
other DL networks. An interesting observation from Table 4 is that the number of cases for which BNet per-
forms the best is almost equal to that of BRNet which shows that depending on the type of input provided to the 
branched architecture, the presence of residual connection may not always contribute towards further enhancing 
the accuracy of the model. This illustrates the versatility of leveraging branched deep neural network architec-
ture for the general prediction modeling task of materials property given any type of vector-based materials 
representation. Additionally, we analyze the impact of the input representation used for model training on the 
accuracy of the model by comparing the composition-based elemental fraction and composition-based physical 
attributes using BRNet in Fig. 2. Interestingly, we observe that numerical vector-based representation composed 
of composition-based elemental fraction performs better as compared to the composition-based physical attrib-
utes. We believe this might be due to the widely recognized ability of deep neural networks to work well on raw 
inputs without any feature engineering28,52. Hence, we will only use the numerical vector-based representation 
composed of composition-based elemental fractions for further analysis.

Performance on experimental datasets.  In our analysis, we generally observe the benefit of leverag-
ing branched deep neural network architecture which tends to perform better than other DL networks and 
traditional ML models. Here, we investigate the performance of the proposed networks against the experimen-

Table 3.   Test MAE of different models for each of the materials properties for the prediction task of “Other 
materials properties”. The lowest MAE values in each row are highlighted in bold.

Dataset Property Size AutoML ElemNet IRNet BNet BRNet

OQMD

Band gap (eV) 345,134 0.075 0.052 0.054 0.050 0.048

Stability (eV/atom) 345,134 0.113 0.051 0.047 0.045 0.043

Volume (A3/atom) 345,134 21.02 19.56 20.09 17.92 16.91

AFLOWLIB

Density (grams/cm3) 234,299 0.556 0.227 0.186 0.184 0.176

Volume (A3/atom) 234,299 1.001 0.690 0.611 0.603 0.588

Band gap (eV) 14,751 0.134 0.145 0.140 0.116 0.108

MP

Band gap (eV) 89,181 0.435 0.342 0.316 0.317 0.315

Density (grams/cm3) 89,181 0.446 0.373 0.373 0.349 0.344

Volume (A3/lattice) 89,181 205.9 248.8 238.6 233.8 227.4

JARVIS

Gap OPT (eV) 17,924 0.345 0.294 0.300 0.265 0.260

Bulk modulus (GPa) 8199 13.46 11.56 11.71 11.79 10.63

Shear modulus (GPa) 8199 10.75 10.64 10.75 11.10 9.94

Gap TBMBJ (eV) 5287 0.630 0.544 0.526 0.483 0.497
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tal datasets which are usually small in size as compared to the DFT-computed datasets. We train traditional 
ML models and DL models using numerical vector-based representation composed of 86 features representing 
composition-based elemental fractions as the model input.

From Table 5, we observe similar trends as our previous analysis where the proposed architectures outperform 
the traditional ML models and existing DL models with the same number of layers in the architecture for both 
the experimental datasets in this analysis. We believe this will motivate materials scientists to leverage branched 
architecture to build their deep neural network architectures for materials property prediction tasks.

Performance analysis.  Next, we perform performance analysis using a bubble chart, prediction error 
chart, and cumulative distribution function (CDF) of the prediction errors. We mainly compare the accuracy 
and training time of different deep neural networks comprised of the same number of layers when trained 
using numerical vector-based representation composed of composition-based elemental fractions on formation 
energy from four different DFT-computed datasets (OQMD, AFLOWLIB, MP, and JARVIS).

Figure 3 shows the bubble charts that indicate the performance in terms of training time on the x-axis, MAE 
on the y-axis, and bubble size as the model parameters for different DL models using formation energy of the 
four DFT-computed datasets as the materials property. The closer the DL model is to the bottom-left corner of 
the bubble chart, the better the overall performance is of that model, as it is able to train faster and produce an 
accurate model. We observe the following trends from Fig. 3: (1) ElemNet architecture takes less training time but 
produces a less accurate model for almost all the cases. For the JARVIS dataset (which is comparatively smaller 
in size) it is able to outperform IRNet in terms of accuracy, but it still is not the fastest or the most accurate 
model; (2) IRNet architecture, in general, takes more time to train the model, but that training time is not always 
translated into high accuracy of the model. This also suggests that for the regression-based materials property 

Figure 1.   The figure indicates the percentage change in test MAE of the proposed BRNet w.r.t (a) AutoML, (b) 
ElemNet, and (c) IRNet. The x-axis shows the dataset size on a log scale, and the y-axis shows the percentage 
change in test MAE from all the model training performed in Tables 2 and 3 calculated as ((MAEBRNet/
MAEOther)− 1) × 100%.
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prediction task, the presence of batch normalization as one of the components of the deep neural network archi-
tecture might not be helpful for significantly improving the accuracy of the model, while also keeping the training 
time reasonably low; (3) The proposed branched deep neural network architectures are almost always closer to 
the bottom-left corner of the bubble chart, with BNet usually slightly faster in terms of training time and BRNet 
slightly better in terms of accuracy. For the JARVIS dataset, BRNet took a lot of time to train the model, but it 

Table 4.   Test MAE of different models for each of the materials properties for the prediction task of “Other 
materials representation”. The lowest MAE values in each row are highlighted in bold.

Dataset Property Size ElemNet IRNet BNet BRNet

OQMD

Formation energy (eV/atom) 345,134 0.084 0.062 0.053 0.051

Band gap (eV) 345,134 0.065 0.050 0.049 0.051

Stability (eV/atom) 345,134 0.073 0.064 0.053 0.053

Volume (A3/atom) 345,134 18.4388 17.02 16.00 16.52

AFLOWLIB

Formation energy (eV/atom) 234,299 0.069 0.061 0.050 0.051

Density (grams/cm3) 234,299 0.226 0.187 0.188 0.186

Volume (A3/atom) 234,299 0.723 0.629 0.628 0.612

Band gap (eV) 14,751 0.155 0.114 0.109 0.114

MP

Formation energy (eV/atom) 89,181 0.158 0.143 0.141 0.133

Band gap (eV) 89,181 0.358 0.335 0.334 0.342

Density (grams/cm3) 89,181 0.410 0.363 0.362 0.361

Volume (A3/lattice) 89,181 234.1 227.2 226.4 231.4

JARVIS

Formation energy (eV/atom) 19,994 0.126 0.140 0.104 0.104

Gap OPT (eV) 17,924 0.296 0.309 0.284 0.294

Bulk modulus (GPa) 8199 12.33 12.19 11.97 11.79

Shear modulus (GPa) 8199 11.01 10.58 10.54 10.39

Gap TBMBJ (eV) 5287 0.619 0.537 0.566 0.531

Figure 2.   Impact of input representation on the accuracy of BRNet. The x-axis shows the dataset size on a 
log scale, and the y-axis shows the percentage change in MAE of the model trained using composition-based 
elemental fraction as input w.r.t. the model trained using composition-based physical attributes as input 
(calculated as ((MAEEF/MAEPA)− 1) × 100%).
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produced the most accurate model, which can be beneficial if the main objective is to build the most accurate 
model under a fixed parametric constraint.

Figure 4 illustrates the prediction error distribution for formation enthalpy in four DFT-computed datasets 
using composition-based elemental fraction as model input. Although the scatter plot of ElemNet, IRNet and 
BRNet look similar, we can observe that the prediction moves closer to the diagonal for BRNet. Scatter plots 
also illustrate that all three models have outliers, with outliers in the case of BRNet being relatively closer to 
the diagonal. The difference in prediction error distributions becomes more evident from the CDF (cumulative 
distributive function) curves for the three models, where we observe that the 90th percentile absolute predic-
tion error for BRNet is lower than ElemNet and IRNet for all four DFT-computed datasets. The performance 
analysis demonstrates the advantage of leveraging branched deep neural network architecture for given materi-
als representations as the model input for better prediction performance under a fixed parametric constraint.

Discussion
We presented a novel approach to leverage the concept of branching in deep neural network architecture to enable 
better performance for materials property prediction under parametric constraints. To illustrate the benefit of 
leveraging the proposed approach, we built a general deep learning framework composed of branched deep 
neural network architectures BRNet and BNet. To compare the performance of the proposed models, we use 

Table 5.   Test MAE of different models for each of the materials properties for the prediction task of 
“Performance on Experimental Datasets”. The lowest MAE values in each row are highlighted in bold.

Dataset Property Size AutoML ElemNet IRNet BNet BRNet

KEFE Formation enthalpy (eV/atom) 2135 0.189 0.129 0.123 0.103 0.096

KEBG Band gap (eV) 4604 0.464 0.468 0.493 0.483 0.460

Figure 3.   The bubble charts indicate the performance of the DL models based on the training time on the 
x-axis, MAE (eV/atom) on the y-axis, and the number of model parameters as the bubble size for (a) OQMD, 
(b) AFLOWLIB, (c) MP, and (d) JARVIS. The bubbles closer to the bottom-left corner of the chart correspond to 
less training time as well as low MAE, and thus are desirable.
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traditional ML algorithms and existing deep neural networks ElemNet and IRNet, which consist of the same 
number of layers in their architecture to ensure a fair comparison of parametric constraints. The proposed BRNet 
and BNet architectures were designed (optimized) for the task of predicting formation energy using a numerical 
vector-based representation composed of 86 composition-derived elemental fractions as the model input. On 
the design problem, the proposed models leveraging the proposed design approach significantly outperformed 
the traditional ML algorithms, ElemNet and IRNet. We demonstrated the efficacy of the proposed approach by 
evaluating and comparing these DL model architectures against ElemNet, IRNet, and traditional ML algorithms 
on a variety of materials properties available across multiple materials datasets. Furthermore, we demonstrated 
that the presented DL model architectures leveraging the proposed approach are versatile in their vector-based 
model input by evaluating prediction models for different materials properties using different numerical vector-
based representations, i.e., composition-derived 145 physical attributes and composition-derived 86 elemental 
fractions. The proposed approach outperforms other ML/DL models in terms of model accuracy irrespective 

Figure 4.   Comparison of ElemNet, IRNet against proposed BRNet on formation energy of four different DFT-
computed datasets using composition-based elemental fractions as model inputs. The rows represent different 
DFT-computed datasets in the order of OQMD, AFLOWLIB, MP, and JARVIS from top to bottom. Within each 
row, the first three subplots represent the prediction errors using three models: ElemNet, IRNet, and BRNet; the 
last subplot contains the cumulative distribution function (CDF) of the prediction errors using the three models, 
with 50th and 90th percentiles marked.
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of the size of the materials property being analyzed, where branching provides a better capability to capture the 
mapping between the given input material representation and the output property. In general, the training time 
of a deep neural network model depends on the given prediction task (model inputs and model output), the size 
of the training dataset, and the architecture and depth of the neural networks (number of model parameters). In 
our case, as the depth of the neural networks (the number of layers used to construct the architecture) is fixed, 
the complexity and components used to construct the architecture is the only factor that can affect the training 
time. We see that the use of branched architecture helps in a significant reduction of training time as compared to 
other baseline architectures used for comparison. Additionally, to check the robustness of the proposed branched 
architectures even further, we perform empirical and statistical analysis to explore the benefits of branching in 
deep neural networks. In the empirical analysis, we perform predictive analysis by changing the location of the 
branch and the number of branches for a given location under fixed parametric constraints (i.e., 17 layers in our 
case as depicted in Supplementary Fig. 1) using the formation energy of various datasets as the materials property 
which is shown in Table 6. We limit our analysis to a single occurrence of branching, which can be configured 
at multiple locations in various distributions.

Table 6 shows the effect of branching on model accuracy and parameters by changing the location and dis-
tribution of branching for a single occurrence of branching. We observe that changing the configuration of the 
branching does not significantly vary the performance of the model for large datasets. For small datasets, the 
variation in model accuracy is slightly higher, which is not surprising. We also observe that branching at the 
initial layers of the neural network or for the layers with a large number of neurons and increasing the number of 
branches under parametric constraint decreases the model size and number of model parameters without signifi-
cant change in the accuracy of the model. More sophisticated branching with simultaneous multiple branching 
at different locations with/without increasing the number of layers would be an interesting future study.

Next, we perform statistical analysis where we estimate a one-tailed p-value to compare the test MAEs 
obtained using the 5 × 2-fold cross-validation (5 × 2 CV) of formation energy of four datasets (OQMD, AFLOW-
LIB, MP, and JARVIS) as the materials property in order to see if the observed improvement in accuracy of the 
proposed BNet/BRNet over existing models is significant or not. The mean ± standard deviation of the test MAE 
for the 5 × 2 CV is shown in Supplementary Table 2. We use the corrected paired t-test proposed by Nadeau and 
Bengio53 to estimate the one-tailed p-value. Here, the null hypothesis is “BNet/BRNet models are worse than 
the existing models” and the alternate hypothesis is “BNet/BRNet models are better than the existing models”. 
After performing the statistical testing using the corrected paired t-test, we get the p-value < 0.05 (for both the 
comparisons, i.e., BNet or BRNet against existing models), thus rejecting the null hypothesis at α = 0.05. This 
suggests that the difference in test MAE between BNet/BRNet and existing models is unlikely to have arisen by 
chance, and thus we can infer that in general, the proposed BNet/BRNet models perform significantly better 
than existing models. We also calculate the one-tailed p-value to compare the test MAEs of BNet and BRNet and 
obtain the p-value < 0.05 for 3 out of 4 cases. For the MP dataset, although BNet performed better as compared 
to BRNet in terms of mean ± standard deviation of the test MAE, we obtained the p-value > 0.05, which shows 
that the results are not significantly better statistically. This shows that, in general, BRNet tends to perform at least 
comparable or better than BNet. Since the proposed approach of leveraging branching the deep neural network 
architecture in BRNet and BNet does not depend on any particular material representation/embedding as model 
input, we expect that it can also be used to improve the performance of other DL works leveraging other types of 
materials representations in materials science and other scientific domains. The proposed approach of branched 
deep neural network architecture is conceptually simple to implement and build upon. The BRNet framework 
code is publicly available at https://​github.​com/​Gupta​Vishu​2002/​BRNet.

Table 6.   Effect of branching on model accuracy and parameters by changing the location and distribution of 
branching for a single occurrence of branching.

Branching Branching #Model #Model Dataset

Location Distribution Size (MiB) Parameters OQMD AFLOWLIB MP JARVIS

Top [2, 2] 18.3 4,548,385 0.041 0.048 0.106 0.070

[3, 1] 18.3 4,548,385 0.043 0.049 0.113 0.069

[2, 1, 1] 14.8 3,676,961 0.041 0.048 0.107 0.068

[1, 1, 1, 1] 11.3 2,805,537 0.041 0.047 0.108 0.069

Middle 1 [2, 1] 24.9 6,206,753 0.041 0.048 0.113 0.068

[1, 1, 1] 28.1 6,993,697 0.041 0.048 0.111 0.070

Middle 2 [2, 1] 22.6 5,616,673 0.040 0.048 0.111 0.069

[1, 1, 1] 23.4 5,813,537 0.042 0.048 0.113 0.071

Middle 3 [2, 1] 22.0 5,469,089 0.041 0.049 0.108 0.069

[1, 1, 1] 22.2 5,518,369 0.041 0.049 0.114 0.070

Bottom [1, 1] 21.8 5,432,161 0.041 0.047 0.112 0.067
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Methods
Model architectures.  The design approach and mathematical formulation for branched deep neural net-
work architecture is illustrated in Fig. 5 and supplementary information. The model architecture is formed by 
putting together a series of stacks, each composed of one or more sequences of two basic components with the 
same configuration. Since we use numerical vector-based representation as model input (refer to supplementary 
information for a detailed description of the model inputs), the model uses a fully connected layer as the initial 
layer in each sequence which is followed by LeakyReLU46 as the activation function. The simplest instantiation 
of this architecture adds no residual connections and thus learns simply the approximate mapping from input 
to output which we refer to as Branched Network (BNet). We also create a deep neural network architecture 
with residual connection after every sequence, so that each sequence needs only to learn the residual mapping 
between its input and output. The residual connection has the effect of making the regression learning task easier 
and providing a smooth flow of gradients between layers. We refer to this deep neural network as a branched 
residual network (BRNet). The implementation of all the models used in this work is publicly available at https://​
github.​com/​Gupta​Vishu​2002/​BRNet.

Network and ML settings.  We implement the deep learning models with Python and TensorFlow 254 and 
Keras55. We found the best hyperparameters to be Adam56 as the optimizer with a mini-batch size of 32, alearn-
ing rate of 0.0001, mean absolute error as loss function, and LeakyReLU46 as activation function after every fully 
connected layer (except for the final layer which has no activation function). Rather than training the model 
for a specific number of epochs, we used early stopping with patience of 100 epochs, meaning that we stopped 
training when the performance did not improve in 100 epochs. For traditional ML models, we used an AutoML 
library called hyperopt sklearn47 to find the best-performing ML model implementations and employed mean 
absolute error (MAE) as loss function and error metric. For the number of model parameters and model size 
used by each of the deep learning models, please refer to Supplementary Table 1.

Data availability
All the datasets used in this paper are publicly available from their corresponding websites- OQMD (http://​
oqmd.​org), AFLOWLIB (http://​aflow​lib.​org), Materials Project (https://​mater​ialsp​roject.​org), JARVIS (https://​
jarvis.​nist.​gov), and using Matminer (https://​hacki​ngmat​erials.​lbl.​gov/​matmi​ner/).
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