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Extensive estuarine sedimentary 
storage of plastics from city to sea: 
Narragansett Bay, Rhode Island, 
USA
Victoria M. Fulfer 1,2* & J. P. Walsh 1,2

Plastics are an important new component of the global sedimentary system, and much 
concern exists about their transport, fate and impact. This study presents the first system-scale 
assessment of sedimentary storage of microplastic for an estuary, Narragansett Bay, RI (USA), 
and the measurements of shoreline and seabed sediments add to the growing body of literature 
demonstrating high coastal concentrations. Microplastic concentrations in sediments ranged from 396 
to over 13,000 MP particles  kg−1 dry sediment (DW), comparable to other shoreline and seafloor sites 
located near urban centers. As previously reported for fine sediment and other pollutants, estuarine 
plastic storage is extensive in Narragansett Bay, especially within the upper urbanized reaches. Over 
16 trillion pieces of plastic weighing near 1000 tonnes is calculated to be stored in surface sediments 
of the Bay based on a power-law fit. This work highlights that estuaries may serve as a significant filter 
for plastic pollution, and this trapping may have negative consequences for these valuable, productive 
ecosystems but offer potential for efficient removal.

Plastics are an important new component of the global sedimentary system, observed on mountain tops and 
in ocean trenches, and are among the most ubiquitous forms of pollution in coastal and marine environments 
around the  world1–3. Sedimentary plastics are a tracer for the Anthropocene in the geological record and raise 
concerns about negative impacts on organisms and  ecosystems4–7. The fate of plastics is anticipated to differ 
from siliciclastic and carbonate sediments due to their lesser and variable density, and the distribution and 
movement of marine plastics is a thriving body of  research8–10. Microplastics are particles smaller than 5 mm in 
 size11,12, and thus cover a range from gravel to mud. They can enter the environment as primary microplastics, 
e.g., pellets used in plastic production and cosmetic  products11, or as secondary microplastics from fragmenta-
tion of larger  plastics8. Estimates of plastic material flux to the ocean vary from 0.41 to 4 million metric tons 
 annually12–14. However, only 1% of the marine plastic is estimated to remain in the water  column10,15. Most is 
believed (70–99%) to be deposited on shorelines and in marine  sediments15,16. The objective of this study was to 
examine sedimentary plastics along a city-to-sea gradient of a large estuarine system, Narragansett Bay (NB), 
Rhode Island, USA to inform deposition and storage on shorelines and the seabed.

Background and study area. Estuaries are home to valuable ecosystems, providing critical habitats that 
are important spawning habitat for marine biota, storm surge protection and also areas for ports, marine busi-
nesses and  more17. Due to their circulation, wetlands and other processes, estuarine areas serve as significant 
traps for  sediments18,19,  carbon20–22 and  pollutants23. Unlike deltaic systems, most fine sediment transported 
into estuaries will accumulate and only a small fraction may move  seaward24. Microplastics are hypothesized 
to follow a similar pattern, based on past studies demonstrating high estuarine MP  concentrations25. Sources of 
microplastic pollution to estuaries can include runoff, fisheries, wastewater treatment facilities, shipping, indus-
trial plastic production, and littering of single-use plastic  items26. Many microplastics entering estuarine envi-
ronments will be deposited along with sediments on shorelines or the seafloor, due to their excess density relative 
to seawater (e.g., PVC) or increased density due to biofouling, aggregation, or incorporation into fecal  pellets27,28.

NB is a large (342  km2), partially- to well-mixed estuary with a north–south orientation (Fig. 1a)29,30. Aver-
age water depth is ~ 9 m, and in general, it has a counterclockwise surface  circulation31,32. This system is subject 
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to wind, wave, tidal, runoff and human  forcings33. During nor-easters and hurricanes, gale force winds, storm 
surge and associated waves (sea and swell) affect aeolian and hydrodynamic transport, and semi-diurnal tides 
(< 1.5 m) influence the  currents34. Mean flushing time of the Bay is 26  days34, and human modifications to the 
system are widespread.

NB is carved out of the Narragansett Basin sedimentary strata and its morphology and stratigraphy have 
been heavily influenced by glacial  processes35,36. Fine sediment input to the system is very low due to the low-
sediment yield rivers draining to the estuary, and many fluvial sources are dammed  upstream35. Sediment accu-
mulation in NB is controlled by microtidal estuarine sedimentation processes which deposit fine sediment in 
deep, sheltered areas in the upper and middle Bay, and sandy sediment dominates the mouth of the Bay due to 
ocean transport by waves and near-bed  currents36. Modern day net sediment accumulation rates in NB are low, 
generally < 3 mm  year−123,37–39.

The NB coast has a dense urban population, particularly in the “Proximal” zone near Providence, situated at 
the head of the estuary (Fig. 1). Development in the watershed and along shoreline was significant during the 
industrial  revolution40, and as a result, NB is well-known for its pollution history, with previous work highlighting 
heavy metals and organic  pollutants23,30,39,41,42. Today, plastic pollution is an increasing concern as it is apparent 
during any visit to the Bay, and like other estuaries, it poses an unknown threat to the ecosystem including micro- 
and macro-organisms and humans that consume seafood from the  system5,43–46. The specific aim of this study 
was to determine the distribution and concentrations of microplastic particles in shoreline and seafloor sediment 
of NB with the hypothesis that plastic concentrations will decrease down the estuary and major storage exists.

Estuarine storage is dramatic. Microplastics have been found to be nearly ubiquitous in both coastal 
and open ocean marine environments, from polar seas to the  equator8–11,47–51, and not surprisingly, microplas-
tics were found in all NB sediment samples, at varying concentrations (Figs. 1 and 2), with measurements and 
particle types consistent with published data on subaqueous microplastic  concentrations52. The measurement 
methodology detailed below was robust, involving care against contamination, polymer determination and test-
ing of extraction efficiency and error, but differences in sampling protocols and research methodologies (e.g., 
MP particles  kg−1 DW; particles  L−1 sediment; g  km−2; particles  m−2) limit direct comparisons with other studies. 
Shoreline and seafloor sediment from the Proximal Zone had high mean MP concentrations, ranging from 1944 
to 13,338 MP particles  kg−1 DW (Fig. 1b). A down-estuary decreasing trend was evident, but cross-shore pat-
terns were not as other work has  suggested53,54. Along- and across-shore variability is expected due to differences 
in coastal zone current circulation cells, beach morphology and wave run-up55,56 (Fig. 2). However, aside from 
the very high shoreline plastic concentrations found at Bold Point, NB seafloor sediments (mean 856–2890 MP 
particles  kg−1 DW) had consistently higher values than those from the shoreline (mean 396–1944 MP particles 
 kg−1 DW), and this is despite the fact that most particles consisted of polymers that are less dense than water 
(Fig.  3), suggesting particle biofouling and aggregation are important and rapid enough to allow significant 
proximal trapping. The average concentration of MPs in shoreline sediment in the Distal Zone ranged from 396 
to 536 MP particles  kg−1 DW. These values are comparable to other sandy beaches in the United States. Sediment 

Figure 1.  Locations of shoreline (yellow circles) and subaqueous sediment grab (orange squares) sampling sites 
in Narragansett Bay (a). Each shoreline site included 2–3 transects within which the upper beach, mid-beach, 
intertidal zone, and subaqueous zone were sampled. At each sampling location, 94–100% of all plastic measured 
were microplastics (< 5 mm). Plastic concentrations (particles/kg dry sediment) range from about 400 to over 
13,000 particles/kg dry sediment (b). Macroplastics dominate by mass (g plastic/kg dry sediment) and the ratio 
of macroplastic to microplastic shows that macroplastic mass is greater in the upper bay and decreases near 
the lower estuary (c). Satellite image derived from Google Earth v7.3.6.9345 (December 14, 2015; https:// earth. 
google. com/)) and edited using a grid from Global Multi-Resolution Topography Synthesis (GMRT)70.

https://earth.google.com/
https://earth.google.com/
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samples from estuarine and barrier islands of Virginia and North Carolina contained 600–2200 MP particles 
 kg−157, and southeastern USA beach MP concentrations ranged from 40 to 450 MP particles  kg−1  DW58.

Microplastics in NB sediments were found to be abundant and diverse in size, shape, and polymer type 
(Figs. 3 and 4). While all samples contained microplastic particles, only 68% contained macroplastics (> 5 mm). 
Interestingly, the occurrence of microplastics did not positively correlate with macroplastics. The Proximal Zone 
contained more macroplastic than microplastic by mass (macro : micro > 1), while the opposite was true for most 
sites in the Distal Zone (macro : micro < 1; Fig. 1c). This inverse observation could indicate that macroplastics 
are being beached or settling out of the water column in the Providence River and upper NB, thus not reaching 
the sites in lower NB. Additionally, these macroplastics are likely being degraded and broken down into micro-
plastics during the transport process from the Proximal to the Distal zone, and those microplastics are more 
easily transported  seaward59,60.

Many studies have shown that fibers are the dominant form of microplastic in coastal environments in the 
USA and around the  world4,6,49,58,61,62. In this study, fragments and fibers dominated at each site, with fiber abun-
dance accounting for 21–70% of all microplastics identified (Fig. 4). Low and high density polyethylene (LDPE, 
HDPE; 43%), polypropylene (PP; 32%) and polystyrene (PS; 17%) were the most common plastic types found 
in NB sediments (Fig. 3). This is unsurprising, as 90% of worldwide plastic production is for LDPE, HDPE, PP, 
polyvinyl chloride (PVC), and  PS58. Particle shape and polymer type likely play important roles in transport and 
storage of microplastics in the NB system, and more investigation is needed in this regard.

City-to-sea sedimentary storage of microplastics. A dramatic, down-system decreasing gradient of 
plastic concentrations was observed in both shoreline and seafloor sediments of NB (Fig. 1b). Highest values are 
from the head of the Bay (Bold Point Park in the Providence River), and lower but still significant concentra-
tions were measured at the most seaward site, Narragansett Town Beach, near the mouth. The decreasing trend 
was also apparent in MP concentration by mass (g plastic/kg dry sediment) and in the mass ratio of macro- to 
microplastic (Fig. 1c). Pollution research has noted that a power-law relation to urbanization is  common63,64, 
and data here fit well to this type of model  (R2 = 0.85; Fig. 5a). This trend is expected due to the high population 
and urbanization, and thus increased possible sources along the Proximal Zone. Population densities are over 
1930 people per  km2, in the Proximal Zone and are an order of magnitude lower in the Distal  Zone65. Several 
studies have shown high MP concentrations in coastal areas adjacent to  cities66,67. For three Australian estua-
rine systems, Hitchcock and  Mitrovic68 found microplastic abundances generally relate to the human activity, 

Figure 2.  Plastic concentration (particles/kg dry sediment) is high in the upper estuary and decreases 
toward the open ocean for both microplastics (a) and macroplastics (b). Variability is observed within sites 
when comparing samples taken in the upper beach (pink), mid-beach (orange), intertidal zone (aqua), and 
subaqueous zone (blue). Sediment grab samples located offshore of shoreline sites are included for comparison 
(navy). Red ’X’ denotes where no samples were taken. Error bars represent one standard deviation from the 
mean.
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Figure 3.  Abundance of microplastic particle types varied between sampling zones (e.g., upper beach, mid-
beach, intertidal zone, subaqueous). The size of the dot represents the microplastic particle count. The color 
represents both the particle type and the corresponding particle density. Particles less dense than seawater 
(< 1.03 g  cm−3) are shown in green and blue shades. Particles more dense than seawater (> 1.03 g  cm−3) are 
shown in shades of brown. For polymers with a range of possible densities (e.g., polystyrene), the average 
density was used. The overall frequency for all sites and sampling zones is shown in the “Total” pie chart in the 
top righthand corner.

Figure 4.  Plastic particle types include pre-production pellets or nurdles (red), fragments (navy), films (green), 
and fibers (yellow). Fibers and fragments dominate by frequency (%; a). Mass per particle (g  particle−1) decrease 
down the system in shoreline samples (solid bars) but remain consistently high in sediment grab samples 
(checked bars; b).
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and a study of Chesapeake Bay showed a weak (r = 0.33) positive linear correlation between surface water MP 
abundance and population  density69. Current predictions of global plastic input from rivers to the ocean rely on 
geographically limited water-column concentration data and lack the data needed to account for plastic deposi-
tion in  estuaries12,14. To better understand the plastic problem (impact and storage), power-law relationships 
may be used as a tool to model plastics with other proxies (e.g., population or land-use patterns) to estimate 
coastal sources and  fluxes63.

A wealth of studies have shown that estuaries act as filters for material entering the system from rivers, 
including sediments, organic matter, nutrients, and  pollutants21,22,71. However, this is the first study to demon-
strate substantial, system-wide storage as hypothesized by other  studies62,72–76, and this is likely the case in other 
estuaries. The effectiveness of estuarine sediment trapping has been related to many spatially and temporally 
varying processes including flocculation as well as estuarine circulation and wetland storage. The high amount 
of microplastic deposition in the Proximal Zone (> 50%) indicates that a large fraction of plastic entering the Bay 
is, at least initially, stored in subaerial and subaqueous deposits near the population center.

Based on the power-law fit (Fig. 5), nearly 1 ×  103 tonnes of microplastics are estimated to be trapped in the 
top 5 cm of NB sediment, representing over 16 trillion particles assuming an average weight of 5.8 ×  10−5 g/
particle. This rough estimate provides a first-order look at the magnitude of the plastic pollution problem in a 
single urbanized estuary. The plastic flux into the Bay from a multitude of sources is very difficult to quantify. 
Work by Lebreton et al.12 estimated coastal MP flux based on concentrations in river waters, and calculated 
plastic input to the ocean from all rivers to be 1.15–2.41 million tonnes per  year12. However, these estimates do 
not take into account the substantial estuarine sediment trapping as estimated here, and thus new approaches 
to constrain plastic land-to-sea transfer are needed. A modeling study of Chesapeake Bay calculated that 94% 
of riverine microplastics are deposited in the sediment, with the remaining 5% exported from the estuary and 
1% remaining in the water  column77. Based on the river plastic input predictions by Lebreton et al.12 and the 
estimation of 94% deposition in  sediments77, up to 14 tonnes of plastic per year could be deposited in NB 
sediment from river input alone, likely an underestimate given other additional sources of MP to NB (coastal 
littering, WWTF, fishing, etc.). Given this, much if not most of the plastic input to the ocean may be stored, at 
least temporarily, in estuarine sediments. With this in mind, in addition to reducing inputs around the world, 
there is an opportunity to attack the plastic problem by more regularly cleaning the estuarine plastic filter; some 
efforts have focused on the water column, but more work is needed along the estuarine shorelines and seabed. 
It is worth noting that this study also measured very high plastic concentrations in dredged material from the 
distal end of the fluvial network at the head of the Bay. Concentrations ranged from 5600 to 11,900 MP particles 
per kg DW sediment. These data further support the power-law relationship observed, and highlight that lower 
river storage is also critical. Accordingly, dredged material management should be carefully monitored to limit 
the reintroduction of plastics.

Figure 5.  A negative power-law relationship between microplastic concentration (particles  kg−1 dry sediment) 
in subaqueous sediment and the distance from Providence, RI (km) exists  (R2 = 0.85; a). Error bars represent 
one standard deviation from the mean. Some error bars are sufficiently small to be contained within the circle 
symbol. Using this relationship, the depth of the sediment sampled (top 5 cm), the average density of the 
sediment (1.7 g  cm−3) and the average mass per plastic particle (5.86 ×  10−5 g  particle−1), the predicted amount of 
plastic contained in any given area of the Bay is calculated. This is mapped onto a grid of Narragansett Bay (b). 
When the total area of the bay is summed, the mass of microplastics contained in the top 5 cm of subaqueous 
sediment totals 9.76 ×  105 kg, or 976 tonnes. Over 50% of microplastics are estimated to be stored in the upper 
Bay proximal to the city (c). Satellite image derived from Google Earth v7.3.6.9345 (December 14, 2015; https:// 
earth. google. com/) and edited using a grid from Global Multi-Resolution Topography Synthesis (GMRT)70.

https://earth.google.com/
https://earth.google.com/
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Sedimentary environments and microplastics. MP concentrations are reportedly highest in low-
energy, depositional sedimentary settings, such as lagoons and  fjords25; These locations also trap fine-sediment 
and are often zones of accumulation for metals and organic pollutants. In this study, sediment grain size varied 
dramatically between sites, reflecting local conditions as noted by McMaster et al.78, and most samples consisted 
of a mix of fine sand to gravel (granules) (Supplementary Fig. S2). Sites located in the Proximal Zone had the 
highest percentages of mud (7–44%) compared to all other sites (0–2.5% mud) and contained the highest con-
centrations of MPs. Other work has shown positive correlation between microplastics and finer  sediments50,79,80. 
Also, sampling transects at Field’s Point, a protected depositional basin at the head of the estuary, exhibited a 
notable fining trend from the upper beach to subtidal sediments, and this fining trend coincided with a strong 
increase in MP concentration (Supplementary Fig. S3; Fig. 2). These data help illustrate how estuarine geomor-
phic pockets can enhance sediment and plastic storage, but such features also make accurate budgets challenging 
to achieve.

With high concentrations in coastal sediments, there is much concern about how plastics may impact organ-
isms and ecosystem functioning. Everaert et al.81 combined literature data on potential effects of microplastics on 
infauna and has proposed 540 particles  kg−1 sediment as a potential threshold for harm. In NB, about 80% of the 
measurements currently exceed this value. Because rivers with large sediment loads may dilute MP concentra-
tions, it is possible that NB sediment has more elevated concentrations than other systems. In contrast, sediment 
accumulation rates in Manila Bay, Philippines vary from 1 to 9 cm  year−182–84. Because seven of the top ten rivers 
in the world that contribute plastic pollution are located in the  Philippines14, it could be expected that MPs in this 
area would be extremely high. However, one study near five river mouths of Manila Bay found concentrations of 
only 386–1357 particles  kg−1 dry  sediment85. Even at the upper end, these concentrations are 30–70% lower than 
the MPs from upper NB. This difference may be explained by dilution as well as differing measurement methods 
or transport efficiencies. The influence of sediment supply relative to plastic input should be further studied.

Particle density, surface area and size also play a role in the deposition of microplastics, and thus will impact 
the correlation between sediment grain size and MP  concentrations86,87. Of all MPs analyzed in this study, 95% 
had densities less than seawater (< 1.03 g  cm−3). Particles more dense than seawater were found almost exclusively 
in the intertidal and subaqueous samples. Other studies have similar findings, with on average 92.2–95.8% of 
measured plastics being low density plastics like PE, PP, and  PS88–92. Biofouling must be important in this and 
other estuaries as it can increase sinking rates by an order of magnitude per  day28,93,94. In NB, the down-estuary 
increase in fiber abundance and decrease in fragment abundance supports the idea of fragment fouling and stor-
age resulting in down-system decrease in mass per plastic particle (g  particle−1) seen in the shoreline sites (Fig. 4). 
This study did not examine biofouling on individual particles, but other work has shown rapid biofouling rates. 
Bacteria in coastal sediments colonized LDPE particles after just 14 days, and PE films rapidly developed biofilms 
in seawater after 3  weeks95,96. Given this, biofouling is believed to be critical to the observed pattern of MP in NB.

In sum, this first system-wide study of estuarine sediments demonstrates extensive trapping of MP, provid-
ing additional evidence that coasts bear additional burden of high microplastics. These observations indicate 
significant and far-reaching ecosystem consequences, but they also offer an opportunity for more efficient plastic 
removal to help limit broader impact on the ocean.

Methods
Sampling. Shoreline transects. Shoreline transects were carried out at seven sites between September and 
October of 2020, with one site (Bold Point, RI) sampled in March 2021 (Supplementary Table S1). Sites were 
chosen to provide a spatial distribution ranging from the Lower Providence River to the mouth of Narragansett 
Bay. At each site, three transects perpendicular to the shoreline were completed within 2 h of low tide. Along 
each transect, four sample locations were chosen: (1) the upper beach, near the dune toe; (2) mid-beach; (3) 
intertidal zone, between the high tide line and edge of the swash zone; and (4) a subaqueous sample taken ap-
proximately 50 m from the shoreline (Supplementary Fig. S1). The wrack line was not sampled at any site.

Separate sediment samples were collected for grain-size analysis, macroplastic measurement and microplastic 
analysis. Samples were limited to the upper 5 cm of sediment. All sediment was collected in pre-rinsed glass jars 
using a metal spoon. Cotton clothing was worn during collection.

Seafloor sediment samples. To evaluate seabed plastics, sediment grab samples were collected at five locations 
throughout Narragansett Bay (Supplementary Table S1, Supplementary Fig. S1). Samples were collected using 
a Van Veen grab sampler deployed from the R/V Cap’n Bert on two occasions, in Fall 2020 and Summer 2021. 
Separate sediment samples were collected for grain-size analysis, macroplastic analysis, microplastic analysis 
and an archive sample. Sediment was collected in pre-rinsed glass jars using a metal spoon.

Plastic extraction and analysis. Shoreline and seabed sediment samples were processed identically. One 
liter of sediment was wet sieved at 1 mm using metal sieves. Debris > 1 mm were dried in an oven at 60 °C for 
24 h. Debris was then transferred to a large glass pan and any suspected macroplastics (> 5 mm) or large micro-
plastics (1–5 mm) were removed using metal forceps. Plastics were transferred to a glass petri dish for further 
analysis. A description of each particle along with the mass, color, and plastic type (e.g., film, fiber, fragment, 
foam, pellet) was recorded.

The plastic research literature analyzes plastics at a wide range of sizes, and there is a methodological limit to 
the size of particles that can be confidently measured (approximately < 40 microns). Given the sedimentological 
focus of this study, this study decided to set a lower limit of 62.5 microns, the sand-mud size cutoff for sedi-
ments, for plastics to analyzed as this is a standard sieve size used for geological analyses and can confidently 
be measured. This lower size limit may limit broader comparisons to other studies, which apply a range of 
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size cutoffs including at 38 µm50, 45 µm52, or 100 µm4.Approximately 100 g of wet sediment was weighed and 
sieved at 62.5 µm to remove fine sediment. The remaining sediment was transferred to a 500 mL glass beaker 
for microplastic extraction. The sieve was then inspected under the dissecting microscope to ensure no fibers or 
other particles had been left behind. A dense solution of sodium iodide (NaI, 1.8 g/cm3) was used for extractions, 
following procedures from Kedzierski et al.97.

The NaI solution was added until the volume of NaI was twice the volume of sediment. The beaker was cov-
ered with aluminum foil and stirred for 5 min using a glass stir bar. The solution was left to settle for a minimum 
of 6 h and a maximum of 24 h. Once the NaI solution was clear, the supernatant containing any floating particles 
was carefully decanted through a 62.5 µm sieve, avoiding resuspending the sediment. The sieved NaI was poured 
back into the sediment sample, stirred for 5 min, and left to settle for a second extraction. The particles caught 
in the sieve were rinsed into a small glass beaker using pre-filtered (0.2 µm) DI water.

Organic digestions were carried out on Bold Point Park samples, which were from a marshy shoreline and 
thus contained a high presence of organic material in the post-extraction material. An aliquot of 2 mL of 30% 
 H2O2 was added to the beaker containing the extracted material and allowed to digest overnight at 60 °C. All 
extracted material was filtered through a pre-weighed 47 mm diameter, 1.6 µm pore size GF/F filter using vacuum 
filtration with a glass filter funnel. The filter was then placed in a small glass jar for future analysis. Once dry, 
filters containing extracted material were weighed.

Filters were examined using light microscopy under a dissecting microscope, with all suspected plastic par-
ticles counted and categorized into fragments, fibers, and films. Fluorescence was also used to help locate plastic 
particles on the filter. NIGHTSEA royal blue (440–460 nm excitation) illuminated the filter, which was viewed 
using the dissecting microscope fit with a 500 nm longpass emission filter (NIGHTSEA SFA Stereo Microscope 
Fluorescence Adapter). When possible, plastic particles were removed from the filter using fine forceps and 
adhered to a glass slide using double-sided tape. Plastic particles were imaged at 40X zoom using an AmScope 
dissecting microscope fit with an Amscope MU1803 digital camera. The size of particles > 500 µm was measured 
using ImageJ (Rasband 2018)98.

Extraction efficiency. To verify efficacy of the extraction methods, fragments of polystyrene and polyethylene 
terephthalate, low density polyethylene film, as well as polypropylene fibers, were created using a coffee grinder 
followed by sieving to attain a representative particle size distribution and imaged and sized using ImageJ 
(Supplementary Table S1). Sediment samples were spiked with a known number of particles and extracted as 
described above. Extraction efficiency following the second extraction ranged from 77.1 to 100%, with a mean 
efficiency of 92%.

Polymer Identification. Fourier-transform infrared spectroscopy (FTIR) was used to determine the polymer 
makeup of all particles able to be picked by forceps, typically > 250 µm in size (Shimadzu IRTracer-100). Sample 
spectra were collected over the range of 500–4000  cm−1, with a data interval of 1  cm−1 and resolution of 4  cm−1. 
The ATR diamond crystal was cleaned with 70% 2-propanol and a background scan was performed between 
each sample. All collected spectra were compared to the Shimadzu spectra libraries for identification. A mini-
mum match of 80% was required for spectra to be accepted as plastic particles.

Sediment analysis. Approximately 50  g of wet sediment from each sample location were weighed and 
dried in an oven at 60 °C for 24 h, and reweighed. The moisture content of each sample was calculated using 
the wet and dry weights. Grain size of each sediment sample was measured using a Malvern Mastersizer 3000. 
Samples were first sieved at 2 mm to remove the gravel fraction, which was corrected for in the final distribution 
determination.

Contamination controls. 100% cotton clothing was worn during sampling, and a cotton lab coat was worn 
during all laboratory procedures. All extractions were performed under a laminar flow hood, which was cleaned 
before each extraction began. Plastic materials were avoided at all possible steps of sampling and extraction, 
and all glassware was prerinsed. Filters were placed in the laminar flow hood to serve as air blanks during each 
extraction. Filters were also collected every 12 samples to test the DI water and NaI solution for contamination. 
All particles found on blanks were recorded (Supplementary Table S2). If a particle of the same color and shape 
was found in the blank and sample, corrective action was taken and that particle was subtracted from the total 
count for that sample. The maximum number of particles on any single blank was 4, and 49% of counted filters 
had at least one particle removed through blank subtraction (Supplementary Table S3).

Estimating plastic mass in Narragansett Bay sediments. Using microplastic abundances from sub-
aqueous and intertidal zone shoreline samples, as well as subaqueous sediment grab samples, a negative power-
law relationship between microplastic abundance (particles  kg−1 dry sediment) in subaqueous sediment and the 
distance from the city of Providence, RI (km) was found  (R2 = 0.85)(Fig. 5a). Using this relationship and Eq. (1), 
we predict the amount of plastic contained in any given area of Narragansett Bay.

In Eq. (1), z represents the depth of the sediment sampled (top 5 cm), m is the average mass per plastic particle 
(5.86 ×  10−5 g  particle−1), d is the distance from Providence (km), A is the seafloor area of each grid cell, and ρs is 

(1)Pmass_total =

42
∑

2.7

[(

9450.4 × d
−0.861

)

× (Azρs)
]

× m
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the density of sediment (1.7 g  cm−3). By summing the plastic contained in the subseafloor area from 2.7 km (the 
distance of our first sample site) to 42 km (the distance to the mouth of the Bay), we predict the total amount of 
plastic contained in the top 5 cm of subaqueous sediment to be 9.76 ×  105 kg, or 976.3 tonnes, of microplastic. 
Microplastics are not distributed evenly in Narragansett Bay sediment (Fig. 5C). 25% of the total plastic mass, or 
approximately 240 tonnes, are contained in the upper 12% of the Bay area, or the area north of Rocky Pt., War-
wick, RI. The area north of Quonset, RI represents 60% of the entire Bay area, but holds 75% of the microplastics.

Data availability
The data presented in this manuscript have been submitted to the Zenodo open science data repository (https:// 
doi. org/ 10. 5281/ zenodo. 76969 56).
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