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Fuzzy random evaluation of creep 
model of frozen soft soil in metro 
tunnel construction using artificial 
ground freezing technique
Yafeng Yao 1,2,3*, Yan Zhu 1,2, Dejian Shen 2, Zhemei Zhang 4 & Wei Wang 1

Mastering the creep characteristics of artificial frozen soil and scientifically evaluating the creep 
model is an important guarantee for the safety of subway tunnel freezing construction. Base 
on the construction of Nantong metro tunnel, the uniaxial compressive strength tests of the 
artificially frozen soft soil were carried out to obtain the influence law of temperature on the uniaxial 
compressive strength, and the uniaxial creep tests were carried out to obtain the influence law of 
temperature and stress grade on creep, at − 5, − 10 and − 15 °C. The experimental results show that 
the creep characteristics of frozen soft soil specimens have obvious fuzzy randomness. The traditional 
ant colony algorithm is improved by optimizing the pheromone fuzzification coefficient, which 
improves the search efficiency and avoids the local optimum effectively. Subsequently, the improved 
fuzzy ant colony algorithm is used to invert the flexibility parameters of commonly used permafrost 
creep models. The fuzzy weight of evaluation index and the fuzzy random evaluation matrix were 
determined to evaluate the optimal creep model under three different stress levels of frozen soft soil. 
Finally, the reliability of the fuzzy random evaluation method was verified by engineering measured 
data.

China’s urbanisation rate has continuously increased in recent years. The migration of population to cities has 
caused a rapid increase in the urban population, resulting in higher traffic pressure. Therefore, developing urban 
rail transit has been an effective means of improving urban travel. In the last 20 years, China’s urban rail transit 
has become one of the longest worldwide. Constructing rail transit has become the top development priority of 
national transportation, particularly in the coastal open cities with rapid economic development. However, the 
soil materials in coastal areas are soft and have time-varying characteristics owing to the influence of coastal 
marine geological  conditions1,2. In subway excavation, the soil around the tunnel is typically reinforced using 
the artificial freezing method during construction to isolate groundwater effectively and serve as a temporary 
 support3.

Soil frozen by artificial freezing is a highly complex porous building material comprising unfrozen water, ice, 
mineral particles, and cemented ice, among others. These anisotropic components interact with each other. Influ-
enced by uneven temperature fields and moisture migration, the creep of frozen soil in underground engineering 
shows apparent randomness and fuzziness. Therefore, it is necessary to understand the creep characteristics of 
artificially frozen soil, a unique building material, for the safety of the subway tunnel construction by freezing 
 method4,5. Moreover, according to the geological characteristics of soft coastal soil, scientifically differentiating 
and evaluating various creep models to represent the creep process is significant for the stability analysis of frozen 
tunnel walls. In addition, it is a topic in frozen soil mechanics that has gained substantial research  attention6,7.

Researchers worldwide have conducted studies on the creep model of frozen soil. Through field investiga-
tion and microstructure analysis, Cong et al.8 preliminarily discussed the creep failure mechanism of expansive 
soil slope after freeze–thaw (F–T) cycle and established the creep model of expansive soil used to predict the 
creep amount of each stage. He et al.9 performed a long-term graded loading creep test on salt rock samples. 
The improved isochronal stress–strain method and steady-state creep rate method were used to determine the 
long-term strength of salt rock, accurately describing the creep behaviour of salt rock. Zhou et al.10 performed 
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scanning electron microscope and graded loading creep tests on the deep soft rock with different magnifications 
and established a three-element non-linear creep model. The tests showed that the creep model was consist-
ent with the creep test data. Zhu et al.11 performed the unloading creep test, analysed the strain development 
with time under different confining pressures, and established a stress-related Merchant model to describe the 
unloading creep of soft clay. Guo et al.12 modified the Singh–Mitchell creep model by logarithmic function based 
on the compression test of two kinds of coal gangue. The analysis shows that this model can describe the creep 
characteristics of coal gangue. Liu et al.13 used fractional differential elements rather than the viscous element in 
the traditional Xiyuan model to obtain the non-linear creep parameters and model of rock. Experiments show 
that the new model can comprehensively describe the non-linear accelerated creep characteristics of rock. Yao 
et al.14 inverted the creep model parameters through compression and triaxial shear tests to describe the creep 
process from the primary to the third stage.

Summarising the above research results, researchers typically use the least square, Bayesian analysis, maxi-
mum likelihood estimation, and other methods based on random theory for parameter inversion of the creep 
 model15,16. Although such methods are simple and easy to use, their inversion efficiency is not high in practical 
engineering. In terms of the creep model evaluation and selection, the single evaluation index was typically 
used, or the weight of the evaluation index was given by experience. However, such an evaluation system lacks 
engineering rationality, and the real optimal model is often unavailable. In addition, most of the current analyses 
of the artificially frozen soil creep model only consider the randomness of parameters and constitutive relations. 
They do not consider the ambiguity of this unique building material in deep underground engineering.

Therefore, this study performed a uniaxial test analysis of soft frozen soil layer in subway tunnel engineer-
ing in the coastal area. The improved fuzzy ant colony algorithm was used to perform fuzzy random inversion 
of commonly used frozen soil creep model parameters. Accordingly, a double-index fuzzy random evaluation 
objective function was established. Combined with the actual working conditions of soft soil layers in subway 
tunnels in coastal areas, traditional creep models were evaluated comprehensively. Moreover, the optimal models 
under different conditions were obtained. This analysis was integrated into the intelligent calculation, considering 
randomness and fuzziness. This study provides a new and more effective method for the uncertainty analysis of 
artificially frozen soil mechanics.

Uniaxial test and analysis of soft soil samples
Specimens and test devices. Metro Line 1 in Nantong, one of the 14 coastal development cities in China, 
has a total length of 52.37 km, with 27 stations. The tunnel between stations along the underground line is con-
structed using the freezing method. To ensure that the uniaxial test results are representative of the project, the 
undisturbed soils used in the test were collected from three typical soft soil layers of the subway tunnel in the 
project constructed using the freezing method.

In the engineering investigation stage, the hole was turned vertically, the soil core sample was obtained from 
the corresponding sampling layer (as shown in Fig. 1), and the mud skin was scraped off and carefully sealed 
with the double-layer plastic preservation package. The sample label was attached to the record, sealed with tape, 
and tied with a string. The bundled soil sample was placed into the core box, matted with straw and shredded 
paper, and safely transported to the  laboratory17–19. Table 1 shows the physical and mechanical parameters of 
each soil sample layer.

The geotechnical chamber in the laboratory was opened carefully. The upper and lower layers were distin-
guished according to the natural deposition direction of soil samples. Subsequently, both ends were sawed flat. 
According to China’s artificially frozen soil test standard (MT/T593.6–2011), the sawed soil samples were made 
into Φ 50 mm × 100 mm specimens. The shape and parallelism errors were within 1.0% and 0.5 mm, respectively.

Figure 1.  Soil core samples.
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The WDT-100 artificially frozen soil test equipment shown in Fig. 2 was used for the uniaxial test. The 
stress–strain curve can be displayed in real-time in this test. The maximum loading capacity, minimum tempera-
ture, and accuracy of the device were 100 kN, − 50 °C, and 1%, respectively. A computer automatically controlled 
the loading and collected the data according to the set parameters.

Uniaxial compressive test of frozen soft soil. Before the test, the soft soil specimen was cured at the 
specified negative temperature for more than 48 h to ensure that the temperature of the specimen was uniform 
during the test. According to the MT/T593-2011 specification, uniaxial unconfined compressive strength tests of 
soft soil samples were performed at − 5, − 10, and − 15 °C by strain-controlled loading. Two displacement meters 
were symmetrically arranged on both sides of the specimen to measure the axial deformation of the specimen 
and calculate the axial strain by taking the average  value20,21. During the test, three specimens were used under 
each temperature condition. Tables 2, 3, 4 show the test results.

Table 1.  Primary physical parameters of soil sample layers.

Layer Soil sample Depth/m Water content/% Dry density/g/cm3 Plastic index

1 clay 16.5 21.53 1.50 12.6

2 silt 24.7 18.04 1.57 10.2

3 silt clay 32.3 24.71 1.43 11.8

Figure 2.  WTD-100 artificially frozen clay apparatus.

Table 2.  Results of frozen clay uniaxial compressive strength (Layer 1).

Temperature/°C  − 5  − 10  − 15

Uniaxial compressive strength/ MPa

1.73 2.42 3.24

1.64 2.62 3.13

1.79 2.50 3.41

Mean/MPa 1.72 2.51 3.26

Table 3.  Results of frozen silt uniaxial compressive strength (Layer 2).

Temperature/°C  − 5  − 10  − 15

Uniaxial compressive strength/MPa

1.95 3.21 4.22

2.13 3.19 4.10

2.28 3.30 4.34

Mean/MPa 2.12 3.23 4.22



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9468  | https://doi.org/10.1038/s41598-023-36322-x

www.nature.com/scientificreports/

The test results show that the compressive strength of frozen soft soil has a linear relationship with the tem-
perature change under uniaxial compression. The uniaxial compressive strength increased with a decrease in 
the specimen temperature.

Stress–strain relationship. To describe the stress–strain relationship during the uniaxial compressive 
test, two displacement meters were arranged symmetrically in the axial direction of the soft soil specimens. 
Subsequently, the relationship diagrams between axial deformation (strain ε) and load (axial stress σ) of the 
specimens at different temperatures were established, as shown in Figs. 3, 4, 5.

The test results show that the stress–strain curve of frozen soft soil first exhibited hardening characteristics 
and then demonstrated a softening trend. The failure deformation was between 10 and 20%, indicating shear 
expansion failure characteristics.

Table 4.  Results of frozen silty clay uniaxial compressive strength (Layer 3).

Temperature/°C  − 5  − 10  − 15

Uniaxial compressive strength/ MPa

2.82 4.13 4.48

2.46 3.92 4.69

2.76 3.95 4.82

Mean/MPa 2.68 4.00 4.66

(a) -5 ℃ (b) -10 ℃ (c) -15 ℃
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Figure 3.  Stress–strain relationship of clay (Layer 1).
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Figure 4.  Stress–strain relationship of silt (Layer 2).
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Uniaxial creep experiment of frozen soft soil. At the three temperature levels of − 5, − 10, and − 15 °C, 
the multi-specimen method was used to perform uniaxial creep tests with the stress levels of 0.3 σc , 0.5 σc and 0.7 
σc respectively, where σc is the uniaxial compressive strength, determined according to Tables 2, 3, 4.

Before the creep test, the specimen was placed between the top and bottom pressure heads of the creep 
apparatus, and the specimen surface was sealed to prevent changes in the water content. The dynamometer and 
displacement meter were well installed and connected. Then, the loading system was started, and the specimen 
was quickly loaded to the required stress level. During the test, the specimen was subjected to a constant stress, 
and the time and strain values of the whole process were recorded. When the specimens reached stable deforma-
tion ( dεdt ≤ 0.0005h−1 ) or the deformation rate approached a constant ( 

∣

∣

∣

dε2

dt2

∣

∣

∣
≤ 0.0005h−2 ), the creep tests were 

 stopped22,23. Figures 6, 7, 8 show the creep curves.
The creep value of the frozen specimen decreased with a decrease in the temperature after reaching stability. 

Under low stress (0.3 σc ) and medium stress (0.5 σc ) levels, the entire creep process was in a stable state (stable 
creep). When the stress level was high (0.7 σc ), the entire creep process was unstable (accelerated creep). How-
ever, from the overall analysis of the test samples, the creep characteristics of the frozen soil samples in the soft 
soil layer have apparent fuzzy randomness. Figure 9 shows the creep curve fuzzy random distributions under 
different stress levels.

There are many uncertainties and fuzzy random distributions in actual underground geotechnical engineer-
ing. To avoid the limitations of the test and ensure the engineering reliability of the results, this study used a 
fuzzy random analysis method based on an intelligent calculation to perform effective inversion of frozen soil 
creep parameters and scientific evaluation of creep models.

Improved fuzzy random ant colony algorithm
Traditional ant colony algorithm. In the 1990s, Italian scholar M. Dorigo proposed the ant colony algo-
rithm, an intelligent algorithm developed by simulating the foraging behaviour of real ant colonies in nature, 
particularly suitable for solving non-linear problems by random  search24–26.
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Figure 5.  Stress–strain relationship of silt clay (Layer 3).
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According to the target constraints, each ant starts from the current city (the city is called the initial state) and 
follows specific rules to the next city (the city is a feasible solution or part of the solution). In the searching and 
solving processes, each ant searches for the optimal solution according to the scale characteristics of the problem 
and the pheromone tracks left by other ants. These trajectories contain heuristic information, telling the ants at 
the current location the search path of the global solution. According to this scheme, each ant greedily searches 
for feasible solutions and lists one solution according to the objective constraints as the current optimal solu-
tion. However, each ant in the ant colony will have different optimal solutions simultaneously. Accordingly, the 
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Figure 7.  Creep curves of silt (Layer 2).
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Figure 9.  Fuzzy random distribution of creep curves under different stress levels.
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global information feedback will be used to make the problem scale evolve toward the global optimal direction 
and obtain the optimal solution.

However, the traditional ant colony algorithm has some disadvantages when solving actual large-scale prob-
lems. For example, the convergence time is long, and the population diversity is difficult to maintain, making the 
algorithm easy to fall into the local optimal solution, particularly when dealing with fuzzy  problems27.

Fuzzy random improvement of ant colony algorithm. The traditional ant colony algorithm was 
improved to address these  limitations28–30. The improvements are summarised as follows:

1. At the beginning of the ant colony search, heuristic pheromones are in the accumulation period. During this 
time, the pheromone gap should not be widened to avoid being trapped in the local optimum. With the initial 
formation of the pheromone track and increase in iteration times, the gap between pheromones should be 
increased randomly to avoid the local optimal solution and obtain a better global optimal solution.

2. Previously, pheromones were only updated according to the path travelled by ants in the current optimal 
solution. The improved fuzzy random ant colony algorithm is based on the current optimal solution of each 
ant and round counter for fuzzy calculation. Accordingly, the pheromone update amount of each ant is 
obtained comprehensively.

According to the improvement of the above two aspects, the process of the fuzzy random ant colony algo-
rithm is as follows:

1. Set the number of iterations Nc to 0. The pheromone function τij and increment �τ kij are initialised.
2. The starting point set is initialised, and each ant travels from city i to j according to the probability Pkij(t) . 

The city j is then added to the vertex set. Cities to travel next cannot be selected from the elements in the 
current vertex set, and so on. The travel probability of ants is shown in Eq. (1).

where the random number α is the relative importance of pheromones, ηij is the heuristic factor, random 
number β is the relative importance of heuristic factors, and Jk(i) represents the vertex set that ant k will 
reach in the next iteration.

3. The objective function of each ant Yk(k = 1, · · ·,m) is calculated according to the specific requirements, and 
the current optimal solution is recorded at every iteration.

4. The fuzzy calculation is performed according to the current optimal solution of each ant and value of the 
travel counter, and pheromone updating is considered comprehensively. The updated pheromone amount 
is shown in Eq. (2).

where ρ(0 < ρ < 1) represents the evaporation coefficient of pheromones on the traversal path. c̃ is the 
optimal pheromone fuzzification coefficient, expressed as follows:

where τ(Qbest) , τ(Qworst) , and τ(Qcurrent) represent the pheromone quantity of the optimal, worst, and cur-
rent solutions of each travelling ant, respectively.

5. After a round of iteration, the pheromone increment of each side is reset to 0, Nc ← Nc + 1.
6. If Nc < Ncmax or each ant finds the optimal solution differently, proceed to Step 2 and continue. Otherwise, 

stop the iteration and find the current optimal solution, which is the global optimal solution.

Figure 10 summarises the flow of the improved fuzzy random ant colony algorithm.

Fuzzy random analysis of creep model of frozen soft soil
Creep compliance and compliance parameters. Many previous theoretical and practical studies have 
shown that the creep of frozen soil is an essential aspect of rheological  properties31. Unlike plastic deformation, 
creep does not require the stress to exceed the elastic limit; only if the stress is applied for a long enough time to 
occur even when the force applied is less than the elastic limit. Therefore, understanding the creep characteristics 
of frozen soil and effectively determining and studying the creep model is necessary.

Various rock and soil mass creep models can be formed through different series and parallel connections 
of essential elements, such as springs, sticky pots, and friction plates. For example, the Kelvin creep model is 
shown in Fig. 11.

According to the principle of superposition, the Kelvin creep equation can be expressed as

(1)Pij(t) =







[τij(t)]
α [ηij(t)]

β

�

s∈Jk (i)

[τij(t)]α [ηij(t)]β
j ∈ Jk(i)

0 j /∈ Jk(i)

,

(2)τij(t + n) = ρ · τij(n)+ c̃k
∑

k

�τ kij ,

(3)c̃ =
|τ(Qcurrent)− τ(Qworst)|

|τ(Qbest)− τ(Qworst)|
, c̃ ∈ [0, 1]
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where σ is the constant stress of the test, t is the action time, E1 is the elastic modulus of spring in the Kelvin 
model, Ek is the elastic modulus of the parallel spring in the model, and η is the viscosity coefficient of the paral-
lel clay pot. η and E1 are the creep parameters to be retrieved according to different rock and soil conditions. 
Without loss of generality, all creep equations can be expressed in the following  form32–34 by considering the 
primary creep factors and ignoring the minor parameters:

Using a differential operator, the creep compliance J(t) is expressed by the following general formula of 
partial differential equation:

The above equation can be simplified as

(4)εt=
σ

Ek

[

1− e
−

Ek
η
t
]

+
σ

E1

(5)ε(t) =

l
∫

0

J(t − τ)
dσ

dτ
dτ

(6)p0 + p1
∂σ

∂
+ p2

∂2σ

∂2
+ · · · + pn

∂nσ

∂n
= q0ε + q1

∂ε

∂
+ q2

∂2ε

∂2
+ · · · + qm

∂mε

εm
.

Figure 10.  Flow chart of fuzzy random ant colony algorithm.

Figure 11.  Kelvin model.
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where P =
n
∑

k=0

pk
dk

dtk
 , Q =

m
∑

k=0

qk
dk

dtk .

The following equation is derived by taking the Laplace transform of the partial differential equation J(t) for 
creep compliance:

The Laplace transform of Eq. (9) is continued to derive the final creep compliance expressed as

where p =
{

p1, p2, . . . , pn
}

 , and q =
{

q0, q1, . . . , qm
}

 are the corresponding flexibility parameters.
According to the above methods, the primary creep compliance parameters of several commonly used creep 

models are shown in Table 5.

Fuzzy ant colony algorithm inversion parameters. According to the uniaxial compression and uni-
axial creep test results of frozen soft soil specimens in this study, the deformation trend and data were similar at 
different temperatures corresponding to the same stress  level35–38. For example, at − 5 °C, − 10 °C, and − 15 °C, the 
final strains at different stress levels were as follows: With a 0.3σc stress level, the final strains of clay were 2.49%, 
2.30%, and 1.69%, respectively, those of silt were 2.60%, 2.09%, and 1.79%, respectively, and those of silty clay is 
1.50%, 2.29%, and 2.20%, respectively; With a 0.5σc stress level, the final strains of clay were 4.58%, 4.39%, and 
3.79%, respectively, those of silt were 4.59%, 4.18%, and 3.60%, respectively, and those of silty clay were 3.99%, 
4.30%, and 4.48%, respectively; and with a 0.7σc stress level, the final strains of clay were 6.80%, 6.20% and 
5.70%, respectively, those of silt were 6.60%, 6.30%, and 5.40%, respectively, and those of silty clay were 6.00%, 
6.60%, and 6.90%, respectively. Therefore, taking − 10 °C as an example, a fuzzy ant colony algorithm was used 
to identify the creep compliance parameters of each model in Table 3 under three stress levels; the rule can be 
extended to − 5 °C and − 15 °C.

The number of ants was set as m = 100 , α = 2 , β = 5 , and ρ = 0.75 . Subsequently, an ant random param-
eter given a set of compliance was initialised. The initial information τij and value-added �τ kij were calculated 
using Eq. (2), and the pheromone compliance parameter changes were updated. c̃ is the blur coefficient of the 
pheromone of the current optimal solution in the travel process. After several iterations of the algorithm, the 
final global optimal solution was derived as the fuzzy random inversion result of the flexibility parameter, as 
shown in Table 6.

Improvement of the objective function. Before the improvement, model evaluation in engineering 
primarily relied on the accuracy index, and the quality of a model was assumed to be completely dependent on 
its overall calculation  accuracy39,40. Therefore, the traditional evaluation objective function is expressed as

where yi is the curve fitting value in the case i and y′i is the corresponding observed value. The model is optimal 
when Y(t) obtains the minimum value.

The analysis revealed that evaluating the model from a single index is unreasonable, and assuming a model 
with high accuracy and complex calculation is  unideal41,42. Therefore, the model evaluation should adopt a 
multi-index comprehensive analysis. In this study, the fuzzy random comprehensive evaluation of the creep 
model was performed based on the dual indexes of measurement coefficient and model algorithm complexity. 
Subsequently, a new model evaluation objective function was established, changing the previous multi-index 
evaluation objective function that completely depended on expert experience. Considering that the definition 
of the evaluation index is ambiguous, the improved fuzzy weighted objective evaluation function of the double 
index is expressed as follows:

(7)Pσ = Qε,

(8)J(t) =
P(t)

tQ(t)
=

1+ p1t + p2t
2 + ...+ pnt

n

t(q0 + q1t + q2t2 + ...+ qmtm)
.

(9)J(t) = ϕ(t, p, q),

(10)minY(t) =

t1
∑

i=to

(yi − y′i)
2, t ∈ (0,+∞)

Table 5.  Creep compliance parameters of each creep model.

Creep damage model Creep compliance parameter

Kelvin q0 = E1, q1 = η

Generalised Kelvin p1 =
η

E1+E2
, q0 =

E1E2
E1+E2

, q1 =
E1

E1+E2
η

Jeffreys p1 =
η2
E1
, q1 = η1 + η2, q2 =

η1η2
E1

Burgers p1 =
η1
E1

+
η1+η2
E2

, p2 =
E1+E2
E1E2

, q1 = η1, q2 =
η1η2
E2

Nishihara (σo < σs) p1 =
η

E1+E2
, q0 =

E1E2
E1+E2

, q1 =
E1

E1+E2
η

Nishihara (σo > σs) p1 =
η2
E1

+
η1
E2

+
η2
E2
, p2 =

η1η2
E1E2

, q1 = η2, q2 =
η1η2
E1
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where µ1,µ2 are the fuzzy membership functions of each index, R(n) is the measurement coefficient index, O(n) 
is the complexity index of a model algorithm, and ω̃1, ω̃2 are the fuzzy weights of each index.

Fuzzy identification and comprehensive evaluation of creep model. According to the inversion 
results of the model parameters in Table 6, the generalised Kelvin model was optimal under low stress only 
considering the measurement coefficient index. The Burgers and westerner models were optimal under medium 
and high stresses, respectively. The improved objective function of Eq. (11) was used for further comprehensive 
evaluation. Moreover, the weights of the fuzzy indexes ω̃1 and ω̃2 were calculated by combining the two indexes 
of measured coefficient R(n) and algorithm complexity O(n) . The fuzzy comprehensive evaluation matrix was 
established. Finally, the optimal model under the three stress conditions was comprehensively analysed by fuzzy 
evaluation.

The measurement coefficient was used to represent the accuracy of the model. The number of parameters 
was used to represent the complexity of the calculation. The fuzzy evaluation matrix of six commonly used creep 
models under three stress conditions is expressed as

where A, B, and C are evaluation matrices under low, medium, and high-stress conditions, respectively. The 
first-row vector of each matrix represents the algorithm complexity of the creep model under the corresponding 
stress. The second-row vector represents the measured coefficient of the model under the corresponding stress. 
The matrix column vectors represent the corresponding indexes of the six models.

Evaluation matrix dimensionless fuzzification. According to the theory of fuzzy mathematics, it is necessary to 
normalise the elements of different dimensions of each index in the matrix.

Complexity processing:

Measurement coefficient treatment:

(11)min F(n) = ω̃1

∑

µ1R(n)+ ω̃2

∑

µ2O(n),

A =

[

2 3 3 4 3 4
0.967 0.978 0.894 0.921 0.942 0.939

]

B =

[

2 3 3 4 3 4
0.934 0.964 0.970 0.972 0.957 0.948

]

C =

[

2 3 3 4 4 4

0.881 0.982 0.937 0.986 0.995 0.929

]

(12)aij =
xi1 ∧ xi2 ∧ · · · ∧ xi6

xij
, xij > 0.

Table 6.  Results of fuzzy random inversion of parameters for each creep model.

Creep damage model Load factor

Parameter inversion result

Coefficient of determination Number of parametersp1 p2 q0 q1 q2

Kelvin

0.3 – – 0.29 0.59 – 0.967

20.5 – – 0.51 0.33 – 0.934

0.7 – – 0.74 0.28 – 0.881

Generalised Kelvin

0.3 0.57 – 0.32 0.62 – 0.978

30.5 0.69 – 0.71 0.44 – 0.964

0.7 0.81 – 0.93 0.37 – 0.982

Jeffreys

0.3 0.92 – – 0.66 0.76 0.894

30.5 1.31 – – 1.48 0.98 0.970

0.7 1.74 – – 1.69 1.53 0.937

Burgers

0.3 0.52 1.26 – 0.43 1.13 0.921

40.5 0.84 1.74 – 0.57 1.52 0.972

0.7 1.03 2.37 – 1.91 2.86 0.986

Nishihara

0.3 0.98 – 0.76 0.35 – 0.942
3

0.5 0.51 – 0.41 0.23 – 0.957

0.7 0.72 1.43 – 0.54 1.38 0.995 4

Murayama Shuo Lang

0.3 0.78 0.92 – 0.63 1.47 0.939

40.5 1.19 1.55 – 1.32 1.15 0.948

0.7 2.64 1.80 – 2.09 3.83 0.929
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The normalised fuzzy evaluation matrix is expressed as 

Determining the fuzzy weight of the evaluation index. First, the mean and standard deviations of each row vec-
tor of the three evaluation matrices were calculated using the following equation:

Subsequently, the coefficient of variation was calculated using the following equation:

Finally, the fuzzy weight coefficients under three kinds of stresses were obtained as follows:
Weight of low-stress index: ω̃1 = 0.274 , ω̃2 = 0.661.
Weight of medium-stress index: ω̃1 = 0.274 , ω̃2 = 0.617.
Weight of high-stress index:ω̃1 = 0.305 , ω̃2 = 0.623.

Fuzzy random evaluation matrix. The fuzzy random evaluation matrix D row vector can be obtained by mul-
tiplying the standardised fuzzy evaluation matrix by the corresponding fuzzy weight of the evaluation index.

The final fuzzy random evaluation matrix D was obtained using the improved objective function.

The row vector of fuzzy random evaluation matrix D represents the fuzzy random comprehensive evalua-
tion index of the creep model under low, medium, and high-stress conditions. The column vectors represent six 
commonly used creep models. According to the maximum fuzzy membership degree principle, the results show 
that the Kelvin, Jeffreys, and Nishihara models were optimal under low, medium, and high stresses, respectively. 
The evaluation result is different from that of a single index.

Efficiency analysis of fuzzy ant colony algorithm. Through simulations, the fuzzy ant colony algo-
rithm, traditional ant colony algorithm, and least square method were used to invert the flexibility parameters of 
the Kelvin model. The inversion efficiencies of the three algorithms were compared. The experimental platform 
host configuration was as follows: Intel Xeon E-2224G processor, 32G memory, 2TG hard disk, and 1000 M 

(13)bij =
xij − (xij)min

(xij)max − (xij)min
, xij > 0.

A′ =

[

1.000 0.667 0.667 0.500 0.667 0.500

0.869 1.000 0.000 0.321 0.571 0.536

]

B′ =

[

1.000 0.667 0.667 0.500 0.667 0.500

0.000 0.789 0.947 1.000 0.605 0.368

]

C′ =

[

1.000 0.667 0.667 0.500 0.500 0.500

0.000 0.886 0.491 0.921 1.000 0.421

]

(14)
xi =

1

6

6
∑

j=1

xij , si =

√

√

√

√

√

6
∑

j=1

(xij − xi)2

5
, i = 1, 2.

(15)ω̃i = si/xi , i = 1, 2.

D1 =
[

ω̃1 ω̃2

]

× A
′ =

[

0.274 0.661
]

×

[

1.000 0.667 0.667 0.500 0.667 0.500

0.869 1.000 0.000 0.321 0.571 0.536

]

=
[

0.848 0.843 0.183 0.349 0.560 0.491
]

D2 =
[

ω̃1 ω̃2

]

× B
′ =

[

0.274 0.617
]

×

[

1.000 0.667 0.667 0.500 0.667 0.500

0.000 0.789 0.947 1.000 0.605 0.368

]

=
[

0.274 0.669 0.767 0.754 0.556 0.364
]

D3 =
[

ω̃1 ω̃2

]

× C
′ =

[

0.305 0.623
]

×

[

1.000 0.667 0.667 0.500 0.500 0.500

0.000 0.886 0.491 0.921 1.000 0.421

]

=
[

0.305 0.755 0.509 0.726 0.776 0.415
]

D =

[

0.848 0.843 0.183 0.349 0.560 0.491

0.274 0.669 0.767 0.754 0.556 0.364

0.305 0.755 0.509 0.726 0.776 0.415

]
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network card, Red Hat Linux 9.0 software platform, and MATLAB 2021A debugging software. Figure 12 shows 
the test results.

The results show that the fuzzy ant colony algorithm converged faster with an increase in the number of 
iterations, reducing the error. The fuzzy ant colony algorithm is more robust, convergent, and efficient than 
other algorithms.

Comparison between creep model values and engineering test values. To verify the conclusion 
of the fuzzy random evaluation of the creep model, soft soil layers with similar working conditions in the con-
struction project of Nantong Metro Line 2 were selected as verification test materials. The creep test of frozen soil 
was performed according to the test methods and specifications mentioned above. The creep constitutive model 
values at different temperatures and stress levels were compared with the engineering test values. Figure  13 
shows the results.

The comparison results show that the creep model values after parameter optimization are close to the test 
values under different temperature and stress conditions. Among them, the Kelvin, Jeffreys and Nishihara model 
values fit the test values best under low, medium and high stress conditions, respectively. These results are consist-
ent with the conclusion obtained from the fuzzy random comprehensive evaluation in Sect. 3.4.3. This proves that 
the fuzzy random evaluation method of the creep model of frozen soft soil optimised in this study is reasonable.

Conclusion
A series of uniaxial tests were performed on artificially frozen soft soil during the construction period of the 
subway tunnel freezing method. The uniaxial compressive strength and creep law were obtained under different 
temperatures and stress levels. Based on the fuzzy randomness of underground geotechnical engineering, the 
improved fuzzy ant colony algorithm was used for parameter inversion and model evaluation. The following 
conclusions were drawn:

1. Under uniaxial compression conditions, the compressive strength of frozen soft soil had a linear relationship 
with temperature. The uniaxial compressive strength increased with a decrease in temperature. The failure 
of frozen soft soil primarily exhibited dilatancy failure characteristics. Under uniaxial creep conditions, the 
creep value of frozen soft soil decreased with a decrease in temperature when it reached stability. Under low 
and medium stress, the creep was categorised as a stable creep. Under high stress, the creep was categorised 
as an accelerated creep.

2. The optimised pheromone fuzzification coefficient was used to improve the traditional ant colony algorithm. 
The improved fuzzy ant colony algorithm was used to perform fuzzy random inversion of the flexibility 
parameters of the frozen soft soil creep model. The improved algorithm is more reasonable, robust, and 
efficient than the traditional parameter inversion algorithm.

M
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n
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u
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e
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ro
r

The number of iterations

Fuzzy ant colony algorithm

Traditional ant colony algorithm

Least square method

Figure 12.  Comparison chart of algorithm efficiency.
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Figure 13.  Comparison of various creep constitutive model values with engineering test values.
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3. The fuzzy weighted objective function with dual indexes was established to perform a fuzzy random evalu-
ation on standard creep models. The comprehensive evaluation with dual indexes shows that the Kelvin, 
Jeffreys, and Nishihara models were optimal under low, medium, and high-stress conditions, respectively.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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