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Development and application 
of random forest regression soft 
sensor model for treating domestic 
wastewater in a sequencing batch 
reactor
Qiu Cheng 1, Zhan Chunhong 2 & Li Qianglin 1*

Small-scale distributed water treatment equipment such as sequencing batch reactor (SBR) is widely 
used in the field of rural domestic sewage treatment because of its advantages of rapid installation 
and construction, low operation cost and strong adaptability. However, due to the characteristics 
of non-linearity and hysteresis in SBR process, it is difficult to construct the simulation model of 
wastewater treatment. In this study, a methodology was developed using artificial intelligence 
and automatic control system that can save energy corresponding to reduce carbon emissions. The 
methodology leverages random forest model to determine a suitable soft sensor for the prediction of 
COD trends. This study uses pH and temperature sensors as premises for COD sensors. In the proposed 
method, data were pre-processed into 12 input variables and top 7 variables were selected as the 
variables of the optimized model. Cycle ended by the artificial intelligence and automatic control 
system instead of by fixed time control that was an uncontrolled scenario. In 12 test cases, percentage 
of COD removal is about 91. 075% while 24. 25% time or energy was saved from an average 
perspective. This proposed soft sensor selection methodology can be applied in field of rural domestic 
sewage treatment with advantages of time and energy saving. Time-saving results in increasing 
treatment capacity and energy-saving represents low carbon technology. The proposed methodology 
provides a framework for investigating ways to reduce costs associated with data collection by 
replacing costly and unreliable sensors with affordable and reliable alternatives. By adopting this 
approach, energy conservation can be maintained while meeting emission standards.

Rural domestic sewage is characterized by unstable water quality and quantity, dispersed discharge and low 
pollutant  concentration1. To address these challenges, small-scale distributed water treatment equipment has 
become widely used in the field of rural domestic sewage treatment due to its rapid installation and construction, 
low operation cost, and strong  adaptability2. In recent years, the sequencing batch reactor (SBR) process has 
emerged as a promising option for rural domestic wastewater treatment. When compared with other processes, 
SBR can effectively withstand organic load impacts, has flexible operation modes, produces good effluent effects, 
and achieves better nitrogen and phosphorus removal  effects3–6.

However, constructing accurate simulation models for rural domestic wastewater treatment can be chal-
lenging due to the non-linearity and hysteresis characteristics exhibited by the SBR  process7,8. The non-linear 
problems in sewage treatment refer to the complex, diverse, and non-linear relationships that arise from the 
interactions of various chemical reactions, biological reactions, and physical effects during sewage treatment.

Artificial intelligence, including machine learning, has been applied to sewage treatment processes to effec-
tively solve non-linear problems. Machine learning encompasses a range of methods, such as neural networks and 
support vector regression, which can be used to analyze and model the complex data generated during sewage 
treatment. This has effectively improved sewage treatment efficiency and quality while reducing treatment costs.
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Artificial neural network (ANN) is a mathematical model that simulates the behavior of animal neural net-
works, and performs distributed and parallel information processing. ANN has become widely used in predict-
ing sewage discharge, as it can adjust the interconnections among a large number of internal nodes to process 
complex information within the  system9–13.

In addition to using artificial neural network (ANN) methods, other techniques such as linear regression (LR), 
support vector regression (SVR), and neuro-fuzzy network methods have also been used in pollutant removal 
technology to predict changes in pollutant concentrations or other process  parameters14–19. These methods (as 
shown in Table 1) have been proven effective in modeling the complex relationships between various factors 
and predicting pollutant concentrations, which helps to optimize the performance of the treatment process.

However, despite these  models14–17 performed quite well, their processing or environment is idealized. Most of 
them use simulated experimental conditions. Once in a real engineering case, due to its complexity, the model’s 
performance will not be so  outstanding18,19. In addition, in these  cases14–19, there are many types of input data, 
such as DO, pH, conductivity, BOD, COD, TN, etc., which increases the workload or difficulty of data acquisi-
tion. For example, there is a significant lag in the measured data of DO sensors; BOD can only be measured using 
biochemical method and cannot be accurately measured online using sensors due to significant hysteresis. How-
ever, although COD measurement can be conducted online, the chemical online measurement method requires 
strict control of measurement conditions and continuous addition of reagents. The COD sensor method mainly 
uses optical sensors, which are significantly affected by the chromaticity and turbidity of wastewater. Moreover, 
the COD sensor is expensive for dispersed small equipment, making it difficult to popularize. Therefore, it is 
necessary to develop sensors with stable and accurate data collection, long service life and cheap price to replace 
sensors with poor stability, short service life and expensive prices.

However, the traditional ANN algorithm is based on the asymptotic theory, the empirical risk approaches the 
actual risk only when the sample size approaches infinity, so the sample size is far from infinity in practical appli-
cation, it leads to the problems of poor extrapolation ability, slow convergence speed and local  extremum20–23.

Random forest model is one of machine learning, that has become one of research hotspot in the field of 
artificial intelligence, which has strong adaptive learning ability and nonlinear mapping  ability24,25. It is suit-
able for the simulation of wastewater treatment process with the characteristics of large lag, non-linearity and 
multi-variable26,27.

The random forest regression (RFR) is a critical application of the random forest (RF) algorithm, which is a 
statistical learning theory developed by  Breiman28. The RFR technique involves using Bootstrap resampling to 
extract multiple samples from the original data and construct decision trees for each Bootstrap sample. These 
decision trees are then combined to predict the results, with the final prediction being the average of the predic-
tions generated by all the  trees29.

The essence of the RFR algorithm is multi-decision tree model, which makes prediction by combining mul-
tiple decision trees. The algorithm has the advantages of high prediction precision, good generalization ability, 
fast convergence speed and less adjustment parameters, which can effectively avoid “over-fitting” and is suitable 
for the operation of various data sets. It is robust to the variable extraction of data sets and suitable for ultra-
high-dimensional variable vector space. RFR has been widely used in many fields such as medicine, management 
and  agriculture30–32.

RFR also makes full use of limited samples and construct multiple decision tree models, which increases 
the diversity of decision tree and improves the accuracy of the final optimization integration  model33,34. Table 2 
shows related applications of random forest regression.

ANN is a kind of machine learning algorithm that is commonly used for predicting the treatment effect of 
sewage  water45–49. However, one of the major weaknesses of ANN is overfitting, which can lead to a reduction 
in the model’s  generalizability50–52. In contrast, the random forest regression (RFR) model is another machine 
learning algorithm used for predicting sewage water treatment effects. The RFR model has several advantages, 
including high prediction accuracy, fast processing efficiency, strong generalization ability and is not easily 
susceptible to  overfitting53,54. These features make the RFR model an attractive option for predicting sewage 
water treatment effects.

Table 1.  Methods used in pollutant removal technology to predict changes.

References Variables/inputs Targets/outputs Model performance Model

14 pH, time, Initial concentration of Cu(II), Nano zero-
valent aluminum dose, stirring rate, and temperature Cu(II) removal efficiency

MSE:ANN ˂  10−5

LR 0.01
SVR  10−3

ANN, LR, SVR

15 Temperature, pH, dissolved oxygen (DO), electrical 
conductivity (EC),  NO3

−, and  PO4
3- Dry cell weight Determination coefficient  (R2) 0.983 ANN

16 Current intensity (I), pH,  Fe2+ amount, and initial 
diazinon concentration Diazinon removal Efficiency R2: 0.994 ANN

17 Temperature, pH, time, Initial concentration of 
Cr(VI), and polyamine/folic acid composite dose Cr(VI) removal efficiency R2: 0.919 ANN

18 pH, conductivity, BOD, COD, TN influents BOD, COD, and TN effluents R2: BOD 0.764–0.783, COD 0.926, 0.939, TN 
0.941–0.957 Neuro-fuzzy networks

19 Ten attributes of filament bacteria SVI R2: 0.78, MSE:6 ANN
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Scholars used RFR to predict pollutants concentration in the ambient  air55–59 and urban sewage treatment 
 effect60–62. However, there are comparatively fewer studies on the prediction and control of rural domestic sewage 
treatment effects using the RFR model.

The proposed methodology aims to achieve improved prediction and effective control of the treatment effect 
of rural domestic sewage through the development and utilization of RFR soft sensor model. By utilizing this 
approach, it is hoped to establish a reliable and robust soft sensor model that can accurately monitor and ana-
lyze key indicators of sewage treatment in rural areas. This will not only facilitate the identification of potential 
issues and assist in their resolution but also contribute to overall improvements in local ecological conditions 
and public health standards.

Soft sensor is a commonly used method in process monitoring and control, which estimates the process vari-
able of interest based on the measurements of other variables that are easy to acquire. The establishment of a soft 
sensor model usually involves selecting relevant input variables, designing the mathematical model, and training 
the model using historical data. The resulting model can then be used for real-time prediction and control. Soft 
sensors have been widely applied in various industrial processes such as chemical processes, wastewater treat-
ment and power plants. The advantages of soft sensor include cost-effectiveness, flexibility and ability to handle 
complex nonlinear systems. Soft sensor has proven to be a valuable tool for process optimization and  control63–66.

Methods
RFR model. Construction of RFR model. RFR model is an integration algorithm developed on the basis of 
decision tree theory, which belongs to bagging  type67. By combining multiple weak learner cart trees and taking 
the mean value to integrate multiple models, the final result is  obtained68.

The RFR model uses the disturbance of samples and attributes, and increases the "diversity" of the cart tree 
of the weak learner, so that the final integration result has high accuracy and generalization  performance69. The 
RFR model solves practical problems such as small samples, high dimensions and multi-classification, and can 
handle both discrete data and continuous  data70. It overcomes the shortcomings of slow convergence speed of 
neural networks and requires a large number of samples, It also solves the problem of over fitting or under fitting 
of decision tree, and has good applicability and  popularization71. Figure 1 shows the diagram of RFR.

Prediction method. The general prediction method of RFR model is:
(1) Randomly take samples from training samples (n × sample) for n times to form a training set (samples 

were put back after every sampling). Repeat r times to obtain training sets:D1,D2, . . . ,Dr.
(2) For each training set, k attributes are randomly selected from the attribute set (m × attribute), k = log 2m , 

and then cart trees are established: f1(x), f2(x), . . . , fr(x).
(3) The final prediction value of random forest is determined by the average method: f (x) = 1

r

∑r
i=1 fi(x).

Evaluation index of the model. In order to evaluate the performance of the COD concentration prediction 
model, mean square error (MSE) and determination coefficient  (r2) are selected as evaluation indexes. The indi-
cators are calculated as follows:

Table 2.  Application of random forest regression (RFR).

References Variables/inputs Targets/outputs Determination coefficient  (r2)

35 Temperature, precipitation, and wind PM2.5 of Yangtze River Delta of China from 2015 to 
2020 > 0.9

36 County-level census data, natural suitability, and 
socio-economic factors

population distribution of the Tuojiang River Basin 
from 1911 to 2010 0.84

37 Population, agricultural discharge, domestic dis-
charge, sewage collection and treatment way

CODMn for the Taihu Lake basin in Zhejiang Prov-
ince, China 0.78

38 Runoff data in the same month of the first three years 
and the runoff data of the first three months Runoff data of river in Xiaojin County, China 0.85

39 Conductivity, turbidity
Nitrate (89%)
Total N (85%)
Total P (74%) of the lake george drainage basin of U.S

Nash–Sutcliffe efficiency coefficient (NSE) similarly to 
the coefficient of determination

40
Season, outdoor  PM2.5 concentration, the number of 
air cleaners deployed, and the density of gers (tradi-
tional felt-lined yurts) surrounding the apartments

Indoor  PM2.5 concentrations 0.815

41
Nitrogen application, agricultural and developed land 
area, and impervious or developed land in the 100-m 
stream buffer

Loads of total nitrogen 0.76

42 Particulate matter 2.5, soil moisture, and relative 
humidity Negative air ion in a warm-temperate region of China 0.931

43 Real-time color attributes and the environmental 
conditions of drying process Moisture ratio of drying date fruit chips 0.976

44 Temperature, Wind speed, relative humidity Ozone concentration in Malaysia 0.970
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Formula ŷi for the model predicted value, yi for the true value.

Characteristic of RFR model. The characteristic of the RFR model were set as Table 3.

Materials and methods. Structure of SBR. A sequencing batch reactor (SBR), receiving sewage water 
from a residential area, is prepared in this study. The source of domestic sewage is from the Shuyuan Community 
in Pidu District, Chengdu, Sichuan, China (longitude: 103.88, latitude: 30.82). The sewage water flowing into the 
SBR comprised domestic wastewater that had been primary filtered and precipitated. The SBR reactor (stainless 
steel, 800 mm × 800 mm × 1200 mm) was designed and manufactured. The working volume of the reactor was 
0.576  m3, respectively (Fig. 2). An agitator and an aeration device are installed in the reaction tank.

Sewage water that had been primary filtered and precipitated was pumped into the SBR. This pump was 
called pump A which made 0.1856m3 sewage fed to the SBR every cycle. Pump B transported the same volume 
of water out of the SBR when the cycle ended.

Control. The SBR process is automated and controlled by a PIC (Programmable Integrated Circuit) or a one-
chip computer. The cycle, which lasts for 480 min, includes the following stages: 30 min fill in and aeration stage, 
330 min oxidation and agitation (alternating aeration and agitation, with aeration lasting for 10 min and agita-
tion 20 min) stage, 60 min settlement stage and 60 min discharge stage. Figure 3 shows time management of the 
operation of SBR.

Monitoring. Monitoring influent and effluent wastewater samples were taken from the SBR tank and from a 
collection vessel which allows filtered water go through in order to get rid of the interference of activated sludge.

Filtered pH and temperature were tested by monitoring sensors which manufactured by LuHeng Co. of China 
(pH:pH sensor LuHeng 6503; temperature:temperature sensor LuHeng 229).

Filtered COD was tested by potassium dichromate method,  NH3-N was tested by Nessler’s reagent colorim-
etry method (SP-756P UV visible photometer of Shanghai spectrum) and TP was tested by spectrophotometric 

MSE =
1

N

N∑

i=1

(yi − ŷi)
2

R2
= 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − y)2

F l CN

Decision Tree 1

Probability 0.5

YES NO

CNV Classification

Decision Tree 2 Decision Tree N

True CNV Classification False CNV Classification

Figure 1.  Diagram of RFR model.
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detection method (SP-756P UV visible photometer of Shanghai spectrum).pH and temperature were measured 
at 10 min intervals by sensors.

Sensors were fitted approximately 200 mm below the lowest liquid level within the reaction tank and above 
any potential sludge blanket that might be formed during settlement. All instruments were calibrated, maintained 
and operated in accordance with manufacturer’ instructions.

Overview of COD, pH and temperature profiles. A typical profile for COD saw an increase in concentrations as 
influent was mixed with the treated sewage water remaining in the reactor from the previous cycle. COD con-

Table 3.  Characteristic of RFR model in the proposed methodology.

Characteristic Value Function

Number of trees in the forest 100

Refers to the number of decision trees included in the random forest. 
Increasing the number of decision trees can improve the stability and 
classification performance of the model, but it will increase computa-
tion time. Usually, choosing an appropriate number of decision trees 
can achieve better results

Number of features to consider when splitting the decision tree each 
time

√
n , n = number of input variables

Refers to the number of features considered when each node performs 
feature selection. Generally, this parameter needs to be set small to 
reduce the variance of the model. It is usually recommended to set it 
to the square root of the total number of features, which ensures that 
different feature subsets are considered when each decision tree splits, 
increasing the diversity and generalization performance of the model

Criterion for the split nodes of the decision tree MSE Specifies the evaluation criteria for splitting decision tree nodes

Maximum depth of the decision tree 10
Controls the maximum depth that the decision tree can grow. A too 
large depth can lead to overfitting, while a too small depth can result in 
underfitting. Therefore, this parameter needs to be adjusted appropri-
ately to achieve the best performance

Minimum number of samples required to split an internal node 5

Controls the minimum number of samples required to split each inter-
nal node. If the number of samples in an internal node is less than this 
value, the node will not generate any child nodes, and the branch at this 
position will stop growing. Setting this parameter value too large may 
lead to underfitting, while setting it too small may lead to overfitting

Minimum number of samples required to be at a leaf node 3
Controls the minimum number of samples required for each leaf node. 
For small datasets, this parameter needs to be set smaller to ensure that 
the model has enough flexibility

Figure 2.  Structure of SBR.

Fill Oxidation and agitation Settlement Discharge

30 min                                                           330 min                                                            60 min              60 minAgitationAeration

Figure 3.  Treatment process of SBR.
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centrations peaked soon after the fill phase. Following this peak, COD concentrations decreased due to organic 
carbon oxidation and  nitrification72. At approximately 250 min, the rate of decrease in COD concentrations has 
no more obvious change and continued thus for the rest of the cycle (Fig. 4).

A cyclical rise and fall in pH (Fig. 5) profile during the aeration phase occurred, as the aerator switched on 
and off, resulting in a peak and trough in each aeration period in pH profile. The increase in pH, corresponding 
to the aeration-on period, was likely, in this case, to be due to  CO2  stripping73. The decreases in pH profile during 
the 20 min stirring period were likely due to a microbial activity which release carbon  dioxide74.

As found, during the early stage of the cycle, pH fell harder than the later, it is probably because the COD 
concentration differs: higher COD concentration results in more activity of microorganisms. In general, pH 
decreases as alkalinity is consumed during the nitrification progress. Denitrification progress causes the overall 
increase of pH at the medium and end stage  probably75.

A cyclical rise and fall in pH profiles during the aeration phase occurred, as the aerator switched on and off, 
resulting in a peak and low-lying valley in each aeration period in pH  profiles76.

A typical profile for temperature descent rapidly as influent was mixed with the treated wastewater remaining 
in the reactor from the previous cycle. The temperature hit bottom soon after the fill phase. Following this bottom, 
temperature increased due to microbial activity. At approximately 250 min, the rate of increase in temperature 
has no more obvious change and continued thus for the rest of the cycle. Figure 6 shows the temperature change 
in a whole cycle.

As found, during the early stage of the cycle, temperature increased harder than the later, it is probably because 
the pollutants concentration differs: higher level pollutants concentration results in more activity of microorgan-
isms which is the main reason for temperature change. The overall variation of sewage temperature in a certain 
cycle is relatively small, which is greatly influenced by the heat conduction and microbial metabolism of the 
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NO−
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Figure 4.  Typical profile for COD.
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environment, while the mechanical heat transfer, mainly by the pumps and aerators, has little influence on the 
variation of sewage treatment  temperature77.

Application. According to the principle of RFR model, the modeling process is divided into four steps as 
follows: (1) the collection of sample data; (2) the determination and ranking of the importance of features; (3) 
different number of features were added to the random forest model in order to select proper quantity of impor-
tant features; (4) RFR model applied in practice.

Based on the operation process data, RFR soft sensor model is used to establish the COD prediction model 
of SBR effluent, which realizes the rapid prediction of effluent quality and provides the basis for the efficient and 
stable operation of the wastewater treatment process as shown in Fig. 7.

Assessed Input Variables. In this case, the temperature values was observed to increase with COD reduction 
and was considered useful in identifying the end of COD removal.

In the early stage of biochemical reaction, the anabolism of microorganism is intense, which produces an 
amount of  CO2. The quantity of  CO2 caused by anabolism is obviously more than that by aeration according to 
the result of measurement (Fig. 5) in the early stage. Moreover, the organic matter produces organic acid, which 
makes the pH value decrease further. Less residual organic matter caused lower production of  CO2 and organic 
acids, and the predominance of denitrification in the medium and end stage during this time period contribute 
to an overall increase in pH value. So the pH values were observed to decrease or increase according to different 
organic matter and was considered useful in identifying the residual quantity of COD.

A number of unprocessed and processed input variables such as pH, temperature, pH and temperature change 
in adjacent measurements, etc. were constructed and added to the set of independent variables. The selected 
processed input variables were constructed using the profile features.
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Figure 6.  Typical profile for temperature.
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Figure 7.  The technical balance between the SBR procedures and RFR algorithm.
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The advantage of that pH and temperature were taken as unprocessed variables is it’s simple and easy to 
detect them. Besides sensors for pH and temperature are not only low-cost but also have satisfying measure-
ment accuracy.

Each variable set included a unique collection of input variables (Table 4). Within each 480 min cycle, data 
collected 0 ~ 30 min and 361 ~ 480 min were excluded to eliminate the effects of filling and settlement periods 
(as these phases were not part of the biological reaction phases of the treatment cycle).

Data from 40 treatment cycles were collected, 12 (30%) of which were randomly separated for use as a test 
dataset, and the remainder were used as a training dataset.

Assessment of RFR soft sensor model. The effectiveness of the RFR soft sensor model was assessed across 5 
criteria. The effluent standard value of COD was set at 30 mg/l. Effluent standard value can vary due to local 
regulations. The assessment criteria are listed in Table 5.

Table 4.  Input variables.

Input variables Description

pH Raw pH data

∆pH ∆pH =  pHi −  pHi-1, the difference between current pH value and previous

pHav Moving average of pH over the previous 10 records

pHapex-nadir pH apex value minus pH nadir value for each aeration period

T Raw temperature data

∆T ∆T =  Ti–Ti-1, the difference between current t value and previous

Tav Moving average of T over the previous 10 records

pH·T pH multiply by T

pHav·Tav pHav multiply by  Tav

T/pH T divided by pH

Tav/pHav Tav divided by  pHav

∆T·∆pH ∆T multiply by ∆pH

Table 5.  Criteria of assessment.

Criterion Description Practical application

R2 Referred to as the coefficient of determination, it is an indicator of the 
strength of the relationship between variables

Measures the strength of the relationship between predicted COD trend 
and actual trend

MSE
Mean square error (MSE) is a standard statistical metric to measure 
model performance; it measures the difference between sample and 
predict values and is a good measure of accuracy. The lower the MSE 
value the more accurate the prediction

Measures the average accuracy of the predicted COD trend against the 
actual trend

Percentage of COD removal
This criterion returns the percentage COD removal from the peak true 
concentration of the measured treatment cycle (30 ~ 360 min) to the 
predicted COD concentration which is below the effluent standard value 
for the first time

Provides a comparison of the COD concentration at which the cycle 
would have been ended by the model during a controlled cycle and the 
COD peak concentration at the beginning of a cycle

Percentage of time saved  (Tsave)
Tsave = (330 −  Tthres)/330
where  Tsave is the time saving (%),  Tthres is the time at which the cycle 
would be ended by the model in a controlled scenario and 330 is the 
fixed time cycle length (min) set in an uncontrolled scenario

Indicates the time saved with the selected cut-off threshold value
In general, the greater the time saved, the more the energy saved only if 
the accuracy is met the requirement

Accuracy
When the predicted COD concentration is below the effluent standard 
value for the first time, if it is true (predicted COD > measured COD) 
the accuracy meets the requirement. Symbol “ + ” for meeting the 
requirements, otherwise “ − ”

Indicates the accuracy at the cut-off threshold value

Table 6.  Average influent and effluent results.

Parameters Average influent (mg/L) Average effluent (mg/L) Average removal (%)

COD 305 23 92.46

TP 0.97 0.10 89.69

NH3-N 20.6 1.1 94.66
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Results
Average influent and effluent results. Table 6 shows the related parameters of influent and effluent.

Ranking of variables. Pearson correlation coefficient is a statistical measure used to determine the strength 
and direction of the linear relationship between two variables. Essentials of application of Pearson correlation 
coefficient in variables correlation ranking are: (1) Pearson correlation coefficient is commonly used in multiple 
regression analysis to select the most significant independent variables by calculating the correlation coefficients 
between each independent variable; (2) The correlation coefficient ranges from − 1 to 1, and the larger the abso-
lute value, the stronger the correlation; (3) When the correlation coefficient value is close to 0, it indicates that 
the correlation between the two variables is very weak and they can be considered independent.

In order to guarantee the training effect of the RFR, the Pearson coefficient method was used to study the 
correlation of the subjects, and the variables with weak correlation were deleted. In order to prevent the occur-
rence of invalid variables, avoid overfitting and improve the training performance of the model, any variable 
with a normalized Pearson correlation coefficient value, that is regarded as the normalized score of variable 
importance, less than 0.01 was removed. The resulting normalized score of variable importance ordering diagram 
shows the 12 factors affecting COD concentration (Fig. 8). It was found that ΔT had the greatest influence on 
COD concentration, followed by T,  Tav,  pHapex-nadir and etc.

Data from 40 treatment cycles were collected. 70% of the whole data (28 treatment cycles) are randomly 
selected as training set for RFR model and 30% (12 treatment cycles) are selected as testing set to verify the 
accuracy of the model.

Based on the ranking of variable importance scores, it is evident that temperature-related variables hold the 
top three positions. Therefore, it can be concluded that temperature-related variables play a dominant role in 
the data analysis. Some studies have shown that the metabolic activity of microbial communities in wastewater 
treatment bioreactors can cause an increase in water  temperature78,79. This is because the microorganisms in 
the reactor produce a large amount of heat through the degradation and metabolism of organic matter, leading 
to an increase in the temperature inside the reactor. Furthermore, it should be noted that while pH is indeed a 
contributing factor, its significance is not as strong as that of pHapex-nadir. pHapex-nadir, which is calculated 
by pH apex value minus pH nadir value for each aeration period, effectively quantifies the amount of carbon 
dioxide generated by microbial activity during a 20 min agitation.

Variables definition. In order to select the variables set, different numbers of variables were selected 
according to the importance of variables, and then were added to the RFR model, as shown in Fig. 9. It was 
found that when the top 7 variables were selected, the  R2 of training set and the test set did not increase and the 
MSE did not decrease obviously, so the top 7 variables were selected as the variable of the optimized RF model, 
specific as follows: ∆T, T, Tav, pHapex-nadir, pH, pHav and ∆pH.

Predict results by RFR. Figure 10 shows the comparison of predicted and measured COD concentrations 
on the test set.

The COD degradation trend, as well as the deviation between predicted and measured values, can be observed 
from the variations in the curves depicted in Fig. 10. The predicted values enable a rough estimation of the 
processing effect and level of pollutant degradation within a single cycle. Although the accuracy between true 
and predicted values may not be perfect, the slight discrepancy only exists in the initial stage of the process and 
soon disappears.

0 5 10 15 20 25 30

△t·△pH
tav/pHav

t/pH
pHav·tav

pH·t
△pH
pHav

pH
pHapex-nadir

tav
t

△t

Normalized score of variable importance(%)

Va
ria

bl
es

Figure 8.  Ranking of each variable importance score.
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In the process of sewage treatment, the change of COD is influenced by various uncertain factors in operating 
conditions. These factors can cause significant differences in the accuracy of prediction of COD during different 
stages of processing. In the early stage, these uncertain factors have a stronger influence, which results in a obvi-
ous error between the predicted and measured values; with the passage of time, the processing conditions tend 
to stabilize, and the impact of uncertain factors on COD changes gradually decreases, leading to a reduction in 
the error between predicted and measured values.

Therefore, in the proposed methodology, the magnitude of the error between predicted and measured values is 
mainly affected by the processing stage. In the early stage, the error may be relatively large, but as time progresses, 
the error will gradually decrease and eventually reach a more accurate prediction effect.

The RFR soft sensor model output, serving as the predicted value of water quality in the given scenario, 
can be instrumental in optimizing the wastewater treatment process. This can be achieved by reducing energy 
consumption and enhancing the efficiency of chemical and biological processes. Specifically, if the predicted 
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COD value falls below the effluent standard level, the process can transition into settlement mode immediately, 
with the agitator and aerator being switched off, thus bringing the cycle to a close. This method allows for cycle 
completion to be controlled by an artificial intelligence and automatic control system, as opposed to a fixed-time 
control approach that lacks precision. This is illustrated in Fig. 11.

Table 7 shows the assessment results of the test set 1–12.

Discussion
Benefits of the RFR soft sensor model. RFR is a machine learning model used for predictive analytics 
tasks, particularly for regression problems. RFR is an ensemble learning method that combines multiple decision 
tree models to create a more robust and accurate predictor.

The RFR algorithm randomly selects subsets of the input variables and samples of the training data to con-
struct decision trees, which are then combined into a forest. During prediction, the RFR model aggregates the 
output of individual decision trees to produce a final prediction. This approach helps to reduce the impact of 
overfitting and improves the model’s performance on output data.

In the context of wastewater treatment plants, RFR soft sensor model can be used to predict water quality 
(COD) through simpler diameters, in this way complex and expensive sensors will be replaced. Although a 
genuine COD sensor may be an option, several reasons or factors can result in its unsuitability and cause certain 
issues to arise: (1) Genuine COD sensors usually cost much; (2) Due to the presence of suspended solids in sew-
age, the COD value measured by genuine COD sensors can be unstable and exhibit significant fluctuations; (3) 
Some genuine COD sensors can detect organic compounds with a double bond sensitively while other organic 
compounds without a double bond are failed to be detected, so the error can not be ignored.

Moreover, the RFR model overcomes the shortcomings of slow convergence speed and large number of 
samples requiring of neural networks. Neural networks are powerful models that can learn complex patterns in 
data. However, training a neural network can be computationally expensive and require a large amount of data. 
In particular, deep neural networks or large-scale networks may take a long time to converge during training 
due to the sheer number of parameters that need to be learned through multiple iterations.

In contrast, RFR model are composed of multiple decision tree models, each trained on a random subset of 
the data. This approach has advantages: (1) RFR model does not require as much data as neural networks, since 
each decision tree model can work well with smaller datasets; (2) RFR model can be easily parallelized, which 
means they can be trained more quickly than neural networks on multi-core computer systems.

Comparison RFR soft sensor model with others. Comparing with methods used in pollutant removal 
technology (Table 1), the proposed methodology requires only two types of raw data that are easy to obtain, 
greatly reducing the workload of data acquisition. The weakness of the proposed methodology is that prediction 
value is not so accurate between measured and predicted value at the first stage of the progress. Additionally, 
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Table 7.  Results of assessment.

Criterion

Test set

Average1 2 3 4 5 6 7 8 9 10 11 12

R2 0.77 0.7 0.72 0.79 0.76 0.75 0.84 0.77 0.77 0.71 0.78 0.79 0.763

MSE 264 268 245 247 218 197 199 235 270 265 240 216 239

Percentage of COD removal (%) 88.6 91.5 91 93.4 90 87.7 88.1 93.8 92.1 90.4 92.7 93.6 91.075

Percentage of time saved (%) 36.4 33.3 36.4 9.1 36.4 39.4 33.3 6.1 12.1 18.2 18.2 12.1 24.25

Accuracy  +  +  +  +  +  −  +  +  +  +  +  + Percentage of hits 91%
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even if the  R2 and MSE of RFR model are not satisfactory, it performs well in predicting accuracy at the cut-off 
threshold value, as shown in Table 7, and this is very concerned in the field of engineering.

Potential trade-offs or unintended consequences. In the practical application of the proposed meth-
odology, it is possible that the COD value meet the standard while other indicators such as ammonia or phos-
phorus do not. To address this issue, relationship models can be established using pH and temperature as vari-
ables to predict the other parameters. However, this approach is limited to artificial intelligence methods only. 
In addition, an empirical judgment system can be established, such as the sewage treatment time generally being 
within a certain range, if predicted results exceeds this range, the output results of the proposed methodology 
are deemed to require modification.

Methods or options for improvement. Increase conductivity or other readily available parameters as 
input variables to improve prediction accuracy. The following are detailed discussions:

Variables such as conductivity, MLSS, DO and ammonia can also be used as premises to predict COD. The 
impact to the accuracy and efficiency of the proposed methodology may be: (1) In general, in the sewage treat-
ment process, the electrical conductivity of the solution shows a trend of decreasing gradually, which is related 
to the decrease of COD value, hence the electrical conductivity may improve the accuracy and efficiency; (2) 
MLSS should show a trend of increasing gradually, however, the change of MLSS is not obvious in one cycle 
(480 min). Furthermore, the accuracy of MLSS sensor is easily affected by the color of wastewater, this will obvi-
ously increase the uncertainty of the data measured by the sensors; (3) The SBR works according to aeration-
agitation periodicity, DO presents increase–decrease periodicity change, which obviously has no correlation with 
COD value change trend; (4) During the sewage treatment process, the ammonia concentration in the solution 
generally exhibits a gradual decrease, similar to the trend observed in COD. However, in some cases, such as a 
lack of dissolved oxygen that inhibits nitrification, there may be no significant reduction in the ammonia value 
even when COD is reduced. As a result of the non-synchronous nature of the changes in these two parameters, 
predicting COD using ammonia as a variable may introduce uncertainty into the analysis.

Encrypt the frequency of data acquisition, such as collecting data every 5 minutes, then it can be five minutes 
in advance to predict, which further improves the efficiency of the proposed methodology.

Add ammonia and phosphorus as prediction targets to balance organic and inorganic wastewater indicators 
and improve practicality.

Conclusions and outlook
Simple and stable sensors (pH, temperature) were utilized to predict COD values throughout the process. The 
RFR model employed in the study can be regarded as a "soft sensor", which assists in monitoring the treatment 
effect.

The SBR was optimized using artificial intelligence and an automatic control system to increase automation, 
as well as save both time and energy. pH and temperature sensors collected data, which were input into the RFR 
model, the model then outputted real-time COD values. Once the predicted COD value fell below the effluent 
standard value, the cycle ended by cutting down the agitator and aerator, and the process entered the settlement 
mode directly. The proposed methodology replaced fixed-time control, which was uncontrolled. In 12 test cases, 
the percentage of COD removal (%) was about 91. 075, while an average of 24. 25% of time or energy was saved. 
These results demonstrate that this approach can increase treatment capacity and reduce energy consumption, 
representing a low-carbon technology.

R2 on the test set is around 0.791, although it is not too high, but the accuracy at the cut-off threshold value 
of COD is around 91% which is acceptable for the prediction. It is quite simple and almost accurate to acquire 
the processing effect and the level of degradation of pollutants at anytime. Although it is not so accurate between 
true and predict value, but the embarrassment only occured at the first half of the progress and it soon vanished. 
The accuracy of the medium and end stage is more important than that of the early stage, the reason for the above 
fact is explained below. Artificial intelligence and automatic control system leaded to a optimized way but the 
satisfied accuracy of predict COD value is prerequisite. Basing on the fact, accuracy requirements are different 
at each stage in a controlled scenario: in the medium and end stage, especially when approaching the stage of 
effluent standard compliance, greater emphasis is placed on precision and accuracy. However, in the early stage, 
the accuracy does not significantly affect the control strategy.

Due to the non-linearity and uncertainty of the variation of pH value with time in SBR process, predict results 
are unstable because of different algorithm and over-fitting by ANN method. Due to the parallel information 
distribution and storage of structural preprocessing, RFR has strong fault tolerance and the ability to adapt to 
the external environment through learning. The ability of pattern recognition and comprehensive reasoning 
undoubtedly opens up a broad prospect for experimental research.

One limitation of this research is its exclusive focus on SBR methodology. However, there exists the potential 
to modify the procedure to cater to other technologies, particularly batch wastewater treatment systems. By 
increasing the frequency of data acquisition, such as collecting data every 5 minutes, it may be possible to predict 
factors up to five minutes ahead of time, thereby further enhancing the efficiency of the proposed methodology. 
To improve its practicality, ammonia and phosphorus could be included as prediction targets, as this would help 
balance organic and inorganic wastewater indicators.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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