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A semi‑empirical approach 
to calibrate simulation models 
for semiconductor devices
Rahul Jaiswal 1,2, Manel Martínez‑Ramón 2,3 & Tito Busani 1,2,3*

Semiconductor device optimization using computer-based prototyping techniques like simulation 
or machine learning digital twins can be time and resource efficient compared to the conventional 
strategy of iterating over device design variations by fabricating the actual device. Ideally, simulation 
models require perfect calibration of material parameters for the model to represent a particular 
semiconductor device. This calibration process itself can require characterization information of 
the device and its precursors and extensive expert knowledge of non characterizable parameters 
and their tuning. We propose a hybrid method to calibrate multiple simulation models for a device 
using minimal characterization data and machine learning-based prediction models. A photovoltaic 
device is chosen as the example for this technique where optical and electrical simulation models of 
an industrially manufactured silicon solar cell are calibrated and the simulated device performance is 
compared with the measurement data from the physical device.

A semiconductor device can be modeled using a set of information like device physics, device structural param-
eters, material properties in the device, and external stimulus required.

Such a simulation model can be formulated with literary information. However, a single device technology 
can have multiple variations, this can result not only from changes in device architecture but also due to process 
variations from individual tools in a lab or production line, leading to deviation of material properties from 
data available in the literature.

These variations require tuning the parameters used in a standard simulation model to match the characteris-
tics of a specific device variation. Some design parameters can be measured easily from the fully integrated device 
and can be plugged into the simulation model directly. However, there can be parameters that either cannot be 
measured at all or directly using a characterization tool. There can also be a set of material parameters required 
for the simulation model of the semiconductor device that cannot be measured from the fully integrated device 
and instead require a precursor of the device or even a device variation that is not part of the fabrication recipe. 
One example of such a case can be the minority carrier lifetime1 in a solar cell device that has a direct impact on 
the final power conversion efficiency and can be used for performing loss analysis. Minority carrier lifetime is a 
quantity that can be directly measured using QSSPC (Quasi steady-state photoconductance)1, but a symmetric 
sample is required, instead of a fully integrated solar cell device which is an asymmetrical device composed of 
different kinds of layers for electron and hole charge extraction. A lifetime sample is not a precursor for the final 
solar cell, and it has to be manufactured just for the measurement of the minority carrier lifetime.

The issue of variation in material parameters and its impact on designing a device simulation model has been 
discussed in the literature. Madan et al.2 pointed out that refractive indices for the same material in a perovskite 
solar cell can vary due to different fabricating recipes and emphasized validating simulated results with experi-
mental findings. Giesl et al.3 have emphasized how calibration of a simulation model may require a number of 
parameters that can not be experimentally measured. Zeman et al.4 also discusses the issue of material parameter 
variation and provides a conventional approach to calibrate simulation models using parameter fitting. Rose 
et al.5 provide emphasis on how precise device physics modeling is required for calibrating simulation models 
to match simulated and measurement data.

Precise calibration of simulation models is also important as efforts are being made to create digital twins6 for 
a semiconductor device using machine learning (ML) techniques. Instead of using measurement data, simulated 
models that are calibrated are preferred as they scale better in terms of time and resources required to create a 
sufficient amount of training data required for a learning model. This is possible as once the simulation model 
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is calibrated, input parameters can be varied to prototype device variations, doing so, with fabricating and 
characterizing physical devices will be inefficient. Buratti et al.7 proposed a methodology to extract bulk defect 
parameters in silicon by using machine learning models trained with simulation data, they also pitched the idea 
of transfer learning where the same methodology can be applied to other materials. Mohnsen and Altermatt6 
used digital twins for Passivated Emitter and Rear Cell (PERC)8 solar cells, these digital twins are machine learn-
ing models trained with TCAD simulation9 data for identifying how variations in material and device design 
parameters can affect the PERC solar cell performance, and their findings included that a particular performance 
metric can result from more than one combination of material and device parameters set. Kaya and Hajimirza10 
also show that a black box approach of using ML models to optimize device performance is efficient compared 
to fitting a numerical simulation model, the emphasis was not on creating a perfectly calibrated simulation 
model but to create a pool of data set by varying individual parameters and predicting device performance to 
identify the optimized device characteristics. The concept of using machine learning techniques to also optimize 
a processing recipe was demonstrated in Mohnsen et al.11.

Our proposed methodology is based on the hypothesis that ML models can learn from a minimal data set 
and can try to predict a target value by interpolating or extrapolating the training data points. In contrast to 
contemporary works in literature, the focus of this work is to perform calibration of more than one simulation 
model for a semiconductor device for predicting more than one performance metric. There are semiconductor 
devices like solar cells, where the optical and electrical parameters are generally simulated separately, the electri-
cal simulation model is reliant on the data from the optical simulation model, and they share a common set of 
device and material parameters, therefore calibration of electrical simulation models is dependent on calibra-
tion of optical simulation models. This is a challenging task as generally literary works have tried to optimize 
one performance metric of a device at a time, which can overlook the trade-offs that exist in a device, a narrow 
example of it can be the trade-off when designing the thickness parameter of metal fingers, increasing it will 
reduce the resistance faced during charge extraction, while simultaneously decreasing the area on which light 
can fall, therefore reducing the optical generation within the device.

We chose Gaussian process regression (GPR)12 as the ML methodology for this work, mainly because of two 
reasons: One, most relationships between semiconductor devices, material, and performance parameters are 
nonlinear in nature, and because GPR’s use kernel functions13 φ(·) to map input features into a higher dimen-
sional Hilbert space endowed with a dot product K(xi , xj) = φ⊤(xi)φ(xj) between two points i and j. These 
nonlinearities are learned by the machine learning model for the multidimensional input feature set. Another 
advantage of using the GPR is that we can evaluate the variance terms composed of the kernel inner product of 
the training points, between the training point and the test point, and of the test points. Behaviorally these are 
the variance in the training or test data set (K and K∗∗ respectively), and the covariance between the test and 
training data set ( K∗ ). We can construct a kernel covariance matrix ( � ) using these variances and covariances, 
which provides the knowledge of variance within every prediction of the ML model.

 “Target device” Section discusses the target device, the performance metrics associated with the device and the 
simulation models used for the device.  “Proposed Methodology” Section discusses the proposed methodology 
of multi-model calibration. “Results” Section presents the results and “Discussion” Section is dedicated to the 
discussion of the results and conclusion of the proposed work.

Target device
The target device for this work is the silicon heterojunction solar cell (HIT)14. The heterojunction with thin 
intrinsic layer architecture is shown in Fig. 1.

The operation of a silicon solar cell can be generalized by three mechanisms: charge generation, charge sepa-
ration, and charge extraction. A solar cell device is structured to maximize the efficiencies of these three mecha-
nisms, HIT cells achieve this by implementing a hetero-structure between amorphous and crystalline silicon.

HIT solar cells also have some inherent advantages over other commercial technologies like PERC solar 
cells, for example, lower temperature coefficient for power conversion efficiency. Commercialization of HIT cell 
technology is increasing, but a significant amount of research is still needed to mitigate issues like degradation of 
open circuit voltage ( VOC)15 over time. Simulation and machine learning-based device prototyping can expedite 
the process of optimizing a HIT solar cell device.

For this research work, a commercially available TCAD tool suite (Sentaurus9) was used for designing simu-
lation models. An important parameter for the optical simulation will require the complex refractive index 
profile16 for the transparent conductive oxide (TCO)17 layer which also acts like anti-reflective (ARC)18, we can 
measure it using techniques like ellipsometry19, but it will require a highly polished (single-side) high-resistivity 
silicon wafer with (singe-side) TCO layer (deposited on a polished surface). Such a sample is not a precursor to 
an industrially fabricated solar cell and would require disruption of the pilot line, henceforth a baseline complex 
refractive index is taken from the literature and optimized for the device using machine learning methods. Ray 
tracing and transfer matrix methods20 are used to calculate the absorbed photon density, and texturing using 
inverted pyramids was specified in the simulation structure. The reflection profile19 and optical generation 
profile21 can be obtained using the optical simulation model. The goal is to calibrate the optical simulation model 
by matching the reflection profile to the measured profile as the optical generation profile of a solar cell cannot 
be directly measured.
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The power conversion efficiency of a solar cell device is calculated from its current–voltage profile. The electri-
cal simulation model for the current–voltage profile requires information about the optically generated carrier 
(electron-hole pairs) density across the density, which is obtained from the optical simulation model. Other 
device mechanisms like carrier recombination, charge separation, and extraction also govern the evaluation of 
the current–voltage profile in the simulation model.

Proposed methodology
A generalized algorithm to calibrate different semiconductor devices had to be considered, to prototype a device, 
multiple simulation models can be required instead of a single simulation, our goal is to calibrate these multiple 
simulation models at a time in order to compensate for any trade-off that might result from variations in param-
eters that are common to multiple simulation models. In “Individual model calibration” Section, the methodology 
to calibrate one simulation model is presented, and in  “System design” Section, the methodology to integrate 
the calibration process of multiple simulation models into a single system is presented.

For our target device, we start with performing characterization on the device and its precursors to establish 
the data set for the different optical and electrical characteristics of the device, this includes characterizing the 
current–voltage profile, quantum efficiency (QE)22, reflection profile, and minority carrier lifetime profile of 
the HIT cell. We are using a ML based model in the calibration algorithm, although it should not be confused 
with any ML based prediction models mentioned in the text, where the goal is to prototype device performance. 
Throughout the text, any simulation described refers to a TCAD simulation. ML model based calculations are 
explicitly referred as predictions.

Individual model calibration.  To start the calibration process for a simulation model, baseline simula-
tions are required. An initial value range (from literature or provided by the device manufacturer) for every 
simulation input parameter that needs to be calibrated is assigned. Parameters that are known with absolute val-
ues (measured data or data provided by the manufacturer) will not be part of the calibration process, and ‘input 
parameters’ from now on refer to parameters that need to be calibrated unless explicitly mentioned otherwise. 
It is a good practice to remove redundant parameters from the set of parameters targeted for calibration (i.e. 
parameters that are highly correlated).

An input parameter grid is created by varying the input parameters in their assigned range This range 
can be taken from literature (provided in Table 1 for our work) and the subdivision can be arbitrary, but 
expert knowledge will be helpful in choosing optimal subdivisions. For n input parameters and value ranges 
[(xinitial1 , xfinal1 ), (xinitial2 , xfinal2 ) . . . (xinitialn , xfinaln )] with different number of steps [s1, s2, s3 . . . sn] , a total of 
S1 =

∏n
i=1 s1, s2, s3 . . . sn simulations will be run.

These S1 baseline simulations are used to train the GPR models, where input parameters of the simulation 
models are the input features of the machine learning model, and the simulated data is the prediction target.

Then the input parameter of S1 data points (each data point referring to one combination of input param-
eters) is interpolated to get a finer observation between device parameters and the corresponding performance 
characteristics. A total of three values are calculated using interpolation between each adjacent value of an input 
parameter, which are equidistant. Therefore a total of S2 = 4S1 − 3 data points are created.

The S2 interpolated data points grid can now be used for making predictions from the trained machine learn-
ing model. Predicting the device performance is much more efficient in terms of resources and time required 
compared to simulating the device performance at this scale.

Since most characteristics in a semiconductor device are characterized as a profile (for example, the cur-
rent–voltage profile in a solar cell is a list of current values at different voltage values), predictions from the 
machine learning model are also targeted to create a profile by combining different point predictions (for exam-
ple, by combining current value predictions for different voltage value points, keeping other parameters the 
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Figure 1.   HIT solar cell band architecture.
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same). Each prediction profile is compared against the corresponding measured profile, and then the r-squared 
(R2)23 score between each prediction profile is calculated to determine the prediction accuracy.

If the condition ‘C1’ : “a prediction profile exists where the R2 score is more than 90% and 80% of the 
measured values lie within the 95% confidence bound (2 standard deviations) of the prediction” is ‘True’, that 
particular prediction is chosen as a calibrated prediction and the corresponding input parameter set is declared 
as the calibrated input parameter set.

If condition ‘C1’ is ‘False’, the prediction with the highest R2 score is chosen and the input parameters of this 
particular prediction are taken as baseline values. Additional parameter sets are created by varying the param-
eter values by ± 5%. These two new sets of values are used to do additional simulations and the ML models are 
retrained with the updated simulation data. The S2 input parameter grid values are updated with these two new 
sets of values and are interpolated again. Predictions from the ML models with updated input parameter sets are 
compared against the measured values to check condition ‘C1’. This process of updating the parameter set and 
training data was referred to as ‘revision’ in our work and the whole process is repeated until the goal is either 
achieved or a maximum number of attempts are performed (set as 500 by us to not overflow the computational 
resources). In the former case, the calibration process is successful and manual intervention is required for the 
latter case. This algorithm flow is shown in Fig. 2.

The second part of the condition ‘C1’ is established to make sure that the machine is confident in its predic-
tions, instead of just relying on the accuracy score.

System design.  The operation of a semiconductor device can be explained using several mathematical or 
physical models, this is the reason why multi-physics modeling tools are generally used to simulate the complete 
device behavior. Similarly, the strategy implemented in our work was to calibrate individual simulation models 
in a hierarchical fashion, such that if an electrical simulation model is dependent on the results of an optical 
simulation model, calibration of the optical simulation is done prior to the electrical model, and the data from 
the calibrated optical simulation model is provided as one of the inputs to the model electrical simulation model 
calibration. Fig. 3, visualizes this strategy.

Once all the simulation models are calibrated independently, the calibrated parameters from each of these 
simulations are pooled into a universal parameter dataset. Parameters that are common between multiple simula-
tion models are averaged together in our work, but a more optimal way will be to use a weighted average (based 
on how sensitive a performance metric is to a given material/device parameter). This universal parameter dataset 
is then used to provide inputs to all the simulation models to verify that the simulated results are 90% accurate 
compared to the measurement data.
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Figure 2.   Process flow to calibrate a single simulation model.
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We applied the concept presented in Fig. 3 to the HJT cell and divided the cell into the optical and electrical 
domains. Indeed two simulation models were calibrated. One was the optical simulation model that calculates 
the optical generation profile and the reflection profile. The second was the simulation model to calculate the cur-
rent–voltage profile of the device under AM1.5G24 illumination. Two additional simulation models to calculate 
the QE and minority carrier lifetime profile were not calibrated (as they use the same input parameters as the 
current–voltage simulation model), instead, they were used during the verification, to check if their simulated 
output was at least 90% accurate to the corresponding measurement data.

Results
The list of parameters in electrical and optical simulations of the HIT solar cell is provided in Table 1. Substrate 
thickness was 160 μmf after etching. Thicknesses of the amorphous silicon layers: intrinsic layer (a-Si), n-doped 
layer ( a− Si(n+) ) and p-doped layer ( a− Si(p+) ) were provided by the cell manufacturer. Dit represents inter-
face trap density.

Indium Tin Oxide (ITO) was used as the TCO layer, acting as an ARC coating layer for the solar cell. The 
complex refractive index values (n-k data) were taken from literature33 and were calibrated for the optical simu-
lations. These n-k pair of values were interpolated at a fixed number of wavelength values as they were input 
parameters to the ML model. Partial information about the calibrated complex refractive index is provided in 
the supplementary information.

Substrate doping was calculated from the wafer resistivity value range provided by the manufacturer, and 
bulk lifetime36 was also provided as a value range by the cell manufacturer. The calibration of the optical simula-
tion models required 2 additional revisions in addition to the initial parameter grid and training data for the 
ML model.

Calibration of the current–voltage profile simulation model required one revision in addition to the initial 
parameter grid and training data for the ML model. Once both optical and current–voltage simulation models 
were calibrated individually, the common parameters between them were averaged together to create a universal 
list of calibrated parameters for this solar cell provided in Table 1. Predictions for the reflectance profile and 
current–voltage profile using the calibrated parameters are compared against the measurement data from the 
precursor and the final solar cell in Figs. 4 and 5 respectively. The confidence intervals for each of these predic-
tions are also shown. The short circuit current was lower in the measurement compared to the predicted value 
due to the imperfect contact (the fully contacted samples had bus strings instead of bus bars), but this comparison 
shows that the ML model is capable to compensate for measurement artifacts/errors.

During the verification of the calibrated parameters, QE and minority carrier lifetime profiles were also 
simulated using the calibrated parameter list and are shown in Figs. 6 and 7 respectively.

Universal device parameter set

ML model 1 ML model 2 ML model m

Simulation 1 Simulation 2 Simulation m

Calibration Stage

Verification Stage

Figure 3.   Process flow to calibrate a system of simulation models.

Table 1.   Final (calibrated) list of parameters.

Parameter Initial value Calibrated value Unit

a− Si(p+) doping 25,26 2.3e19 cm−3

a− Si(n+) doping 25,26 5.75e18 cm−3

SRV for silicon-Silver SRV for silicon-Aluminium 27 5.7e4 cm/s

Contact resistivity 28,29 8.9e-3 �cm2

Dit at c-Si - a-Si interface 30,31 1.2e11 cm−2

Trap density states a− Si(n+) 32 9e18 cm−3

TCO Complex refractive index 33 Supplementary information

TCO thickness 34,35 71.25 nm

Wafer resistivity 0.6–1.2 (Provided by manufacturer) 0.6312 � cm

Bulk lifetime 3–7 (Provided by manufacturer) 3.3 ms



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10436  | https://doi.org/10.1038/s41598-023-36196-z

www.nature.com/scientificreports/

Figure 4.   Predicted reflectance profile compared to measured profile.

Figure 5.   Predicted current–voltage profile compared to measured profile.

Figure 6.   Simulated quantum efficiency profile compared to measured profile.
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For training using the GPR model, the kernel function was scaled with a constant mean, a standard Gaussian 
likelihood37 function (where all inputs have the same observational noise) was used and Adam optimizer38 was 
used for loss analysis. 540 data initial data points were used for training the ML model for optical simulation 
model calibration and 1426 data points were used for training the ML model for current–voltage simulation 
model calibration.

Discussion
The crux of this research is to perform calibration of simulation models with minimal resources, which was 
achieved for an industrially manufactured HIT solar cell. One key aspect that is unique to this work is the 
minimal amount of measurements and simulation data required for training a ML model , a ML model inher-
ently requires a larger dataset to learn and estimate device performance compared to expert knowledge-based 
calculation, henceforth this act of data generation should be efficient. The initial parameter set used for creating 
initial simulation data was not evenly spread, as instead of performing a grid search for parameters, the proposed 
methodology looks for the best parameter fits in every iteration using not just the accuracy scores but also the 
confidence of predictions. This is not a true Bayesian optimization39 approach in a strict sense, as parameter tun-
ing is not done based on a global optimum search using an acquisition function with a risk exploration to return 
reward-based strategy. This is not crucial as there is no need to search for a global optimum parameter, given that 
semiconductor device parameters have to be constrained within a range (provided by the manufacturer, material 
properties, and device physics). The proposed methodology keeps the number of additional simulations required 
(in addition to the initial simulations) for training by looking for the best parameter fit in an iteration, and the 
majority of fitting work is done by the ML model predictions which are exponentially faster (within seconds), 
compared to a TCAD based simulation, which can take hours.

Another key aspect of the proposed strategy is the flexibility of configuring the design, for example, the 
interpolation between simulation data points to create a prediction parameter grid can be tuned by increasing 
or decreasing the number of interpolated points between two adjacent simulated data points. This algorithm can 
be used to detect redundant parameters that are being calibrated because a set of dependent parameters will be 
linearly varying during the calibration process.

One limiting factor that can have an effect on the efficiency of this proposed methodology is the quality of 
characterization data, for example, the sun simulator-based I–V tester used for measuring the current–voltage 
response from the fully manufactured device has some degradation in its contacts, adding parasitic resistances, 
this will in-turn make the calibration system compensate for parameter unnecessarily. The QSSPC tool used for 
measuring minority carrier lifetime in the cell precursor (without metal contact grids) added measurement arti-
facts in the data, making a direct accuracy score redundant, instead, an accuracy check was done near a specified 
minority carrier density value of 1.0e15 carriers cm−3 . Another potential limiting factor can be the optimization 
of the ML model itself, bias-variance trade-offs40 have to be optimized in order to make sure that the ML models 
are not over or under-trained for a given training dataset. One observation made during the calibration of HIT 
solar cell’s optical simulation model was the variance when predicting reflection profile as multiple combinations 
of input parameter sets can provide very close prediction values, the ML model was inherently less confident 
near certain wavelength values.

Conclusion
This proposed methodology provides an innovative way to fine-tune input parameters for multiple simulation 
models of a semiconductor device, even for cases when simulation models can be interdependent. While expert 
knowledge of the device is useful to set boundary values (ranges) for parameter values that need calibration, 
using data-based learning reduces the pure brute force nature required in the conventional way of calibrating a 
simulation model using simulation and experiments only. Although an argument can be made for the proposed 

Figure 7.   Simulated minority carrier lifetime profile compared to measured profile.
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methodology that it is a black-box approach, the main task of the proposed algorithm is to find correlations 
between the device and material parameters and device characteristics, rather than emulating device physics 
using ML, like the strategy implemented in digital twin designs, making the proposed approach generalized for 
multiple use-cases.

The proposed methodology can be expanded for other semiconductor devices, it can also be used for calibrat-
ing process simulations for optimizing device fabrication recipes.

Data availability
Available on reasonable request to the corresponding author.
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