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Physics‑assisted machine learning 
methods for predicting the splitting 
tensile strength of recycled 
aggregate concrete
Jianguo Liu , Xiangyu Han , Yin Pan , Kai Cui  & Qinghua Xiao *

Recycled aggregate concrete (RAC) has become a popular building material due to its eco‑friendly 
features, but the difficulty in predicting the crack resistance of RAC is increasingly impeding its 
application. In this study, splitting tensile strength is adopted to describe the crack resistance ability 
of RAC, and physics‑assisted machine learning (ML) methods are used to construct the predictive 
models for the splitting tensile strength of RAC. The results show that the AdaBoost model has 
excellent predictive performance with the help of the Firefly algorithm, and physical assistance plays 
a remarkable role in selecting features and verifying the ML models. Due to the limit in data size and 
the generalizability of the model, the dataset should be supplemented with more representative data, 
and an algorithm for small sample sizes could be studied in the future.

According to reports from the National Development and Reform Commission of China, the total production 
of commercial concrete exceeded 32 billion cubic meters in  20211. Meanwhile, with the demolition of old and 
abandoned buildings, more than 2 billion tons of concrete waste has been produced. Hence, recycled aggregate 
concrete (RAC), which uses recycled concrete waste to replace some coarse aggregates, has become a new trend 
in concrete production. Normally, the cost of using recycled aggregate in concrete is generally lower than that 
of using new materials. RAC also contributes to reducing the amount of waste that goes to landfills as well as the 
amounts of energy and carbon emissions needed to produce new materials.

During the recycled aggregate manufacturing process, the obtained recycled aggregate always consists of 
natural aggregate and hardened mortar. Hence, compared with that of natural aggregate, the recycled aggregate 
is weaker due to the weakness of hardened mortar and the interfaces between the mortar and natural aggregate. 
Furthermore, a large number of cracks are generated inside the recycled aggregate during the crushing  process2,3. 
As shown in Fig. 1, various weak regions are introduced into recycled aggregate concrete, and such material 
is peculiarly prone to cracking when exposed to external loads, which severely restricts its application. Hence, 
compared with other mechanical properties, the cracking properties of RAC deserve more attention.

The presence of various fibers improves the ability of fiber-reinforced RAC to resist  cracking4–6. Akca et al.7 
applied polypropylene fibers to reinforce RAC and proved that both flexural tensile strength and splitting tensile 
strength increase with increasing fiber content. Ali et al.8 compared the mechanical properties of glass fiber-
reinforced RAC and plain RAC, and an obvious increase was witnessed in the splitting tensile strength of fiber-
reinforced recycled aggregate concrete. Gao et al.9 studied the performance of steel fiber-reinforced RAC, and 
the flexural strength was improved significantly with increasing steel fiber volume fraction. It can be concluded 
that the fibers could efficiently improve the cracking resistance of RAC, but the mechanism of reinforcement is 
affected by various factors.

For plain concrete, various methods have been proposed to predict its cracking performance, such as fracture 
tests, numerical methods and mechanical  models10–13, and different factors are studied to guarantee the prediction 
reliability. Even so, it is still difficult to precisely describe the cracking characteristics of concrete. Considering 
the influence of recycled aggregate, the prediction of the cracking behavior of RAC, especially of RAC with 
fibers, is more complex. Machine learning methods are novel approaches for prediction  issues14–16. Pan and 
Amin attempted to use machine learning (ML) to predict the cracking characteristics of RAC 17,18 and established 
several ML models with superior performance. However, during the construction of ML models, the physical 
meaning of the model is neglected, and the influence of fibers is not considered.
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In this study, machine learning approaches are combined with existing mechanical models and physical 
experiments, and a precise prediction of the splitting tensile strength of RAC is attempted. This paper is 
arranged as shown in Fig. 2 and includes (1) the construction of a database with the help of physical theories, 
(2) the illustration of several machine learning algorithms used in the current study, (3) the presentation of 
the construction process of predictive models, (4) the testing of the performance of predictive models with 
mathematical and physical methods and (5) the presentation of conclusions.

Methods
Physics‑assisted construction of the database. For concrete materials, a splitting test is always 
adopted to observe their cracking behavior, and the splitting tensile strength is applied to evaluate their ability to 
resist cracking. Hence, the splitting tensile strength of RAC is selected as the predicted target (output variables) 
to represent the cracking performance, and various influencing factors are regarded as the input variables. These 
two types of variables compromise machine learning databases.

As the first step of machine learning, the selection of variables and collection of data are significantly 
important, which affects the prediction accuracy and generalizability of ML models. For conventional ML models, 
the physical meaning of variables is always neglected, leading to blind ML models that cannot handle cases 
outside of the constructed database. Therefore, physical experiments and existing mechanical models are used 
to assist in the construction of the database.

Since there are no well-established mechanical models for RAC, plain concrete cracking models are referenced 
here. According to well-known mechanical models, such as the fictitious-crack model, size effect model, and 
boundary effect model, the cracking/fracture properties of concrete are irrelevant to the specimen geometries 
but determined by mixture  design13,19,20. Hence, the contents of water, cement and coarse aggregate and the size 
of aggregate are chosen as the input variables. Moreover, based on published  studies4,6,21–23, the splitting tensile 
strength is also affected by other factors, such as the characteristics of the recycled aggregate (content, density, 
water absorption, size), the fiber types and the volume fractions.

Based on the established guidance for selecting features, a total of 257 data points were collected from the 
published  literature2,4–6,8,9,21–44. It should be noted that in these collected experiments, the testing process follows 
the requirements of relevant standards, such as the Standard Test Method for Splitting Tensile Strength of 
Cylindrical Concrete Specimens (ASTM C496/C496M-2017) and the Standard for Test Method of Mechanical 
Properties on Ordinary Concrete (GB/T 20081-2002), and the obtained splitting tensile strength can be regarded 
as the material property. In most experiments on RAC, to eliminate the entropy factor in the results, natural and 

Figure 1.  Various weak regions of recycled aggregate concrete.

Figure 2.  Flowchart of the physics-assisted machine learning process in this study.
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recycled aggregates are always sieved together and have the same size distribution, and the sizes of natural and 
recycled aggregates are incorporated into the index of the maximum size of coarse aggregates. Consequently, the 
mathematical characteristics of 10 numeric variables and one nonnumeric variable are listed in Table 1. These 
include water, cement, NCA (natural concrete aggregate) content, RCA (recycled concrete aggregate) content, SP 
(superplasticizer),  Dmax_RCA (maximum aggregate size of RCA), ρRCA  (density of RCA),  WRCA  (water absorption 
of RCA), fibers, STS (splitting tensile strength) and fiber type. A scattered distribution can be found in these 
numeric variables, and their values are quite different. Hence, to guarantee that the values of each feature can 
be reasonably used during the training process, preprocessing work is implemented for these data. First, the 
missing values are treated with K-nearest neighbor (KNN) methods. Then, to ensure the equal status of different 
features, min–max normalization is applied to these variables, as shown in Eq. (1), where xmin and xmax are the 
minimum and maximum values of feature x, respectively.

Next, since the fiber type value is nonnumeric and cannot be directly used in the training or testing process, 
these values are converted into numeric values. Finally, the correlation between 9 numeric input variables is 
analyzed with a correlation matrix, as shown in Fig. 3. There is a strong relationship between the NCA and RCA 
content. From the physics perspective, to ensure the workability and mechanical properties of recycled aggregate 
concrete, the total contents of coarse aggregate are determined using a mixture design, and the NCA and RCA 
contents are directly related. Hence, the features of NCA are dropped here. Consequently, 8 numeric features 
and 1 nonnumeric feature are identified as the input variables, and the splitting tensile strength is regarded as 
the output variable.

Machine learning algorithms. 

1. Classification and regression tree (CART) As the most frequently used supervised machine learning method, 
the classification and regression tree (CART) algorithm can be easily applied in classification and regression 
 problems45. The difference between a classification tree and a regression tree is the type of target values. 
When the target belongs to a discrete variable, the CART is a classification tree. When the target belongs to 
a consecutive variable, the CART is a regression tree. In this study, the CART is a regression tree.

A conventional CART is composed of a root node, a decision node and a leaf node, as shown in Fig. 4. The 
root node that contains all the data is split into two subsets following the recursive binary splitting criterion. 
During the splitting procedure, the data in each subset should be kept as homogeneous as possible. Then, the 
decision node is split into two sets following the same principle, and the complexity of the variance in each subset 
is reduced, but the model becomes increasingly complicated. Such a partitioning process will stop when one of 
the following conditions is met: (1) when the data in each leaf node share the same characteristics or (2) when 
the depth of the tree reaches its maximum value. Consequently, a fully grown tree is generated.

For a fully grown tree, a predictive model often has excellent performance during the training process but 
cannot precisely predict the target values with the testing dataset. This overfitting phenomenon is caused by the 
complex structure of CART. Hence, another essential procedure of the CART algorithm is pruning work. First, 
redundant branches are removed from the bottom of the fully grown tree, forming a sequence that consists of 
different subtrees. Then, the cross-validation method is used to test the performance of subtrees and select the 
optimum subtree as the ultimate predictive model. During the training of each CART model, the following 
parameters should be determined: max_depth, min_samples_split, and min_samples_leaf.

2. Support vector regression (SVR).

(1)x′i =
xi − xmin

xmax − xmin

(i = 1, 2, 3 . . . n)

Table 1.  The characteristics of the collected data.

Item Mean Minimum Maximum Standard deviation

Water (kg/m3) 185.6 98.3 343.5 37.4

Cement (kg/m3) 369.9 158.0 600.0 62.0

NCA (kg/m3) 344.8 0 1143.0 363.6

RCA (kg/m3) 732.8 57.0 1474.0 387.4

SP (kg/m3) 1.0 0 7.8 1.6

Dmax_RCA (mm) 18.1 10.0 25.0 4.3 k

ρRCA  (kg/m3) 2431.0 2010.0 2661.0 156.7

WRCA  (%) 5.4 1.9 10.9 1.8

Fibers (vol. %) 0.3 0 2.0 0.4

STS (MPa) 3.1 1.4 7.6 1.1

Fiber type Steel fiber, Carbon fiber, Polypropylene fiber, Basalt fiber, 
Glass fiber, Woolen fiber
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Support vector regression (SVR) is a kind of support vector machine algorithm that addresses regression 
 problems46. Due to its high prediction accuracy and lower computational power requirements, SVR has been 
widely used in various fields.

The aim of SVR is to search a hyperplane that distinctly classifies the data points in the training data, and the 
dimensions of the hyperplane are determined by the number of features. There are various candidate hyperplanes, 
and the optimal plane often has the maximum distance between data points of both classes so that the data points 
can be partitioned with more confidence, as shown in Fig. 5. The data points that are close to the hyperplane 
are referred to as support vectors, and the position and orientation of the hyperplane are determined by these 
vectors. The two lines that are drawn around the hyperplane at a distance of ε are referred to as boundary lines, 
and they are used to create a margin between the data points. The value of ε reflects the tolerance of error in the 
training process, and a higher ε indicates a higher generalizability. Moreover, another essential part of SVR is 
the kernel, which consists of a set of mathematical functions. With the assistance of different kernels, the data 
can be transformed into the required form so that the hyperplane can be found in a higher dimensional space.

From the description of the SVR algorithm, it can be found that SVR is easy to implement and robust to 
outliers. However, the model will have poor performance when the dataset has too much noise. For one given 
SVR model, the C_penelty, kernel and tolerance should be determined during training.

Figure 3.  Correlation analysis of 9 numeric input variables.

Figure 4.  The schematic of CART.
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3. Adaptive boosting (AdaBoost).

During the construction of machine learning models, it is essential to balance the prediction accuracy and 
generalizability of ML models. Prediction models with higher accuracy always have poor generalizability, and 
vice versa. Hence, ensemble learning algorithms are proposed to solve such problems.

The AdaBoost algorithm is a kind of ensemble learning algorithm that integrates various base  learners47. As 
shown in Fig. 6, the procedure of Adaboost can be summarized as follows: (1) evenly assign the weights of all 
data points; (2) use the data to train the base learner and calculate its error; (3) adjust the weights of the data 
point by reducing the weights of accurately predicted data and increasing the weights of incorrectly predicted 
data; (4) repeat Step (2) and Step (3); and (5) integrate these base learners into the ensembled learner. The base 
learners with low error rates will have larger weights, and the base learners with high error rates will have smaller 
weights. Consequently, prediction models with good robustness are established. During construction of Adaboost 
models, the max_depth, min_samples_split, min_samples_leaf, n_estimators and loss are needed.

4. Random forest (RF).

The random forest (RF) algorithm is another important ensemble algorithm that was proposed by  Breiman48. 
To improve the prediction accuracy and control overfitting, the bagging technique is applied to average the 
parallel base learners in RF.

As shown in Fig. 7, the random forest algorithm consists of sampling, model training, predicting and 
averaging procedures. First, the data points are randomly selected to construct subsets with replacements, and 
overlaps exist between different subsets. Next, during the growth of trees, the attributes to split the nodes are 
randomly selected. Thus, the pruning process is not necessary here. Then, these isolated base learners are used 
to implement prediction work. Finally, for regression problems, the base learners are integrated by averaging the 
predictive results in each iteration. It should be noted that the randomness of RF is introduced by data sampling 
and node splitting, and all the base learners are independent. Moreover, the following parameters could be set 
for better RF performance, such as max_depth, min_samples_split, min_samples_leaf, and n_estimators.

Figure 5.  Schematic of the SVR algorithm.

Figure 6.  The procedure of the Adaboost algorithm.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9078  | https://doi.org/10.1038/s41598-023-36303-0

www.nature.com/scientificreports/

Construction of predictive models. As illustrated in the above section, a total of 257 data points are 
prepared in the current study. To train and test the predictive models, the dataset, which consists of input 
variables and output variables, should be split into two subsets, a training set and a testing set, and the ratio 
between the training set and testing set is set as 0.7:0.3. Namely, 179 cases are assigned to construct the predictive 
models, and the remaining 78 cases are used to evaluate the model performance. It should be noted that to 
guarantee the generalizability of the predictive models, all the data should be randomly shuffled before dataset 
splitting.

During the training process, the predictive models are always constructed in a complex form, leading to 
different performance during training and testing. Hence, K-fold cross-validation is proposed to solve such 
problems by introducing an extra validation procedure during  training49. First, the training subset is evenly 
partitioned into K parts. Next, in the first iteration, the former K−1 parts are applied to search the parameters 
of the predictive models, and the remaining part is used to validate the constructed models and calculate the 
prediction accuracy. Then, the above procedure is repeated K times to guarantee that each part can be used as 
a training set K-1 times and a validation set one time. Finally, the average value of the accuracy score in each 
iteration is regarded as the performance index of the constructed models. Therefore, the predictive models 
can be more adaptive to the data out of the range of the training set, and the generalizability is also enhanced. 
Moreover, K-fold cross-validation is helpful for tasks with limited data. In this study, the value of K is set as 10.

There is a large difference between the performance of AI models with different hyperparameters. Hence, 
another essential task during the training process is to search for the optimum hyperparameters. In this study, the 
firefly algorithm (FA) is applied to tune the hyperparameters of the prediction models. As a heuristic algorithm, 
the FA is inspired by the flashing behavior of  fireflies47. The following conditions are assumed for FA: (1) fireflies 
are neutral with respect to sex, and these fireflies will be attracted to each other; (2) the attractiveness between 
fireflies is proportionate to their brightness, which is determined by the distance between them; and (3) if there 
is no brighter firefly than a given firefly, it will move randomly. After several iterations, the brightest firefly will 
be found. For the current predictive models, the mean squared error (MSE) is regarded as the objective function, 
as shown in Eq. (2), where yi and ŷi are experimental and predicted values, respectively. When the MSE reaches 
the lowest value during tenfold cross-validation, the optimum hyperparameters are obtained.

Therefore, ten-fold cross-validation and the FA algorithm are used to tune the hyperparameters of the 4 
algorithms in section “Physics-assisted verification of prediction models”. As shown in Fig. 8, the MSE values 
of all the models reach a stable state within 6 iterations. That is, the FA algorithm is efficient for tuning the 
hyperparameters of the prediction models. Moreover, the RF and Adaboost models have better performance 
than that of the CART and SVR models. The optimum hyperparameters of the 4 models are listed in Table 2.

After the AI models are established, the following step is to test the generalizability of these models. As 
illustrated in above sections, the RF predictive model obtained the optimum performance during training. 
However, a qualified AI model should not only perform well in the training process but also have excellent 
performance in predicting unseen data.

Therefore, the 78 cases in the testing set are used to test the above 4 predictive models. First, the input variables 
are used to feed the AI models. Then, the predicted targets are obtained for each case. Then, the predicted targets 
are compared with the output variables. For regression problems, the difference between the predicted targets 
and real targets can evaluated with the MSE score.

(2)MSE =
1

n

n∑

i=1

(yi − ŷi)
2(i = 1, 2, 3 . . . n)

Figure 7.  Flowchart of the random forest algorithm.
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Figure 8.  The variation in the average MSE with tuning iterations.

Table 2.  The optimum hyperparameters of 4 AI models.

AI models Hyperparameters Optimum value

CART 

max_depth 11

min_samples_split 7

min_samples_leaf 6

SVR

C_penelty 7.9

kernel linear

tolerance 0.0001

Adaboost

max_depth 12

min_samples_split 8

min_samples_leaf 4

n_estimators 323

loss exponential

RF

max_depth 19

min_samples_split 3

min_samples_leaf 2

n_estimators 126

Figure 9.  Comparison of the prediction performance between four AI models.
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As shown in Fig. 9, the performance of the four AI models is compared. The ensemble models have better 
performance than that of the CART and SVM models in both the training and testing procedures. By integrating 
several different base learners, the prediction accuracy and generalizability of ensembled models are enhanced. 
Although the MSE of the AdaBoost model is slightly higher than that of the RF model in the training procedure, 
the AdaBoost model has better performance in the testing process. Then, the predicted values using AdaBoost 
and the real values are compared, as shown in Fig. 10, and the high consistency of the results reflects the excellent 
prediction ability of the AdaBoost model.

Discussion
Physics‑assisted verification of prediction models. Normally, AI models are regarded as a black box. 
These models pay much more attention to the reliability of the data than the physical meaning of the parameters. 
Consequently, the constitution of AI models is always too complex to interpret. Hence, the importance of 
features is proposed as an index to evaluate the contribution of various features to the AI model.

In this section, the AdaBoost model is selected to analyze the importance of 9 features due to its excellent 
prediction performance. For each feature, its contribution to the impurity of the base learner of the AdaBoost 
model can be calculated. Then, by averaging the calculated values and implementing normalization, the 
importance score of each of the 9 features is obtained. As shown in Fig. 11, the importance of these features 
is ranked. The recycled aggregate content has the highest importance score of 0.23. The size of the recycled 
aggregate and water content also have considerable influence on the AI models. The fiber type is regarded as 
a negligible feature for the predictive models of the splitting tensile strength of RAC, which obtains the lowest 
importance score of 0.02.

After that, the predicted model of splitting tensile strength is explained from the perspective of physics. As 
illustrated above, the recycled aggregate content, recycled aggregate size and water content are regarded as the 
three most influential factors. For a given RAC mixture, an increase in the recycled aggregate content will lead 
to a reduction in the natural aggregate content. Due to the inner voids and cracks, the RAC always fractures 

Figure 10.  Comparison between the experimental and AdaBoost-predicted splitting tensile strength values.

Figure 11.  The importance of various influencing variables.
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around these weak regions, which will further impair the splitting tensile strength of RAC. Moreover, when 
incorporating recycled aggregates, the contents of ITZs (interfacial transition zones) are enhanced, which will 
introduce a weak RAC location. Hence, the recycled aggregate content has a significant impact on the splitting 
tensile strength of RAC, and this conclusion is consistent with that of other AI  models18. Next, the influence of 
the maximum aggregate size is analyzed. In the collected literature, the maximum size of recycled aggregate and 
natural aggregate is always consistent, and the maximum aggregate size index indicates the recycled aggregate 
and natural aggregate. In the splitting process of RAC, a crack will propagate along the surface of the natural 
aggregate or cross the recycled aggregate. Hence, the aggregate size will determine the cracking path and further 
affect the splitting strength. Then, the water and cement contents, which determine the w/c ratios, have been 
proven to be relevant to the tensile strength of various concretes. Finally, the fiber volume and fiber types are 
also regarded as influential factors for the splitting tensile strength of RAC but are not fully reflected in the AI 
models. This phenomenon may be caused by the distribution of collected data.

Then, the AI models are verified by physical experiments. From the importance analysis of different features, 
the recycled aggregate content is proven to be the most influential feature for the AI predictive models. Then, the 
dependence of AI models on these features is analyzed using partial dependence analysis.

The partial dependence analysis can be implemented as follows: (1) select one feature as the research object, 
(2) change the object in a reasonable range, keeping other features unchanged, (3) feed the AI models with 
different input variables, obtaining the predictive targets, (4) analyze the dependence of the AI models on the 
selected feature, and (5) compare the variation tendency with the experimental results.

Taking the experiments in  Reference18 as an example, the recycled aggregate content varies from 100 to 
1000 kg/m3, and the other 8 features are kept consistent with the mixture design in the experiments. These 
features are set as the input variables, and the constructed AdaBoost models in section “Discussion” are used 
to predict the splitting tensile strength of RAC. Figure 12 illustrates the variation tendency of the AI-predicted 
splitting tensile strength with the change in recycled aggregate content, and the experimental results are also 
plotted in the same coordinates. The prediction accuracy of the splitting tensile strength is acceptable. An obvious 
reduction occurs in the splitting tensile strength when the recycled aggregate content increased from 100 to 
1000 kg/m3, which was proven by physical experiments. Despite the visible deviation, the prediction of AI 
models is convincing.

Compared with that of previous  research17,18, the construction of predictive models in the current study is 
convincing, and the established models are reliable with the assistance of physics. First, the influencing features 
are effectively selected from a physical view. Then, the feature importance analysis of predictive models is deeply 
discussed with mechanical theories, making the models more explainable. After that, partial dependence analysis 
of AI models is implemented with physical experiments, making the models more reliable.

Conclusions
Due to various defects in recycled aggregates, the splitting tensile strength of RAC is weakened and interferes 
with the application of RAC. Fiber reinforcement methods have been proposed to solve such problems, but the 
cracking performance of these RACs is more complicated. In this study, four artificial intelligence methods are 
used to predict the tensile behavior of RAC, and physical assistance is used in the construction and verification 
of predictive models. The conclusions can be drawn as follows:

1. With the help of the FA, the optimum parameters of the models are efficiently searched. The mean square 
error (MSE) is selected to evaluate the performance of the model, and the MSE values for the CART, SVR, 

Figure 12.  Variation in splitting tensile strength with the change in RCA content.
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AdaBoost and RF models are 0.572, 0.713, 0.164 and 0.311, respectively. The superiority of the AdaBoost 
models can be attributed to the ensemble of various base learners.

2. Feature importance is determined, and the following input importance with an increasing pattern was 
observed for the AdaBoost models: recycled concrete aggregate (0.224) > maximum aggregate size 
(0.156) > water content (0.134) > cement content (0.127) > fiber superplasticizer (0.099) > density of RCA 
(0.071) > water absorption of RCA (0.054) > fiber type (0.012).

3. Physics is used to assist the machine learning models as follows: improving the efficiency of the construction 
of AI models by selecting highly related features, analyzing the feature importance from the fracture 
mechanism of RAC, and verifying the reliability of AI models with physical experiments.

4. The application of established predictive models can be described as follows: by collecting 9 features of one 
RAC and inputting these features into the models, the splitting tensile strength can be obtained. It should 
be noted that the physical verification of predictive results must be implemented to guarantee its reliability.

Data availability
All data generated or analysed during this study are included in the supplementary information files.
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