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Electrical parameters extraction 
of PV modules using artificial 
hummingbird optimizer
Ragab El‑Sehiemy 1, Abdullah Shaheen 2, Attia El‑Fergany 3* & Ahmed Ginidi 2

The parameter extraction of PV models is a nonlinear and multi-model optimization problem. 
However, it is essential to correctly estimate the parameters of the PV units due to their impact on 
the PV system efficiency in terms of power and current production. As a result, this study introduces 
a developed Artificial Hummingbird Technique (AHT) to generate the best values of the ungiven 
parameters of these PV units. The AHT mimics hummingbirds’ unique flying abilities and foraging 
methods in the wild. The AHT is compared with numerous recent inspired techniques which are 
tuna swarm optimizer, African vulture’s optimizer, teaching learning studying-based optimizer and 
other recent optimization techniques. The statistical studies and experimental findings show that 
AHT outperforms other methods in extracting the parameters of various PV models of STM6-40/36, 
KC200GT and PWP 201 polycrystalline. The AHT’s performance is evaluated using the datasheet 
provided by the manufacturer. To highlight the AHT dominance, its performance is compared to 
those of other competing techniques. The simulation outcomes demonstrate that the AHT algorithm 
features a quick processing time and steadily convergence in consort with keeping an elevated level of 
accuracy in the offered solution.

Solar energy is a promising renewable technology due to its environmental responsiveness and numerous sup-
plies. Solar Photovoltaic (PV) system development is continuing, which encourages the effective use of these 
systems in generating electric power to meet the need for energy1. Also, there are several drawbacks to the per-
formance of PV systems, such as insufficient PV panel productivity and direct panel disclosure to the elements2. 
As a result, determining the realistic efficiency of PV systems is critical for efficiently planning, controlling, and 
simulating PV modules. To achieve this goal, the practical model is employed based on the current and voltage 
samples that are gathered at the module terminals. PV parameters may be established, and its model can be built 
with the aid of mathematical representation.

In the literature, many researchers have developed a variety of PV models, including the Single-Diode Model 
(SDM) and Double-Diode Model (DDM). Furthermore, PV model performance depends on unidentified inter-
nal parameters. Due to degradation, aging, and unpredictable functioning states, keeping all the unknown 
parameters steady and evaluating them is challenging. Designing, estimating, simulating, and optimizing PV 
modules is impossible without establishing their regarding electrical parameters. As a result, the effectiveness 
of swarm optimizing methods for quantifying PV system parameters is being studied3. Analytical approaches4 
create simplified assumptions or particular approximations with ignoring compromising accuracy. However, 
this analytical model has been simplified by ignoring the effect of parallel and series resistances in calculating 
the current and voltage related to the highest power output. In5, Lagrange Multiplier Method (LMM) have been 
proposed for SDM/DDM to optimize power outputs of solar cell PV modules. In6, the crucial information were 
reduced from the datasheet of manufacturer where a bounding requirement for a zero-voltage state has been 
created using the power first derivative. Furthermore, in7, four random locations have been illustrated on the 
I–V curve and their slopes to extract the SDM parameters analytically without approximation or simplification. 
However, such analytical approach is limited to conventional testing scenarios. Which has a lot of calculations 
and fails when they change8.

On the other side, numerical approaches including deterministic and metaheuristic algorithms have been pre-
sented. Inaccurate initial values might lead to local optima in the deterministic method as well as the real model 
finds it challenging to satisfy the objective function equation’s limitations9. Conversely, metaheuristic methods 

OPEN

1Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh  33516, 
Egypt. 2Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez  43533, 
Egypt. 3Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig  44519, 
Egypt. *email: el_fergany@zu.edu.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36284-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9240  | https://doi.org/10.1038/s41598-023-36284-0

www.nature.com/scientificreports/

provide an effective and simple approach of determining PV model parameters. As a result, the parameters 
extraction topic has been addressed with a study of metaheuristic methods. Myriads of research have conducted 
using Differential Evolution (DE)10,11 to address the parameter identification issue with the PV model. In12, a 
comparable DE containing a reversed learning process, multi-population strategies, and mutation strategy have 
been proposed for SDM and DDM. To predict the PV cell characteristics of the RTC France solar cell and the 
Photowatt-PWM201, two straightforward, metaphor-free methods, Rao-2 and Rao-3, have been performed13. 
Gorilla troops optimizer14, slime mould optimization algorithm15, Improved Grasshopper Optimization Algo-
rithm (IGOA)16 have been developed for electrically solar PV systems. In17, Harris hawks optimization was 
integrated with the Nelder-Mead simplex and (horizontal and vertical) crossovers and implemented to KC200GT, 
SM55, and ST40 including DDM and SDM. Furthermore, JAYA algorithm has been modified using the chaotic 
map in18 and combined with a learning strategy based on elite opponent process in19 to extract the PV parameter 
extraction.

A DE was integrated with Teaching–Learning Based Optimizer (TLBO) in20 taking into consideration the 
learners’ ranking probability. In21, Gradient-based optimization (GBO) with a logistic map and rank-based 
strategy has been elaborated to both SM55, KC200GT with the SDM and DDM. In22, an innovative two-stage 
technique for extracting the parameters of the PV module’s SDM from experimental data of Power-Voltage 
characteristics. In ref.23, an elite strategy was incorporated with backtracking search approach (BSA) which 
implemented for both SDM and DDM. In24, coot-bird optimizer was applied for estimating the optimal PV 
parameters considering different electrical models based on the number of diode branches. In25, an improved 
TLBO (ITLBO) was emerged with different teaching tactics and performed in a comparative way on both SDM 
and DDM. In26, a grey Wolf algorithm having an orthogonal learning strategy has been manifested for finding 
the unknowns of different solar PV models. Considering the Triple-Junction (TJS) PV panel, moth search27, 
water cycle28 and heap optimizer29 techniques were applied for extracting the parameters of InGaP/InGaAs/Ge 
TJS PV panel. In27–29, when operating a TJSC-based PV module at varied irradiances and temperatures, their 
performances were assessed and confirmed against several other optimizing strategies.

It is established by a variety of "no free lunch" (NFL) theories that every algorithm’s improved performance 
over one class of problems is counterbalanced by efficiency over another30. Numerous alternative metaheuris-
tics were illustrated for optimally identifying the unknown parameters of PV models. The CPU time available, 
constraints, and some observations regarding these methods are also shown in the literature. The proposed 
Artificial hummingbird technique AHT31 by (Zhao et al.) is implemented in this paper to overcome the disad-
vantages of other techniques. The AHT imitates the special flying and foraging patterns of hummingbirds. The 
implementation of territorial, directed and migratory foraging’s, as well as the construction of visiting tables can 
mimic the memorization capacity of these birds for foods This article’s main contributions can be summed up 
in the following manner: (i) AHT demonstrates successfully the PV model parameters, (ii) The results attained 
from the AHT are compared with new recently developed techniques which are Tuna swarm optimizer (TSO)32, 
African vultures optimizer (AVO)33, Teaching learning studying-based optimizer (TLSBO)34, (iii) Diverse SDM 
and DDM PV model designs are used to compare AHT to other well-known reporting approaches, and (iv) 
Statistical tests and experimental results demonstrate the viability of the AHT.

The remaining items are grouped as follows. Diverse solar cell models are presented “Problem formulation 
for SDM and DDM” section, while “AHT for extraction of PV cell parameters” section manifests the proposed 
AHT for PV parameters extraction. Statistical analyses and experimental findings of several PV models are 
illustrated in "Simulation results" section. The suggested work’s conclusions are shown and underlined in "Con-
clusion" section.

Problem formulation for SDM and DDM
This part illustrates the non-linear P–V and I–V characteristics of numerous photovoltaic model’s solar cell. 
additionally, the most common PV model designs will be described and the corresponding electric circuits and 
the mathematical equations for these PV models will be described35.

SDM.  This configuration typically contains of one diode (D) in parallel with shunt resistor ( Rsh ) and photo-
generated current ( Iph ). This configuration, as manifested in Fig. 1, is put in series with another ( RS ). The SDM 
current output (I) is mathematically formulate36,37:

where IP , ID1 , and ISD1 denote the current through shunt resistor, diode current, the diode’s reverse saturating cur-
rent, accordingly. Moreover, the symbol ( n1) characterizes its ideality factor, while the symbol (V) demonstrates 
the output voltage. In addition to that the symbol ( Vtm ) indicates the thermal voltage, whereas the electron charge 
(q) value is C, the Boltzmann constant ( Kb ) value is J/K, and T refers to the cell temperature. In this context, it 
is important to define five parameters f(Iph , RS , n, ISD , Rsh ) accurately from (1).

DDM.  It is considered as a SDM with insertion of an additional recombination diode (D2) as manifested with 
aid of Fig. 2. Although SDM has advantages of its simple structure, fewer parameters to extract, and rapid imple-
mentation in the depletion area, It ignores the recombination loss at low voltage which is pivotal when using the 
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practical solar cell38,39. Accordingly, Although the structure of SDM is less difficult than DDM, DDM gets higher 
performance. The DDM output current (I) is mathematically represented by:

where ISD1 illustrates diffusion current regarding the first diode, while ISD2 demonstrates saturation current 
regarding the second diode. Besides, ID2 . and n2 reveal the current of diffusion and recombination diodes and 
its quality factor. Using (3), compared to SDM, there are now seven additional parameters to be determined e.g. 
(IPh, RS, ISD1, n1, ISD2, n2, Rsh).

Objective Function.  The objective function can diminish the error among simulated and experimental 
current by defining the optimal estimation of the electrical parameters of the two models (SDM and DDM). 
The root mean square error (RMSE)40 is used as an objective function to determine the change between two I–V 
characteristics. It can be illustrated as follows:

where M explains the number of experimental data points; Ijexp and Vj
exp represent the current and voltage values 

of jth experimental point, respectively; Ijcal
(

V
j
exp, x

)

 denotes the computed current output; and the variable x 
implies the decision parameters.

The objective presented in Eq. (4a) is so traditional and implemented by various reported works. Based on 
this objective model, the main focus is for minimizing the error aggregation, but it doesn’t guarantee the direc-
tion for minimizing the maximum error which may be produced via a single experimental recording. Despite 
the objective model in Eq. (4a) provides significant coincidence for the whole PV characteristics, the error in 
some readings would be high. Therefore, another objective function is dedicated to minimize the summation 
of current absolute error (MAE) over the number of experimental data points which can be mathematically 
modeled as follows:
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Using the proposed objective in Eq. (4b), the searching direction is dedicated for minimizing the maximum 
error over the course of the experimental recordings and so the distribution of errors will be approximately 
equivalent and more suitable.

AHT for extraction of PV cell parameters
In the AHT’s procedures, each hummingbird is assigned a definite food supply from which it can be feed. For 
this specific feed supply, it can memorize the rate and location of nectar replenishment. Moreover, it remembers 
how often it has been since it last accessed every source of food. The AHT has exceptional capability for finding 
the best solutions thanks to these special skills. Initially, a swarm with hn size of hummingbirds, as indicated in 
(5), is randomly assigned to hn food sources:

where Hi refers to the location of the ith food source which depicts the PV cells parameters as a solution vec-
tor. The upper and lower bounds with problem dimension are demonstrated by Ub and Lb ; and R describes a 
randomized vector between [0, 1].

A visitation table (VT) of the food sources is established using the following criteria:

where VTi,k shows how many times the ith hummingbird failed to reach the kth source of food, and null denotes 
the absence of any value.

Three flight maneuvers—axial, diagonal, and omnidirectional flights—are extensively used throughout forag-
ing and modelled in the AHT which can each be seen in (7) as follows:

where r1 denotes a randomly generated value falling inside [0, 1]; randi and randperm denotes randomized 
generating functions to create values in the form of integers and permuted integers, correspondingly.

The directed and territorial tactics of the hummingbirds randomly choose one of the flight skills described 
in (7). At first, a hummingbird uses the directed foraging method to inspect its intended source of food, which 
results in the discovery of a potential feed ingredient which is explained by:

where Hi(t) and Hi,t arg et(t) represent the positions of the present and intended ith food sources at time t; N(0, 
1) is the Gaussian distribution function.

Secondly, based on a certain territorial parameter (b), the territorial foraging strategy involves searching for 
a fresher food supply inside the surrounding area, as shown below:

Therefore, the location of every food source (i) can be generally updated by:

where O (·) expresses the objective target described in (4). According to this model.
Third is the migratory foraging technique, in which hummingbirds would frequently fly into a more distant 

location to get foods whenever their region is food-scarce41. The hummingbirds could travel to different feeding 
sources, selected at random from the whole seeking area.

where Hworst denotes the source that has the minimum nectar replenishment rate within the population.
An inspection process should be performed ensuring that each hummingbird is always travelling inside the 

boundary searching space, and consequently each dimension variable that was abused, according to (14), will 
be returned to the search space boundary:
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The most pivotal element of the AHT is the visiting table which stores experience regarding food source visits. 
Accordingly, the visiting table can be updated for each hummingbird as depicted in (6).

The importance of this visiting table is to keep track of the time each food supply has passed without being 
revisited by a single bird, with a long gap between visits indicating a higher visit rate. Thus, Fig. 3 exhibits the 
principal steps of the AHT in recognizing the unidentified parameters of PV cells.
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Figure 3.   Main steps of the AHT for recognizing the unidentified parameters of PV cells.
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Simulation results
The suggested AHT is carried out to identify the electrical SDM and DDM parameters for KC200GT and STM6-
40/36. Two solar modules, which are multi-crystalline KC200GT with 54 cells in series and mono-crystalline 
STM6-40/36 with 36 cells42 in series at temperature of 25◦C and 51◦C, correspondingly, and an irradiance of (1000 
W/m2). The measured data for KC200GT and STM6-40/36 contains 15 and 20 pairs of V/I values, respectively. 
Moreover, as depicted in Table 1, the lower (LB) and the upper (UB) bounds of parameters are demonstrated 
as per cell data.

To compare the suggested AHT with some other newly established methods when used on the SDM and 
DDM of STM 6–40/36, four effectiveness metrics of maximum, average, minimum and standard deviation of 
the RMSE are displayed. Additionally, a low RMSE score shows that parameters were obtained effectively since 
RMSE aims to minimize the difference between measured and simulated data. Additionally, the AHT is validated 
on the PWP 201 polycrystalline PV module utilizing both SDM and DDM. The simulations are carried out with 
MATLAB 2017b on Intel® Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz with 8.00 GB RAM. Two scenarios are 
considered based on the selected objective function as follows:

•	 Scenario 1: Traditional objective model presented in Eq. (4a) for minimizing the error aggregation.
•	 Scenario 2: minimization of the (MAE) objective function presented in Eq. (4b).

STM6‑40/36 PV module.  Simulated results of scenario 1 for STM6‑40/36 PV module.  The specific param-
eters of SDM and DDM of STM6-40/36 are estimated by the proposed AHT and AVO33, TSO32, and TLSBO43 
that are implemented in this article for the first time as depicted in Table 2. In terms of the numerical simula-
tions, for SDM, the proposed AHT could achieve the lowest possible value of 1.7298E−3, whilst AVO, TSO, and 
TLSBO achieve the lowest possible values of 1.7324E−3, 1.9219E−3, and 1.9264E−3, respectively as manifested 
in Table 2. The AHT could achieve the lowest possible value of 1.7028E−3, whilst AVO, and TSO achieve the 
lowest possible values of 1.7049E−3 and 2.6843E−3, accordingly for DDM.

In addition, thirty independent runs are conducted for the proposed AHT, AVO, TSO, and TLSBO for SDM 
and DDM, in this article, to show the performance of these optimizers. It can be noticed from conducting these 
runs that the proposed AHT has the minimum value among these techniques which highlight the efficiency and 
robustness of the proposed AHT compared with these optimizers as exemplified in Fig. 4. As shown, for SDM, 
AHT derives the least minimum, mean, maximum and standard deviations related to the RMSE of 0.001729814, 
0.001729831, 0.001730045 and 5.39233E−8, respectively. On contrary, AVO, TLSBO and TSO obtain higher 
standard deviations of 0.001084, 0.000102 and 0.000967, respectively. Similar findings are acquired for DDM, 
AHT achieves the least minimum, mean, maximum and standard deviations related to the RMSE of 0.001704932, 

Table 1.   Bounded ranges per cell of the PV parameters.

Parameter

STM6-
40/36 KC200GT PWP 201

LB UB LB UB LB UB

Iph (A) 0 2 0 9 0 1.5

RS (Ω) 0 0.36 0 0.5 0 0.5

ISD1 , ISD2 (μA) 0 50 0 1 0 10

n1 , n2 1 2 1 2 1 2

Rsh (Ω) 0 1000 0 100 0 100

Table 2.   Extracted parameters by the compared algorithms for STM6-40/36 PV module of Scenario 1 (results 
are reported per cell).

Parameter

SDM DDM

AVO TLSBO TSO AHT AVO TSO AHT

Iph (A) 1.663771676 1.662558762 1.662005036 1.66390477 1.663536287 1.663208295 1.663752058

RS (Ω) 0.004149226 0.003385381 0.003674857 0.004273775 0.0054189 0.003700979 0.005187934

RS
RSh (Ω) 16.16351325 18.71897053 18.86505402 15.92830436 17.40956979 20.23228291 16.82021479

ISD1 (μA) 1.80959E−6 2.36288E−6 2.19825E−6 1.73866E−6 7.57976E−6 2.07517E−8 6.00651E−7

n1 1.524708873 1.554677592 1.546432872 1.520302863 1.980144605 1.217207105 1.424988503

ISD2 (μA) – – – – 4.11054E−7 6.86515E−6 6.26664E−6

n2 – – – – 1.393882913 1.752751642 1.998145081

RMSE 1.7324E−3 1.9264E−3 1.9219E−3 1.7298E−3 1.7049E−3 2.6843E−3 1.7028E−3
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0.001728661, 0.001762892 and 9.85118E−6, respectively. On contrary, AVO, TLSBO and TSO, respectively, obtain 
higher standard deviations of 0.000833907, 0.000537932 and 0.000899015.

The convergence characteristics of AHT are developed for SDM and DDM as illustrated in Fig. 5a,b and 
compared to AVO, TSO, TLSBO, Forensic-Based Investigation (FBI) Technique44, Enhanced marine predator 
approach (EMPA)45, Equilibrium Optimization (EO), Heap-based Technique29,46,47, and Jellyfish search (JFS) 
optimizer48. It can be manifested from this figure that the convergence characteristics of the AHT has an excel-
lent performance contrasting to these optimizers.

For SDM, the experimental and estimated data illustrated by AHT, AVO, TSO, and TLSBO of the currents 
and powers are pronounced in Fig. 6a,b, respectively for each 20 points. Besides, at each point, the absolute 
error between estimated and experimental data for the currents and powers are exemplified as manifested in the 
previously mentioned figures, where the proposed AHT achieves the lowest absolute errors in comparison with 

Figure 4.   Whisker’s plot of the AHT in comparison with AVO, TLSBO, and TSO with the two models of 
STM6-40/36 (Scenario 1).

Figure 5.   Convergence characteristics of the compared algorithms for the two models of STM6-40/36 (Scenario 
1).

Figure 6.   Absolute errors cropped by the AHT and other optimizers for SDM of STM6-40/36 PV module 
(Scenario 1).
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AVO, TSO, and TLSBO. For sake of quantifications, as demonstrated in Fig. 6a, the maximum absolute percent-
age errors between measured and estimated current values is 0.14% at the experimental point no. 11 with IAE 
value of less than 6.09 mA cropped by the AHT. The I–V curve and the P–V curve are illustrated in Fig. 7a,b, 
respectively which exemplifies the precise proximity between both the estimated and experimental data of the 
powers and currents at each point of voltage.

For DDM, the experimental data and the estimated data illustrated by AHT, AVO, TSO, and TLSBO of the 
currents and powers are described in Fig. 8(a)-(b), respectively for each 20 points. Besides, at each point, the 

Figure 7.   The I–V and P–V curves developed by the proposed AHT for SDM of STM6-40/36 PV module 
(Scenario 1).

Figure 8.   Absolute errors produced by the AHT and other optimizers for DDM of STM6-40/36 PV module 
(Scenario 1).

Figure 9.   The I–V and P–V curves developed by the AHT for DDM of STM6/40-36 PV module (Scenario 1).
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absolute error between estimated and experimental data for the currents and powers are exemplified as mani-
fested, where the proposed AHT achieves the lowest absolute errors in comparison with AVO, TSO, and TLSBO. 
Once again, as indicated in Fig. 8(a), the maximum absolute percentage errors between measured and estimated 
current values is 0.40% with IAE value of less than 6.31 mA cropped by the AHT. The I–V curve and the P–V 
curve are illustrated in Fig. 9a,b which exemplifies the closeness between both the estimated and experimental 
data of the powers and currents at each point of voltage.

The statistical analysis including Best, Worst, Average, and Standard deviation parameters for SDM and DDM 
are demonstrated in Tables 3 and 4, correspondingly. In these tables, the proposed AHT is compared to several 
optimizers of AVO, TSO and TLSBO, and the reported optimizers of simulated annealing (SA)49, three point 
based approach (TPBA)50, hybridizing cuckoo search/biogeography based optimization (BHCS)51, ITLBO25, 
enhanced CS approach (ECSA)52, improved shuffled complex evolution (ISCE)53, chaotic logistic Rao technique 
(CLRT)54, enhanced PSO (EPSO)55, fractional chaotic PSO (FC-EPSO)56, bat optimization approach (BA), novel 
BA (NBA), directional bat algorithm (DBA)57, SDO58, MPA59 and improved chaotic whale optimization algorithm 
(ICWOA)61 for both models.

As demonstrated, the AHT achieves the least RMSE, standard deviation, mean and maximum of 1.7298E−3, 
5.3923E−8, 1.7298E−3, 1.7300E−3, respectively, for SDM (see Table 3). The AHT achieves 1.7049E−3, 9.8512E−6, 
1.7287E−3, and 1.7629E−3, respectively for DDM as indicated in Table 4. The comparative assessment exempli-
fies high search accuracy and good stability of the suggested AHT compared to several newly techniques and 
the reported optimizers.

Simulated results of scenario 2 for STM6‑40/36 PV module.  For this scenario, the proposed AHT, AVO, TSO, 
and TLSBO are implemented and the regarding parameters of SDM and DDM of STM6-40/36 are depicted in 

Table 3.   Comparative assessment of the compared optimizers for SDM of STM6-40/36 PV module (Scenario 
1).

Optimizer Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE) Population size
Maximum number of 
iterations

AHT 1.7298E−3 1.7298E−3 1.7300E−3 5.3923E−8 100 1000

AVO 1.7324E−3 4.3485E−3 6.4338E−3 1.0842E−3 100 1000

TLBSO 1.9264E−3 2.1765E−3 2.3319E−3 1.0236E−4 100 1000

TSO 1.9219E−3 4.6229E−3 6.1168E−3 9.6669E−4 100 1000

ISCE53 1.7300E−3 1.7298E−3 1.7298E−3 – 22 –

TPBA50 1.7740E−3 – – – 50 50

ITLBO25 1.7300E−3 1.7300E−3 1.7300E−3 – 50 1000

SA49 3.3990E−3 – – – 30 250

Hunter algorithm60 1.7298E−3 – – – 200 1000

BHCS51 1.7298E−3 1.8365E−3 3.3299E−3 – 10 250

ECSA52 1.7946E−3 1.7943E−3 1.7943E−3 – 25 1500

SDO58 1.7300E−3 1.7300E−3 1.7300E−3 4.3700E−18 100 1000

MPA59 1.781E−3 – – – – 5000

ICWOA61 1.9E−3 – – – 150 10,000

Table 4.   Comparative assessment of the compared optimizers for DDM for STM6-40/36 PV module 
(Scenario 1).

Optimizer Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE) Population number
maximum number of 
iterations

AHT 1.7049E−3 1.7287E−3 1.7629E−3 9.8512E−6 100 1000

AVO 1.7028E−3 4.3163E−3 5.4137E−3 8.3391E−4 100 1000

TSO 2.6843E−3 4.6888E−3 6.1670E−3 8.9902E−4 100 1000

EPSO55 1.8307E−3 – – – 1000 100

CLRT54 1.7120E−3 – – – 10 1000

FC-EPSO56 1.7720E−3 – – – 30 200

DBA57 1.7320E−3 4.9340E−3 1.3728E−2 2.8930E−3 40 5000

BA57 2.1946E−2 9.2023E−2 1.4481E−2 2.4070E−2 50 5000

NBA57 1.8268E−3 4.1404E−3 7.5980E−3 1.4300E−3 50 5000

SDO58 1.7252E−3 1.8453E−3 2.9616E−3 1.9000E−4 100 1000

MPA59 1.7780E−3 – – – – 5000
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Table 5. Also, the convergence characteristics of the AHT in comparison with AVO, TLSBO, and TSO for this 
scenario are developed for SDM and DDM as illustrated in Fig. 10a,b. In terms of the numerical simulations, 
for SDM, the proposed AHT could achieve the lowest MAE value of 4.068E−3, whilst AVO, TSO, and TLSBO 
achieve the lowest possible values of 8.805E−3, 6.175E−3 and 6.193E−3, respectively as manifested in Table 5. 
The AHT could achieve the lowest MAE value of 3.99E−3, whilst AVO, TSO, and TLSBO achieve the lowest pos-
sible values of 7.291E−3, 6.243E−3 and 6.108E−3, accordingly for DDM.

In addition, Fig. 11 displays the regarding Whisker’s plot of the AHT in comparison with AVO, TLSBO, and 
TSO for this scenario. As shown, for SDM, AHT derives the least mean value related to the MAE of 0.005084. 
On contrary, AVO, TLSBO and TSO obtain higher MAE objectives of 0.023869, 0.006279 and 0.007603, respec-
tively. For DDM, AHT derives the least minimum, mean, maximum and standard deviation related to the MAE 
of 0.00399, 0.004383, 0.005025 and 0.000299, respectively. On contrary, AVO, TLSBO and TSO obtain higher 
standard deviations of 0.017904, 0.000501 and 0.001165, respectively.

Table 5.   Extracted parameters by the compared algorithms for STM6-40/36 PV module of Scenario 2 (results 
are reported per cell).

Parameter

SDM DDM

AVO TLSBO TSO AHT AVO TLSBO TSO AHT

Iph (A) 1.654201 1.657288 1.657691 1.665287 1.660206 1.657262 1.657037 1.663651

RS (Ω) 7.1800E−7 0.000529 0.0000 0.003682 1.0700E−8 0.000388 9.5600E−6 0.004382

RSh (Ω) 672.4723 29.35333 34.6015 13.89569 46.02487 34.77217 35.85202 15.61299

ISD1 (μA) 8.9700E−6 5.0100E−6 6.0800E−6 1.8200E−6 6.8800E−8 5.5800E−6 0.0000 6.6100E−7

n1 1.724449 1.645837 1.671148 1.525607 1.352792 1.659659 1.852299 1.4356

ISD2 (μA) – – – – 1.1500E−5 7.21E−10 5.9700E−6 5.9910E−6

n2 – – – – 1.797415 1.820005 1.668591 1.9756445

MAE 8.805E−3 6.175E−3 6.193E−3 4.068E−3 7.291E−3 6.243E−3 6.108E−3 3.990E−3

Figure 10.   Convergence characteristics of the compared algorithms for the two models of STM6-40/36 
(Scenario 2).

Figure 11.   Whisker’s plot of the AHT in comparison with AVO, TLSBO, and TSO with the two models of 
STM6-40/36 (Scenario 2).
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For both models at this scenario, the experimental absolute errors in the produced current are described in 
Fig. 12a,b for the AHT, AVO, TLSBO, and TSO, respectively for each 20 points. As shown, the proposed AHT 
derives superior capability compared to the others in minimizing the maximal absolute error. Based on this 
scenario, the distribution of errors is approximately equivalent and more suitable where the searching direction 
is dedicated for minimizing the maximum error over the course of the experimental recordings. For the SDM, 
the errors using the proposed AHT range from 0.000495 at the reading no. 7 to 0.004901 at the reading no. 11. 
Therefore, the regarding difference between the two obtained boundaries is 0.004406. In similar way, the calcu-
lated difference between the two obtained boundaries using AVO, TLSBO, and TSO are 0.02237, 0.005984 and 
0.006012, respectively. These differences demonstrate the high capability of the proposed AHT in achieving the 
best distribution of the errors over the course of the experimental recordings.

For the DDM, the errors using the proposed AHT range from 0.000389 at the reading no. 18 to 0.004415 at 
the reading no. 11. The regarding difference between the two obtained boundaries is 0.00403. In similar way, the 
calculated difference between the two obtained boundaries using AVO, TLSBO, and TSO are 0.01452, 0.007083 
and 0.007797, respectively. These differences demonstrate the high capability of the proposed AHT in achieving 
the best distribution of the errors over the course of the experimental recordings.

Figure 12.   Absolute errors in the produced current by the compared optimizers of STM6-40/36 PV module 
(Scenario 2).

Table 6.   Extracted parameters by the compared algorithms for KC200GT PV module of Scenario 1 (Reported 
values are per cell).

Parameters

SDM DDM

AVO TLSBO TSO AHT AVO TLSBO TSO AHT

Iph (A) 8.196860511 8.195632092 8.184234558 8.216563341 8.194960209 8.227019407 8.187041565 8.215974788

RS (Ω) 0.00461085 0.004621431 0.004729641 0.004823304 0.004739349 0.004615996 0.004818806 0.004847758

RSh (Ω) 15.82435839 24.17854623 31.18677215 6.319972337 19.13139357 6.763110605 40.57587312 6.520483032

ISD1 (μA) 5.93825E−8 6.14808E−8 4.2582E−8 2.64674E−8 1.15508E−8 8.04852E−8 9.63558E−7 6.14823E−7

n1 1.265408578 1.267770444 1.243359198 1.213470219 1.173682701 1.818799115 1.788554316 1.931107246

ISD2 (μA) – – – – 7.80931E−7 4.68331E−8 1.81127E−8 2.08875E−8

n2 – – – – 1.655378412 1.249918157 1.194190552 1.199926243

RMSE 1.0426E−2 1.2897E−2 1.1538E−2 6.4957E−4 9.6100E−3 1.2580E−2 1.1268E−2 3.7154E−4
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KC200GT PV module.  Simulated results of scenario 1 for KC200GT PV module.  The specific parameters of 
SDM and DDM of KC200GT PV module are estimated by the proposed AHT and recently developed optimizers 
which are AVO33, TSO32, TLSBO62 that are implemented in this article for the first time as depicted in Table 6. 
Besides, for SDM, the proposed AHT could achieve the lowest possible value of 6.4957E−4, whilst AVO, TSO, 
and TLSBO achieve the lowest possible values of 1.0426E−2, 1.1538E−2, and 1.2897E−2, respectively. It is also 
seen from this table that the proposed AHT could achieve the lowest possible value of 3.7154E−4, whilst AVO, 
TSO, and TLSBO achieve the lowest possible values of 9.6100E−3, 1.1268E−2 and 1.2580E−2, respectively for 
DDM.

Thirty independent runs are conducted for the proposed AHT, AVO, TSO, and TLSBO for SDM and DDM 
of this module, in this article, to show the performance of these optimizers. It can be noticed from conducting 
these runs that the proposed AHT has the minimum value among these techniques which highlight the efficiency 
and robustness of the proposed AHT compared with these optimizers as exemplified in Fig. 13.

As shown, for SDM, AHT acquires the least minimum, mean, maximum and standard deviations related to 
the RMSE of 0.0006496, 0.0067283, 0.0095589 and 0.0023414, respectively. On contrary, AVO, TLSBO and TSO 
obtain higher mean RMSE of 0.037613, 0.015379 and 0.041981, respectively. As well, they obtain higher standard 
deviations of 0.009989, 0.00121 and 0.011769, respectively. Similar findings are acquired for DDM, AHT obtains 
the least minimum, mean, maximum and standard deviations related to the RMSE of 0.000371545, 0.009679481, 
0.016820415 and 0.005198108, respectively. On contrary, AVO, TLSBO and TSO, respectively, obtain higher 
standard deviations of 0.011457421, 0.001713595 and 0.013369672.

The convergence characteristics of AHT for SDM and DDM are illustrated in Fig. 14a,b, respectively and 
compared to AVO, TSO, TLSBO, EMPA, EO, Heap, JFS and FBI44. It can be manifested from this figure that 
the convergence characteristics of the AHT has an excellent performance in comparison with these optimizers.

For SDM, the experimental data and the estimated data illustrated by AHT, AVO, TSO, and TLSBO of the 
currents and powers are described in Fig. 15a,b, respectively for each 15 points. Besides, at each point, the abso-
lute error between estimated and experimental data for the currents and powers are exemplified as manifested, 
where the proposed AHT achieves the lowest absolute errors in comparison with AVO, TSO, and TLSBO. For 
sake of quantifications, as shown in Fig. 15, the maximum absolute percentage errors between measured and 
estimated current values is 0.45% at the experimental point no. 9 with IAE value of 11.2 mA cropped by AHT. 

Figure 13.   Whisker’s plot of the AHT in comparison with AVO, TLSBO, and TSO with the two models of 
KC200GT PV module (Scenario 1).

Figure 14.   Convergence characteristics of the AHT in comparison with other optimizers of KC200GT PV 
module (Scenario 1).
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The I–V curve and the P–V curve are illustrated in Fig. 16a,b which exemplifies the closeness between both the 
estimated and experimental data of the powers and currents at each point of voltage.

For SDM, the experimental data and the estimated data illustrated by AHT, AVO, TSO, and TLSBO of the 
currents and powers are described in Fig. 17a,b, respectively for each 15 points. Besides, at each point, the 
absolute error between estimated and experimental data for the currents and powers are exemplified, where the 
proposed AHT achieves the lowest absolute errors in comparison with AVO, TSO, and TLSBO. The I–V curve 
and the P–V curve are illustrated in Fig. 18a,b which exemplifies the closeness between both the estimated and 
experimental data of the powers and currents at each point of voltage.

For the KC200GT PV module, the statistical analysis for SDM and DDM are demonstrated in Tables 7 and 8, 
respectively. In this Table, the proposed AHT is compared to AVO, TSO and TLSBO, and the reported optimiz-
ers which are CPMPSO63, PSO64, BMA65, NLBMA66, PGJAYA​67, FPSO68, Hybridized Pattern Search and Firefly 

Figure 15.   Absolute errors cropped by the AHT and other optimizers for SDM of KC200GT PV module 
(Scenario 1).

Figure 16.   The I–V and P–V curves developed by the AHT for SDM of KC200GT PV module (Scenario 1).

Figure 17.   Absolute errors proposed by the AHT and other optimizers for DDM of KC200GT PV module 
(Scenario 1).
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Technique (HPSFT)69, FBI44, EHHO70, and MVO71 for both models. As shown, the suggested AHT achieves the 
smallest RMSE, standard deviation, mean and maximum of 6.4957E−4, 2.3414E−3, 6.7283E−3, and 9.5589E−3, 
respectively, for SDM as depicted in Table 7. On the other hand, the AHT achieves 3.7154E−4, 5.1981E−3, 
9.6795E−3, and 1.6820E−2, respectively for DDM (See Table 8). The comparative assessment exemplifies high 
search accuracy and good stability of the proposed AHT in comparison with the recently developed optimizers 
and the reported optimizers.

Figure 18.   The I–V curve and P–V curve developed by the AHT for DDM of KC200GT PV module (Scenario 
1).

Table 7.   Comparative assessment of the compared optimizers for KC200GT PV module using SDM (Scenario 
1).

Optimizer Max (RMSE) Mean (RMSE) Min (RMSE) Std (RMSE) Population number
Maximum number of 
iterations

AHT 9.5589E−3 6.7283E−3 6.4957E−4 2.3414E−3 100 1000

AVO 4.8434E−2 3.7613E−2 1.0426E−2 9.9886E−3 100 1000

TLSBO 1.7537E−2 1.5379E−2 1.2897E−2 1.2096E−3 100 1000

TSO 5.2761E−2 4.1981E−2 1.1538E−2 1.1769E−2 100 1000

FBI44 – – 7.3400E−4 – 100 1000

CPMPSO63 – – 1.53903E−3 – 30 5000

PSO64 5.3291E−1 3.4467E−1 1.0195E−1 – – 500

NLBMA66 3.3610E−2 3.3610E−2 3.3610E−2 – 20 200

PGJAYA​67 – – 1.5455E−4 – 20 5000

BMA65 1.4986E−1 1.2442E−1 1.0244E−1 – 30 500

FPSO68 – – 2.8214E−2 – 100 10,000

HPSFT69 – – 4.9863E−2 – 50 5000

EHHO70 – – 5.9507E−2 – 30 1000

MVO71 – – 8.3800E−2 – 20 100

SNS72 1.4790E−2 1.2558E−2 8.8035E−3 1.4612E−3 100 1000

Table 8.   Comparative assessment of the compared optimizers for KC200GT PV module using DDM 
(Scenario 1).

Optimizer Max (RMSE) Mean (RMSE) Min (RMSE) Std (RMSE) Population number Maximum number of iterations

AHT 1.6820E−2 9.6795E−3 3.7154E−4 5.1981E−3 100 1000

AVO 4.7919E−2 3.2127E−2 9.6100E−3 1.1457E−2 100 1000

TLSBO 1.8783E−2 1.5791E−2 1.2580E−2 1.7136E−3 100 1000

TSO 5.8583E−2 4.2900E−2 1.1268E−2 1.3370E−2 100 1000

PSO64 7.9194E–1 4.5668E−1 1.2970E−1 – − 500

BMA65 3.0902E–1 2.1858E−1 1.2492E−1 – 30 500

NLBMA66 3.3043E–2 3.3043E−2 3.3043E−2 – 20 200

FBI44 – – 9.6200E−4 – 100 1000

SNS72 2.1884E−2 1.5129E−2 8.5517E−3 2.4465E−3 100 1000
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To validate the AHT results at different temperatures and at different solar radiations, Figs. 19a,b and 17a,b 
provide the corresponding I–V and P–V curves for KC200GT PV module. With temperature variations at irradi-
ance level of 1000 W/m2, as shown in Fig. 19a,b, the proposed AHT derives significant coincidence between the 
simulated and experimental recordings. Similar findings are obtained with irradiance variations at temperature 
of 25 °C as shown in Fig. 20a,b. Both figures indicate the high validation of the proposed AHT at different tem-
peratures and solar radiations.

Simulated results of scenario 2 for KC200GT PV module.  For this scenario, the proposed AHT, AVO, TSO, and 
TLSBO are performed and the regarding parameters of SDM and DDM are depicted in Table 9. Also, the con-
vergence characteristics of the AHT in comparison with AVO, TLSBO, and TSO for this scenario are developed 
for SDM and DDM as illustrated in Fig. 21a,b. As shown, for SDM, the proposed AHT could achieve the lowest 

Figure 19.   Principal characteristics of KC200GT PV module with temperature variations at 1000 W/m2 
irradiance.

Figure 20.   Principal characteristics of KC200GT PV module with irradiance variations at temperature of 25 °C.

Table 9.   Extracted parameters by the compared algorithms for KC200GT PV module of Scenario 2 (Results 
are reported per cell).

Parameter

SDM DDM

AVO TLSBO TSO AHT AVO TLSBO TSO AHT

Iph(A) 8.198778 8.191654 8.229325 8.190629 8.190013 8.196264 8.203874 8.196342

RS(Ω) 0.004265 0.004596 0.004282 0.004367 4.68E−03 4.40E−03 4.74E−03 4.70E−03

RSh(Ω) 82.31924 100 7.840211 92.61766 35.64147 25.25724 17.14622 18.72093

ISD1(μA) 1.64E−7 7.54E−8 1.34E−7 1.23E−7 4.19E−8 1.10E−7 3.02E−7 1.10E−10

n1 1.337388 1.281796 1.322714 1.316375 1.244973 1.308085 1.432184 1.000402

ISD2(μA) – – – – 7.57E−7 0 2.64E−10 1.35E−7

n2 – – – – 1.827928 1.706817 1.017269 1.346679

MAE 3.39E−2 3.14E−2 3.88E−2 2.79E−2 2.11E−2 3.37E−2 1.97E−2 1.70E−2
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MAE value of 2.79E−2, whilst AVO, TSO, and TLSBO achieve the lowest possible values of 3.39E−2, 3.14E−2 
and 3.88E−2, respectively. For the DDM, the AHT could achieve the lowest MAE value of 1.70E−2, whilst AVO, 
TSO, and TLSBO achieve the lowest possible values of 2.11E−2, 3.37E−2 and 1.97E−2, accordingly. Based on 
these findings, the proposed AHT declares improvement percentage of 17.75%, 11.30% and 28.15% based on 
the SDM and 19.24%, 49.59% and 13.55% based on the DDM compared to AVO, TSO, and TLSBO, respectively.

In addition, Fig. 22 displays the regarding Whisker’s plot of the AHT in comparison with AVO, TLSBO, and 
TSO for this scenario.

As shown, for SDM, AHT derives the least minimum, mean, maximum and standard deviation related to 
the MAE of 0.0279, 0.0488, 0.0589 and 0.0092, respectively. On the other side, AVO, TLSBO and TSO obtain 
higher standard deviations of 0.0183, 0.0133 and 0.0136, respectively. Similarly, for the DDM, the proposed 
AHT shows the best performance with the least minimum, mean and maximum MAE values of 0.017, 0.0349 
and 0.0647, respectively.

For both models at this scenario, Fig. 23a,b describe the experimental absolute errors in the produced current 
for the AHT, AVO, TLSBO, and TSO, respectively. As shown, the proposed AHT derives superior capability with 
better distribution of errors compared to the others. For the SDM, the errors using the proposed AHT range 
from 0.0026 at the reading no. 3 to 0.0279 at the reading no. 12. Therefore, the regarding difference between the 
two obtained boundaries is 0.0253. In similar way, the calculated difference between the two obtained bounda-
ries using AVO, TLSBO, and TSO are 0.0333, 0.0313 and 0.0388, respectively. These differences demonstrate 
the high capability of the proposed AHT in achieving the best distribution of the errors over the course of the 
experimental recordings.

For the DDM, the errors using the proposed AHT range from 4.18E−5 at the reading no. 3 to 0.01701 at the 
reading no. 6. The regarding difference between the two obtained boundaries is 0.001697. In similar way, the 
calculated difference between the two obtained boundaries using AVO, TLSBO, and TSO are 0.01963, 0.03101 
and 0.01874, respectively. These differences demonstrate the high capability of the proposed AHT in achieving 
the best distribution of the errors over the course of the experimental recordings.

PHOTO WATT‑PWP 201 PV module.  Simulated results of scenario 1 for PWP 201 PV module.  Table 10 
describes the five and seven-nine variables of SDM and DDM, respectively, that were obtained using the AHT 
considering both scenarios 1 and 2. According to Table 10, for the first scenario, the AHT approach determines 
that 2.42507 mA is the optimum adaption value for both SDM and DDM. The minimal RMSE associated with 

Figure 21.   Convergence characteristics of the compared algorithms for the two models of KC200GT (Scenario 
2).

Figure 22.   Whisker’s plot of the AHT in comparison with AVO, TLSBO, and TSO with the two models of 
KC200GT (Scenario 2).
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each model’s parameters is shown in this table. The suggested AHT demonstrates  strong stability and great 
searching efficiency than previously  reported algorithms, according to the statistical evaluation of the three 
metrics (Best, Average, Worst) presented in Table 10. The thirty runs’ results demonstrate the suggested AHT’s 
superior resilience over others as related to the comparison of the proposed AHT and other recently described 
approaches has been presented in Table 11 which are SNS72, FBI44, SA49, ISCE53, ImCSA52, HFAPS69, SMA15, 
CGBO73, PSO64, and RAO optimizer13 for the SDM. The comparative assessment is conducted considering the 
DDM versus different reported state of the art such as SNS72, FBI44, PSO74, LAPO75, PSO64, MPA73 and CGBO73. 
Furthermore, Fig. 24 illustrates the AHT’s convergence properties which demonstrates how the suggested AHT 
shows high performances for both SDM and DDM. Additionally, Fig. 25a–d exhibits the projected and meas-
ured values for the powers and currents at each point of the SDM and DDM of this module, characterizing the 
similarity between the anticipated and measured values while estimating the data with the proposed AHT.

Figure 23.   Absolute errors in the produced current by the compared optimizers of KC200GT PV module 
(Scenario 2).

Table 10.   Extracted parameters based on AHT for PWP 201 PV Module.

Parameters

Scenario 1 Scenario 2

SDM DDM SDM DDM

Iph (A) 1.030514 1.030514 1.029358 1.029234

RS (Ω) 0.033369 0.033369 0.03349 0.033324

RSh (Ω) 27.27729 27.27726 28.39074 29.09406

ISD1 (μA) 3.4800E−6 3.4800E−6 3.2800E−6 3.4100E−6

n1 1.35119 1.35119 1.345064 1.349066

ISD2 (μA) – 1.9000E−12 – 4.3400E−8

n2 – 1.351177 – 1.930731

RMSE (mA) 2.42507 2.42507 2.60800 2.59300

MAE (mA) 4.4320 4.4320 3.6600 3.7110
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Simulated results of scenario 2 for PWP 201 PV module.  For this scenario, the proposed AHT is performed and 
the regarding parameters of SDM and DDM are previously stated in Table 10. For both models and scenarios, 
Fig. 26a,b display the experimental absolute errors in the produced current using the proposed AHT. For the 
SDM, in the first scenario, the errors using the proposed AHT range from 9.21E−5 to 4.43E−3 with regarding 
difference between the two obtained boundaries of 4.34E−3. For the same model, the errors using the proposed 
AHT range from 4.40E−5 to 3.66E−3 with regarding difference between the two obtained boundaries of 3.62E−3 
considering the second scenario. Based on that, the utilization of the MAE minimization objective at Scenario 2 
shows better error distribution with 16.67% improvement over the RMSE minimization objective at Scenario 1 
via the proposed AHT. Similar findings are attained considering the SDM. The utilization of the MAE minimiza-
tion objective at Scenario 2 shows better error distribution with 15.15% improvement over the RMSE minimiza-
tion objective at Scenario 1 via the proposed AHT. In the first scenario, the errors using the proposed AHT range 
from 9.22E−5 to 4.43E−3 with regarding difference between the two obtained boundaries of 4.34E−3. For the 
same model, the errors using the proposed AHT range from 2.9E−5 to 3.71–3 with regarding difference between 
the two obtained boundaries of 3.68E−3 considering the second scenario.

Table 11.   Comparative assessment of AHT versus reported algorithms for PWP 201 polycrystalline PV 
Module (Scenario 1).

Optimizer

SDM

Min (RMSE) Mean (RMSE) Max (RMSE)

AHT 2.42507E−3 2.42509E−3 2.4253E−3

SNS72 2.4350E−3 2.4680E−3 2.5470E−3

FBI44 2.4250E−3 2.4260E−3 2.4350E−3

SA49 2.617E−3 – –

ISCE53 2.4251E−3 2.4251E−3 2.4251E−3

ImCSA52 2.425E−3 2.4251E−3 2.4251E−3

HFAPS69 2.4251E−3 – –

SMA15 2.8110E−3 3.3530E−3 1.0799E−2

CGBO73 2.425101E−3 – –

PSO64 2.4390E−3 2.3666E−2 9.7700E−2

MPA73 2.59141E−3 – –

RAO13 2.8220E−3 3.2960E−3 4.2554E−1

Optimizer

DDM

Min (RMSE) Mean (RMSE) Max (RMSE)

AHT 2.42507E−3 2.43307E−3 2.49922E−3

SNS72 2.4410E−3 2.6020E−3 3.1800E−3

FBI44 2.4250E−3 2.431E−3 2.4430E−3

PSO74 3.2066E−3 − −

LAPO75 3.2734E−2 4.3132E−2 5.7507E−2

PSO64 3.3925E−3 2.0808E−2 3.3742E−2

MPA73 2.6227E−3 – –

CGBO73 2.4510E−3 – –

Figure 24.   Convergence patterns of AHT with SDM and DDM for PWP 201 polycrystalline PV module 
(Scenario 1).
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Figure 25.   I–V and P–V curves of experimental and simulated results for PWP 201 PV module (Scenario 1).

Figure 26.   Absolute errors in the produced current by the AHT for both scenarios of PWP 201 PV module.
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Moreover, a comparative assessment between the proposed AHT, AVO, TSO, and TLSBO is performed 
considering this scenario. The regarding parameters of SDM and DDM are depicted in Table 12 while their con-
vergence characteristics are developed for SDM and DDM as illustrated in Fig. 27a,b. As shown, the proposed 
AHT could achieve the lowest MAE value of 3.66E−3 and 3.71E−3, for SDM and DDM, respectively.

In addition, Fig. 28 displays the regarding Whisker’s plot of the AHT in comparison with AVO, TLSBO, and 
TSO for this scenario. As shown, the AHT shows the best performance compared to the others. The proposed 
AHT derives the least minimum, mean, and maximum related to the MAE of 0.00366, 0.00451 and 0.00628 for 
the SDM and 0.00371, 0.005696 and 0.01286 for the DDM, respectively.

Table 12.   Extracted parameters by the compared algorithms for PWP 201 PV module of Scenario 2 (Results 
are reported per cell).

Parameter

SDM DDM

AVO TLSBO TSO AHT AVO TLSBO TSO AHT

Iph (A) 1.038252 1.027478 1.02759 1.029358 1.038579 1.027355 1.028935 1.029234

RS (Ω) 0.035851 0.031499 0.033269 0.03349 0.02283 0.031888 0.031795 0.033324

RSh (Ω) 11.79168 48.77022 42.25134 28.39074 55.10929 50.10676 37.70859 29.09406

ISD1 (μA) 1.2700E−6 5.7000E−6 3.5400E−6 3.2800E−6 1.61E−5 8.3700E−7 0 3.4100E−6

n1 1.252037 1.40606 1.352615 1.345064 1.622192 1.996522 1.997618 1.349066

(μA) – – – – 2.62E−5 5.4000E−6 5.07E−6 4.3400E−8

n2 – – – – 1.745288 1.400507 1.392475 1.930731

MAE 6.49E−3 4.90E−3 4.81E−3 3.66E−3 1.45E−2 4.88E−3 4.97E−3 3.71E−3

Figure 27.   Convergence characteristics of the compared algorithms for the two models of PWP 201 (Scenario 
2).

Figure 28.   Whisker’s plot of the AHT in comparison with AVO, TLSBO, and TSO with the two models of PWP 
201 (Scenario 2).
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Conclusion
This study has presented a novel application of an Artificial Hummingbird Technique (AHT) for extracting the 
unknown parameters from SDM and DDM PV models of mono-crystalline STM6-40/36, and multi-crystalline 
KC200GT. The performance of the proposed AHT is assessed by statical indices called Min RMSE, Max RMSE, 
Mean RMSE, Standard deviation, IAE, PAE, P–V and I–V curves. The earlier results of AHT for determining 
accurate parameters of various PV models illustrate that AHT produces a competitive end-result versus other 
recently developed algorithms. The parameters of the PV module are extracted using the AHT in this article. 
To estimate the PV module parameters, the proposed approach uses experimental data extracted from the 
Power–Voltage (P–V) curve. At a final stage of this effort, Photo WATT-PWP 201 has been examined. To sum 
up, three distinct PV modules, which are widely used in the literature namely, STM6-40/36, KC200GT and Photo 
WATT-PWP 201 have been investigated to validate the proposed AHT. For all PV modules, the proposed AHT 
exhibits the lowest RMSE. The performance of the AHT is additionally tested utilizing statistical data overall 
30 independent runs. Based on the experimental results, it may be announced that the AHT overcomes all the 
selected state-of-the-art optimizers for the reported test cases.

Data avaliability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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