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Seasonal estimation 
of groundwater vulnerability
Adrian I. Cervantes‑Servin 1*, Meenakshi Arora 1, Tim J. Peterson 2 & Vincent Pettigrove 3

Index-based methods estimate a fixed value of groundwater vulnerability (GWV); however, the 
effects of time variations on this estimation have not been comprehensively studied. It is imperative 
to estimate a time-variant vulnerability that accounts for climatic changes. In this study, we used 
a Pesticide DRASTICL method separating hydrogeological factors into dynamic and static groups 
followed by correspondence analysis. The dynamic group is composed of depth and recharge, and 
the static group is composed of aquifer media, soil media, topography slope, impact of vadose zone, 
aquifer conductivity and land use. The model results were 42.25–179.89, 33.93–159.81, 34.08–168.74, 
and 45.56–205.20 for spring, summer, autumn, and winter, respectively. The results showed a 
moderate correlation between the model predictions and observed nitrogen concentrations with 
R2 = 0.568 and a high correlation for phosphorus concentrations with R2 = 0.706. Our results suggest 
that the time-variant GWV model provides a robust yet flexible method for investigating seasonal 
changes in GWV. This model is an improvement to the standard index-based methods, making them 
sensitive to climatic changes and portraying a true vulnerability estimation. Finally, the correction of 
the rating scale value fixes the problem of overestimation in standard models.

Groundwater is a vital resource in many countries around the world as an important source of freshwater sup-
ply to meet growing agricultural and urban demands; in some cases, groundwater can be the limiting factor for 
agricultural and natural production. In recent decades, groundwater has become polluted due to the excessive use 
of agrochemicals and other sources of contamination. In Victoria, Australia, some studies have shown the occur-
rence of the pesticides atrazine, simazine chlorpyriphos, and DDT in groundwater1–15. Groundwater vulnerability 
(GWV) assessment can be defined as the assessment of the contamination risk of aquifers from anthropogenic 
pollution, where the results are represented as vulnerability maps. However, standard index-based methods for 
estimating GWV have not evolved since 198516. A major limitation of currently used approaches is their static 
nature, as the estimations do not account for seasonal variations. In this study, we concentrate on improving 
such methods by introducing a time-variant estimation of GWV that is able to reflect varying hydrogeologic 
and hydroclimatic conditions.

Existing index-based methods for estimating GWV produce spatially fixed values, as they consider vulner-
ability to be static in time and space17,18. Such methods fail to depict changes caused by climatic variations, land 
use and impacts to aquifers, such as water pumping during the year19–22. Hence, pollutant concentrations could 
vary temporally within the same aquifer. Groundwater net recharge is a spatially and temporally dynamic factor 
that varies throughout the year. Another dynamic factor is the depth to the water table; as a result of changes in 
climatic conditions throughout the year, groundwater depth can change significantly.

Index-based methods are most commonly utilized to estimate GWV due to their ease of use and lower 
data requirements23–29. Pesticide DRASTIC is a variant of the standard index-based method that accounts for 
specific processes that affect the fate and transport of pesticides to the water table30. Among more than thirty 
index-based methods29,31–34 the most commonly used are AVI, DRASTIC, GOD, EPIK, SINTACS, SEEPAGE, 
and ISIS28,31. Index-based methods are grounded on two different scale components, weights and ratings, that 
produce a vulnerability score. The first component comprises seven hydrogeological factor weights (w) with 
values ranging from 1 to 5. These values represent the importance of each factor compared to the others. The 
second component is the factor rating (r), with values ranging from 1 to 10 for each factor. The rates represent 
the importance of the range of values or types of media for each factor30.

Groundwater vulnerability is classified as intrinsic and specific31,32,35. Intrinsic GWV is based solely on the 
hydrogeological and geomorphological features of the landscape32,36, and specific GWV is referred to as the 
vulnerability that a pollutant or group of pollutants pose to a specific area31,36. Water contamination correlation 
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models are complex37,38, and this complexity is further magnified in groundwater systems. Standard GWV 
methods produce a fixed estimation of vulnerability and fail to incorporate temporal and spatial changes due 
to climate variations. Index-based methods have been criticized because factor weights may not represent the 
actual hydrogeological characteristics of the study area, and the models produce a result that may underesti-
mate or overestimate the GWV. Additionally, Pacheco et al.37 pointed out the need to overcome weighting value 
subjectivity and identified different approaches to address factor weighting: (1) single factor sensitivity analysis, 
(2) nonlinear Spearman correlation analysis, (3) logistic regression, (4) minimization of factor redundancy by 
correspondence analysis and (5) the standard DRASTIC-Delphi (consensus) approach. Additionally, although 
the analytical hierarchy process (AHP) is a widespread tool39–41, AHP weighting techniques are not explicitly 
designed for the adjustment of factor weights. The correspondence analysis (CA) tool identifies the real weight 
in correlated variables and has been shown to be the best method to address subjectivity when assigning weight 
values25,37.

This study presents a novel approach that accounts for both temporal and spatial changes, making the esti-
mation of GWV more accurate. We used a modified Pesticide DRASTIC42 model as groundwork and added the 
factor land use (L) as per Alam et al.43,44. This model was applied to the Glenelg Hopkins Region in Victoria, 
Australia. The ranges used in this new model are different from the original DRASTIC model, because Australia’s 
hydrogeological conformation is different from that of America and Europe. First, we separated static factors (A, 
S, T, I, C and L) from dynamic factors (D and R). Second, we introduced a double correspondence analysis that 
allows the model to derive weights that account for temporal variability. Groundwater recharge (R) and depth 
(D) are the factors responsible for the temporal and climatic changes in the time-variant Pesticide DRASTICL 
GWV index. As a result, the model produces an independent estimation of GWV for each season: winter, spring, 
summer and autumn.

Materials and methods
Study area.  The study area covers the Glenelg Hopkins (GH) region in the western part of Victoria State in 
Australia (Fig. 1). The region encompasses 2.67 million hectares that extend west from Ballarat to the South Aus-
tralian border and south to the coast. It comprises 12% of the total area of Victoria45. The north is dominated by 
the Grampians, the Dundas and Merino Table Lands, and the West Victorian Uplands, with the flatter Volcanic 
Plains characterizing the south. The slope is prominent in the Grampian region, ranging from 100 down to 0% 
in the Volcanic Plains, with an average slope of 3.48% in the rest of the territory. Maps were produced using Arc-
Map 10.4.1 https://​deskt​op.​arcgis.​com/​en/​arcmap/​10.4/​get-​start​ed/​setup/​arcgis-​deskt​op-​quick-​start-​guide.​htm

Warrnambool and Casterton are the two major towns in the GH region. The mean annual maximum tem-
perature in Warrnambool and Casterton is 19.2 °C and 20.1 °C, with a high of 38.3 °C and 38.5 °C in 2017, 
respectively. The mean annual minimum temperature in Warrnambool and Casterton is 8.9 °C and 8.4 °C, and 
the lowest in 2017 was −1.0 °C and −3.0 °C, respectively (BoM http://​www.​bom.​gov.​au/​clima​te/​avera​ges/​maps.​
shtml, accessed March 2018). There are two distinct climates: Csb is temperate with dry and warm summers, 
and Cfb is temperate with dry winters and warm summers46.

Figure 1.   Glenelg Hopkins Catchment Management Authority in Victoria, Australia. Grey squares are 
monitoring bores for groundwater pollution.

https://desktop.arcgis.com/en/arcmap/10.4/get-started/setup/arcgis-desktop-quick-start-guide.htm
http://www.bom.gov.au/climate/averages/maps.shtml
http://www.bom.gov.au/climate/averages/maps.shtml
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The hydrological subregions are the Hopkins River Basin (East), which includes the Hopkins and the Merry 
rivers; the Portland Coastal (Southcentral), which includes the Moyne, Eumeralla, Fitzroy and Surry rivers; and 
the Glenelg River Basin (Northcentral and West), which includes the tributaries of the Glenelg River. The largest 
water body in the basin is the Rocklands Reservoir45.

Different soil lithologies are present in the region, with the most abundant lithologies including basalts, 
sedimentary, duricrust, and aeolian, followed by alluvium, limestone, alluvial, granite, colluvial, lacustrine/
aeolian, and volcanic. The least abundant soils are fluvial, aeolian and lagoonal45. The hydrogeological features 
of the study area can be seen in Fig. 2.

Methods.  We developed a novel method comprising five steps: (1) Data preparation. (2) Calculation of the 
Pesticide DRASTICL vulnerability index (IDL) using dynamic factors (D and R) and static hydrogeological fac-
tors (A, S, T, I, C, and L). (3) Independent computation of the correspondence analysis (CA) for both dynamic 
and static factor groups. (4) Upscaling the resulting eigenvalues to the Pesticide DRASTICL weight scale (1 to 5). 
(5) Recalculation of the seasonal IDL using the calculated weights from step 4.

The sources of data used for Pesticide DRASTICL factors are summarized in Table 1. Both dynamic factors 
were estimated with models: for D, we used HydroSight39, and for R, we used data resulting from the ground-
water transient model for the Glenelg Hopkins Catchment Management Authority (CMA). The transient model 
included a three-stage approach: pre-development—1985, calibration—1985 to 1994, verification—1995 to 1999 
and post-development—1995.

Computation of the Pesticide DRASTICL vulnerability index (IDL).  The Pesticide DRASTICL index is calculated 
summing the weight of all factor weight values times their corresponding rating value as presented below:

The Grampians Mountains 

Bedrock 
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Miocene Aquitard 

Mid-Tertiary Aquifer 

Upper-Tertiary Aquifer 

Quaternary Aquifer 

N 

Figure 2.   Cross-section of the hydrogeological units in the Glenelg Hopkins region.

Table 1.   Sources for data used for Pesticide DRASTICL modelling.

Factor Description

Seasonal depth (Ds)
This factor was computed from the average monthly values in each season from 1980–2014 as per Peter-
son and Wester47

Seasonal net recharge (Rs)
This factor was calculated as the average of monthly values within each season from 1985–1995. Data 
were acquired by request to DELWP https://​www2.​delwp.​vic.​gov.​au/. Rs values are resulting values from 
the “Glenelg Hopkins CMA Groundwater Model”45, 48

Aquifer media (A) This factor was derived from the GWFS map coupled with the type of consolidated material of the top 
layer aquifer49

Soil media (S) Data were accessible from the Victorian Soil Atlas. Soil media does not reflect depths of soil and soil 
mixtures in the horizontal horizon. It is the uppermost layer of the soil profile

Topography slope (T) This factor was calculated in ArcMap10.4.1 from the Victoria Digital Elevation Model50

Impact of vadose zone (I) This factor was assembled from the GWFS and aquifer material were taken from aquifer descriptions in 
the Groundwater Framework Report48

Hydraulic conductivity (C) The conductivity of the aquifer data was obtained from the 2002 Groundwater Flow Systems – GH CMA 
report48 and corrected with the GH groundwater transient model45

Land use (L) Data are available from the (VLUIS)51

https://www2.delwp.vic.gov.au/
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where IPDL = Pesticide DRASTICL index (dimensionless).w = factor weight (dimensionless)r = rating for the cor-
responding range (dimensionless)

The modified weighting factor values are shown in Table 2. Weights represent how important each factor is 
when compared to others and range from 1 to 5, with 5 being the most significant factor and 1 the least significant 
factor30. Each factor was reclassified by assigning the corresponding rating value and converted to raster format 
using ArcMap10.4.1. Each factor layer was portrayed in a grid of 50 m × 50 m using a georeferenced GDA 1994 
Lambert Conformal Conic projection. Ranges represent the significant media type that contributes to the pol-
lution potential, and such values change spatially and within their own scale30. Every range is evaluated against 
each other to calculate the relative significance in relation to pollution potential30. In DRASTIC methods, the 
factor range of relative significance is evaluated on a scale of 1 (least significant) to 10 (most significant), except 
for the net recharge factor, which has a scale of 1 to 9.

Rating values were established using an ordinal scale; however, assigning range values from 1 to 10 to differen-
tiate the relative importance between ranges has been found to be contrary to what can be truly comprehended, 
as the human brain can only categorize effects on a scale of 1 to 9, which is known as the scale of intensity23,30,52. 
Hence, standard index-based methods tend to overestimate resulting scores by using 10 different categories 
when in reality only 9 categories are comprehensible by the human brain. In this study, the method uses a range 
scale from 1 to 9 to address the aforementioned limitation. The new rating value ranges are shown in Table 2.

Depth to water table (D).  Seasonal groundwater depths (DS) are shown in Fig. 3 a, b, c and d. In this study, 
space–time groundwater elevation maps from Peterson and Western47 were adopted. This approach is an exten-
sion of Costelloe et al.53 and Peterson et al.54. The maps were derived at a monthly time-step from 1 January 
1980 to 1 August 2014. The maps were derived using an advanced multivariate geostatistical R package named 
HydroMap (https://​github.​com/​peter​son-​tim-j/​Hydro​Map). The approach allows the inclusion of topographic 
form, land surface elevation, coastline, and the physical constraint of the land surface elevation on the water 
table elevation. Furthermore, the factors within these predictors and the standard kriging factors (variogram 
range, sill and nugget and search radius) were derived using formal maximum likelihood estimation. Input data 
for kriging were derived from the HydroSight (http://​peter​son-​tim-j.​github.​io/​Hydro​Sight/) time-series analysis 
of each groundwater hydrograph55. Groundwater hydrograph errors and outliers were omitted and temporally 
interpolated to a monthly time step using Peterson and Western47,53. In the aquifers of the study site where the 
differences in depth ranges are not large enough, a new range classification is suggested in Table 3. Seasonal 
depths are proposed and categorized by assigning each range a rating value from 1 to 9.

Net recharge (R).  This study uses recharge values from a transient groundwater model45 using monthly 
recharge data. The calibrated results for the steady-state and transient model normalized RMS errors were 2.47% 
and 2.24%, respectively. MODFLOW inputs were provided by Biosym within the Ensym model45. The method 
used to calculate recharge is described in the Australian groundwater modelling guidelines56. Seasonal recharge 
values were plotted in ArcMap 10.4.1 and categorized using values from Table 4. The groundwater recharge 
factor offers significant information to the model, as water recharge is the major driving mechanism for pollu-
tion transport57. Additionally, it provides specific information for both spatial and temporal variability. Monthly 
recharge values for the period from 1987 to 2017 were considered for this analysis. Seasonal recharge maps are 
shown in Fig. 4.

Aquifer media (A).  Aquifer media (A) serves as a conduit for aquifer pollution; the larger the grain size and 
the more fractures there are in the aquifer, the greater the pollution potential23. The aquifer medium or media 
are responsible for controlling the route and path length for a contaminant to flow; the larger the porosity of 
the aquifer is, the lower the attenuation capability, and therefore, the larger the pollution potential. Aquifer con-
figuration materials were obtained from the Victorian Aquifer Framework (VAF)58. The lithological units were 

(1)IPDL =

i
∑

1

ri ∗ wi

Table 2.   Weights and modified ratings for the pesticide DRASTICL model30,42,43.

Factor
Factor
weight

Standard
rating ranges New rating ranges

Depth to groundwater D 5 1–10 1–9

Net recharge R 4 1–9 1–9

Aquifer media A 3 1–10 1–9

Soil media S 5 1–10 1–9

Topography slope T 3 1–10 1–9

Impact of vadose zone I 4 1–10 1–9

Hydraulic conductivity C 2 1–10 1–9

Land Use L 5 1–10 1–9

https://github.com/peterson-tim-j/HydroMap
http://peterson-tim-j.github.io/HydroSight/
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categorized with new rating values from 1 to 9 and are presented in Table 5. Next, values were modified from 
Aller et al.23,43 and adapted to the Victoria geological units (see Fig. 5a).

Soil media (S).  Soil media is the upper portion of the vadose zone; it has significant biological activity, and 
it is considered the upper weathered zone of the Earth, averaging six feet (1.8 m) or less23. Soil media control 
recharge and contaminant attenuation processes such as filtration, biodegradation, sorption, and volatilization23. 
The upper portion of the soil configuration is used for this factor. Data were extracted from the Atlas of Aus-
tralian Soil (ASRI), and the variable that represents the topmost layer is (TEXT_TOP) within the Australian 
Soil Atlas Dataset. The categorization of the Australian soil texture is found in the glossary of soil terms and in 

Figure 3.   Seasonal groundwater depth (Ds) rating values for (a) spring, (b) summer, (c) autumn, (d) and 
winter; rating values shown on the right side of the maps.

Table 3.   Groundwater depth (Ds) rating values.

Depth to surface (m) Rating value

0.00–0.50 9

0.50–1.50 8

1.50–3.50 7

3.50–7.00 6

7.00–15.0 5

15.0–25.0 4

25.0–40.0 3

40.0–85.0 2

 > 85 1
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“Estimation of Soil Properties using the Atlas of Australian Soils”59. A rating for soil texture groups is presented 
in Table 6, and the map for the soil media is shown in Fig. 5c.

Topography slope (T).  Topography refers to the slope and slope variability in the land surface; it controls the 
probability of a contaminant running off or remaining on the surface in a specific area long enough for it to 
enter the aquifer23. The topography is described in terms of slope percentage41, and the topography slope map 
was constructed from the digital elevation model (DEM) using ArcMap10.4.1, with a cell size of 50 m × 50 m. 
The slope was then categorized according to the slope rating values, as shown in Table 7. Figure 5b illustrates the 
slope % for the study area.

Impact of vadose zone (I).  The vadose zone is defined as the zone above the water table that is unsaturated; it lies 
below the soil horizon and above the water table30. In the vadose zone, attenuation processes such as biodegra-
dation, neutralization, filtration, chemical reaction, volatilization, and dispersion are likely to decrease as depth 
increases23. The rating for the vadose zone map was created using the groundwater flow system (GWFS) and the 

Table 4.   Net recharge (Rs) rating values.

Recharge Range (mm) Rating value

0–1 1

1–3 3

3–7 5

7–14 6

14–22 7

 > 22 9

Figure 4.   Seasonal net recharge (R) rating values for (a) spring, (b) summer, (c) autumn, and (d) winter; rating 
values shown on the right side of the maps.
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material conformation for each of the aquifer types; conformation material is described in the Victorian aquifer 
framework49. Table 8 shows the vadose zone ranges and rating values proposed for the Pesticide DRASTICL 
model. Figure 5d shows the impact of the vadose zone map categorized with the rating values of the modified 
Pesticide DRASTICL model.

Hydraulic conductivity of the aquifer (C).  Hydraulic conductivity (C) is the aquifer’s material capability to trans-
mit water; it controls the flow rate of groundwater at a given hydraulic gradient, intergranular porosity, tectonic 
lineaments, and bedding planes23. Similarly, contamination is controlled by the flow rate of groundwater41. Fur-
thermore, C controls the contamination movement in the aquifer23. Within index-based methods, C is denoted 
as the factor with the highest error associated with its estimation60. The factor rating for C was obtained from two 
sources. The first is an inferred value from various reports included in the GH GWFS by Dahlhaus et al.48 The 
second is the data containing conductivity values from a groundwater transient model by SKM45. In this study, 
k values (m/d) were used from SKM45. A new rating scale is assigned to each range of hydraulic conductivity, as 
shown in Table 9. A rating map for C is shown in Fig. 5e.

Land use (L).  Changes in land use induce the application of agricultural chemicals, industrial waste spills and 
landfill leachate, which can potentially leach into groundwater. L is a decisive and inducing factor of aquifer 
contamination thorough anthropogenic activities60. Research shows that specific methods that integrate infor-
mation about land use perform better than intrinsic approaches61. Specifically, land use provides additional 
information on the use of the actual landscape, the type of cropping and crop rotation, which can be used to 
identify the amount and type of agricultural products used in the catchment61. This approach has been success-
fully applied in India43, Iraq, Saudi Arabia62,63, Greece64, Portugal25,65, United Kingdom, United States23,66 and 
Australia67.

Data from 2016 were downloaded from Agriculture Victoria (2018)51, and we selected the secondary land use 
cell of the Victorian land use information system (VLUIS) to assign new rating values from 1 to 9, as shown in 
Table 10. Figure 5f shows the land use rating map. Additionally, it shows the land use rating values for different 
land uses. Next, a raster file was created including the new ratings.

Multivariate statistical assembly of seasonal groundwater vulnerability.  In standard DRASTIC methods, GWV 
has been estimated as a fixed or static value. However, such methods have failed to depict the impacts of tem-
poral variations. Vulnerability can be affected by several factors, such as groundwater extraction, temporal vari-
ations in precipitation and evapotranspiration rates, temporal variations in groundwater depths, and temporal 
variations in groundwater recharge.

To make the vulnerability index sensitive to those changes, the proposed multivariate statistical analysis inte-
grates time variations in depth and recharge while estimating seasonal GWV. This was achieved by estimating a 
GWV value for each season (spring, summer, autumn and winter). For estimating time-variant values, Eq. (1) 
was transformed into four different GWV estimations as presented below.

whereID (Spr, Sum, Aut, Win) = seasonal vulnerability indexDr (Spr, Sum, Aut, Win) = depth ratings per seasonDw (Spr, Sum, Aut, Win) 
= depth weights per seasonRr (Spr, Sum, Aut, Win) = recharge ratings per seasonRw (Spr, Sum, Aut, Win) = recharge weights 
per season

(2)IDSpr =
(

DrSpr ∗ DwSpr + RrSpr ∗ RwSpr

)

+ Ar∗Aw+ Sr∗Sw+ Tr∗Tw+ Ir∗Iw+ Cr∗Cw+ Lr∗Lw

(3)IDSum = (DrSum ∗ DwSum + RrSum ∗ RwSum)+ Ar∗Aw+ Sr∗Sw+ Tr∗Tw+ Ir∗Iw+ Cr∗Cw+ Lr∗Lw

(4)IDaut = (DrAut ∗ DwAut + RrAut ∗ RwAut)+ Ar∗Aw+ Sr∗Sw+ Tr∗Tw+ Ir∗Iw+ Cr∗Cw+ Lr∗Lw

(5)IDWin = (DrWin ∗ DwWin + RrWin ∗ RwWin)+ Ar∗Aw+ Sr∗Sw+ Tr∗Tw+ Ir∗Iw+ Cr∗Cw+ Lr∗Lw

Table 5.   Aquifer media (A) rating values17.

Aquifer media Rating value

Massive shale 1

Methamorphic/igneous 2

Weathered metamorphic igneous 3

Thin bedded sandstone, limestone

Shale sequences 5

Massive sandstone 5

Massive limestone 5

Sand and gravel 7

Basalt 8

Karst limestone 9
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After calculating the seasonal vulnerability index Eqs. (2–5), we addressed the estimation of a new set of fac-
tors weights with the purpose for eliminating the correlation between factors25. This was achieved by separating 
DRASTICL factors into two hydrogeological groups: the dynamic group (D and R) and the static group (A. S, 
T, I, C and L). For both groups, an independent CA was performed, and a new set of upscaled factor weights 
was obtained for each season. CA deals with the subjectivity bias from using expert opinion for allocating factor 
weights.

This approach to data treatment (static and dynamic factors) is different from the standard index-based 
methods, which integrate all factor weightings in one multivariate analysis. CA has been selected because it has 
been shown to be the most adequate method for transforming the interrelated DRASTIC factors into uncor-
related DRASTICL vectors25.

First, the dynamic factors D, R plus a dummy factor (Q) with a constant value of 5 are resampled in ArcMap 
10.4.1 using a fishnet at regular intervals of 5 km. The purpose of the sampling is to extract factor rating values 
at each point. Next, another point resampling is performed for each of the static factors A, S, T, I, C, and L.

Figure 5.   Rating values for (a) aquifer media, (b) topographic slope, (c) soil, (d) impact of vadose zone, (e) 
hydraulic conductivity, and (f) land use. Rating values shown on the right side of the maps.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9720  | https://doi.org/10.1038/s41598-023-36194-1

www.nature.com/scientificreports/

Table 6.   Soil (S) rating values.

Texture group Texture grade Rating value

Sands

Sand 9

Clayey sand 9

Loamy sand 9

Sandy loams

Sandy loam 8

Fine sandy loam 8

Light sandy loam 8

Loams

Loam 7

Loam, fine sandy 7

Silt loam 6

Sandy clay loam 6

Clay loams

Clay loam 5

Silty clay loam 4

Fine sandy clay loam 4

Light clays

Sandy clay 3

Silty clay 3

Light clay 2

Light medium clay 2

Clays
Medium clay 1

Heavy clay 1

Table 7.   Topography slope (T) rating values.

Slope % 0–2 2–6 6–12 12–18  > 18

Rating value 9 7 5 3 1

Table 8.   Impact of vadose zone (I) ratings.

Name Range Rating value

Sand 6–9 7

Bedded limestone, sandstone, shale 4–8 6

Silt, sand, 6–9 8

Sand, silt 4–8 8

Gravel, salt, silt, silt, clay 4–8 7

Karst 9 9

Silt and clay 1–2 1

Marine deposits karst 8–9 9

Sandstone gravel, sand 4–8 5

Basalt 2–9 8

Sand and gravel silt, clay 4–8 6

Metamorphic/Igneous 2–8 4

Table 9.   Hydraulic conductivity (C) (m/d) rating values.

(k) Range Rating

81.50 +  9

40.75–81.50 7

28.53–40.75 5

12.23–28.53 3

4.08–12.23 2

0.00–4.08 1
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Second, a CA is performed to calculate vector loadings for each group. In the case of the dynamic group, a 
dummy dataset Q with a mean of 5 in rating value is used to assist in the calculation of the vector loadings as CA 
can only be performed with more than two factors. CA is also performed for the static hydrogeological group 
using the A, S, T, I, C and L factors. From both groups, factor loading values are derived from the CA, new vec-
tor loadings are obtained and represent the uncorrelated value compared to other factors. Such values are called 
dynamic vectors (D, R and Q loadings) and static vectors (A, S, T, I, C, and L loadings).

Finally, each vector loading is rescaled to the DRASTICL weighting values (1–5) using the harmonization 
formula25, as shown in Eq. (6). These new sets of weights are called seasonal vector DRASTICL factor weights.

wherewj.max = max factor weight in Pesticide DRASTICwj.min = min factor weight in Pesticide DRASTICvj = fac-
tor loadings

The CA was computed using R, an open-access software25. New loading values for vector1 (V1) are calculated 
as mentioned earlier. The calculated loading values from the CA cannot be compared to the Pesticide DRASTICL 
weighting values because the loadings are presented on a different scale. From Eq. (6), a new set of re-coordinated 
weighting values from new vector-DRASTICL factor loadings were calculated. Each factor group was treated 
as a separate multivariate statistical dataset. Re-coordinated weighting values are known as vector-DRASTICL 
factor weights25.

Estimating the time‑variant Pesticide DRASTICL vulnerability.  To improve the outputs of the Pesticide DRAS-
TICL method, factor ratings were reduced to a maximum value of 9, and an independent multivariate CA was 
applied to both factor groups. After rating categorization, a resample is made using a fishnet of 5 × 5 km to obtain 
point values from each factor. The fishnet is the base for digital sampling of each of the factors included in the 
CA. The harmonization of scales method was applied to the resulting CA vector loading values, re-coordinating 
them from 1 to 5. As a result, seasonal Pesticide DRASTICL weighting values were used to estimate seasonal 
GWV.

The seasonal estimation of the GWV was quantified by using the corresponding seasonal factor weights. 
Eight raster layers from DRASTICL factors were used to calculate the seasonal ID. The results were mapped in 
the study area for each of the seasons.

Different values for vulnerability were expected for each season. The vulnerability values could be similar in 
places where the levels of depth and water recharge had small or no changes, indicating that the aquifer hydro-
geological properties are less sensitive to climatic changes. Conversely, vulnerability values should be higher 
where depth and recharge showed large seasonal changes in depth and recharge.

Consent to participate.  By this means, we the authors give explicit consent to participate in the submission of 
this scientific paper.

Results
Correspondence analysis and time‑variant groundwater vulnerability.  Vector loadings for the 
static groups L, A, S, T, I, and C are plotted in Fig. 6a, where the largest absolute value in loadings corresponds to 
S. Figure 6b shows the results for common vector loadings from the dynamic vector 1 D, vector 2 R and vector 3 
Dummy (Dum) mapped for spring, summer, autumn and winter.

(6)
v∗j =

Wj.maxx vj.max −
(

Wj.max −Wj.min

)

x
(

vj.max − vj
)

vj.max

1 ≤ j ≤ p

Table 10.   Land use rating values.

Secondary_V7 Rating

1.1 Nature conservation 1

2.1 Grazing native vegetation 3

2.2 Production forestry 4

3.2 Grazing modified pastures 3

3.3 Cropping 9

3.4 Perennial horticulture 4

5.2 Intensive animal husbandry 8

5.3 Manufacturing and industrial 7

5.4 Residential and farm infrastructure 6

5.5 Services 3

5.7 Transport and communication 2

5.8 Mining 8

5.9 Waste treatment and disposal 7
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The application of CA to data for the seasonal group resulted in the confirmation that the use of a dummy 
dataset (Dum) does not impact the value of the cumulative percentage of the system variance. It can be seen that 
Factor R has a larger loading compared to D. As shown in Fig. 6a, there are differences in the CA loading values 
for both groups; the larger the absolute value, the higher the non-correlation between factors. Such variables are 
called explicative factors; for the non-explicative factors, the values were the lowest42. In the case of the dynamic 
factor group, Factor R has a higher weight than Factor D. This could be explained because recharge is the driving 
hydrogeological process through which aquifer pollution occurs; the higher the recharge, the higher the chances 
for a pollutant to be transported to the water table57.

Figure 6a shows the distribution of eigenvalues and the cumulative percentage of the system variance for 
common vectors V1, V2, and V3. Two explicative factors for the dynamic group vector 1 D and vector 2 R can 
explain 100% of the system variance. Figure 7b shows the loading values for V1 and V2 plotted for each season, 
and a clear difference in the loadings for R can be seen. Table 11 shows the cumulative percentage of the system 
variance and eigenvalues for each of the seasons. It can be seen that Dum has synthetic eigenvalues of zero and 
that both D and R can explain 100% of the system variance. Table 12 shows the results for dynamic CA factor 
loading values, which show that in absolute values, Factor R has higher loadings than Factor D.

The second CA is performed for the static group (Fig. 7a). Table 13 shows the results of the CA static eigenval-
ues and cumulative percentage of variance. Figure 8 shows the results of CA for the static factors, and common 
vectors V1, V2, V3 and V4 account for the cumulative percentage variance at approximately 98.6%. Figure 9 
shows the distribution of static CA V1 and V2 loadings, which shows that vectors S, L and C are the explicative 
factors of the static system. Vectors S, L and C are the ones with the highest loadings and the highest distances 
from the centroid. Although the results from static CA suggest that principal static vectors V1, V2 and V3 can 
explain up to 93.7% of the system variance (see Fig. 8) and that using only these three factors should be enough 
to derive the vulnerability index, all static factors were considered for this study under the premise that each 
one is a significant explicative factor that contributes different types of information to the time-variant Pesticide 
DRASTICL vulnerability index.

New seasonal vector DRASTICL weights are presented in Tables 14 and 15 as a result of the harmonization of 
scales using the loading values for each of the factors. Such weights will be used in the calculation for the seasonal 
Pesticide DRASTICL vulnerability. The new vulnerability is referred to as the seasonal vector DRASTICL index 
and is represented as IDSpr, IDSum, IDaut, and IDWin.

From Fig. 10, it can be observed that there is a dimensionless scale for each season that should be approached 
as an independent representation of vulnerability. The results also showed that the risk was highly impacted by 
factors R, D, and L. The model was capable of estimating seasonal changes in vulnerability, with summer present-
ing the highest risk of contamination to groundwater in this specific area.

Figure 6.   (a) Distribution of CA V1 loadings for static factors and (b) distribution of CA V1 loadings for 
dynamic factors.
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Figure 7.   (a) Results of dynamic CA eigenvalues. (b) Plot of D, R and Dum loadings for spring, summer, 
autumn and winter.

Table 11.   Seasonal CA eigenvalues and cumulative % of system variance.

Season

Eigenvalue
Cumulative % of 
system variance

D R Dum V1 V2 V3

Spring 0.0354 0.0063 0.0 88.89 100 100

Summer 0.0456 0.0075 0.0 89.51 100 100

Autumn 0.0566 0.0068 0.0 89.39 100 100

Winter 0.0387 0.0054 0.0 88.49 100 100

Table 12.   Seasonal factor loadings.

Season

Factor loads

D R Dum

Spring 0.732 −1.707 0.345

Summer 0.432 −2.891 0.220

Autumn 0.439 −2.802 0.238

Winter 0.832 −1.444 0.463

Table 13.   Static CA eigenvalues and cumulative % of system variance.

Factor

Static vectors

L A S T I C

Vector V1 V2 V3 V4 V5 V6

Eigenvalue 0.0642 0.0418 0.030 0.007 0.0019 0.00

% Cum. var 44.2 73 93.7 98.6 100 100
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Figure 8.   Results of CA for static factors. SCREE plot of common vectors V1, V2, V3, V4, V5 and V6.

Figure 9.   Results of CA for static factors. Cartesian projection of vector loadings V1, V2, V3, V4, V5 and V6.

Table 14.   Static vector DRASTIC factor weights.

Factors v∗j

L 3.42

A 1.66

S 5.00

T 1.54

I 1.04

C 1.83

Table 15.   Dynamic vector DRASTIC factor weights.

v∗j

D R

Spring 2.72 5.00

Summer 1.60 5.00

Autumn 1.63 5.00

Winter 3.30 5.00
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Comparison of vulnerability predictions with observed pollutants.  A comparative evaluation 
between the model and observed pollution was performed for nitrates (NO3

−) + nitrites (NO2
−) as NOX and 

dissolved reactive phosphorus (DSR) as phosphorus. Using the vulnerability map for winter, a field survey was 
designed and deployed at the study site for 2017 and 2018. Using the results from the model, 18 bores were 
sampled and analysed across the study site, as shown in Fig. 2. Figures 11 and 12 show the correlation coef-
ficients (R2 = 0.568 and 0.7056) for nitrogen and phosphorous, respectively. It can be observed that phosphorus 
outperforms nitrogen in evaluating the performance of the model. However, it should be considered that phos-
phorus showed fewer occurrences in groundwater and that the concentrations are lower compared to nitrogen. 
Researchers commonly use nitrogen to evaluate standard DRASTIC model performance.

Discussion
This study presents a novel approach to estimate a time-variant GWV as an alternative to a previously published 
static vulnerability31. Each seasonal vulnerability estimation is the representation of different conditions in the 
aquifer that reflects physical changes in the environment and should be interpreted accordingly. The resulting 
seasonal GWV is an independent estimation for each of the seasons. The qualitative categorization of vulner-
ability (very high, high, medium, low and very low), as mentioned in most previous research, may lead to the 
loss of valuable information for the user. In this study, a scale provides better insights into seasonal changes. The 
higher the vulnerability value on this scale, the higher the risk of contamination to groundwater.

Vulnerability values ranged from 42.25–179.89, 33.93–159.81, 34.08–168.74, and 45.56–205.20 for spring, 
summer, autumn, and winter, respectively. A lower vulnerability value was observed in summer, which is the 
season where less water is available for the aquifer due to less precipitation and high temperatures, producing 
the highest evapotranspiration rates and having a direct impact on the groundwater net recharge. Conversely, 
the highest vulnerability value occurred in winter, where the environmental conditions are the opposite of those 
in summer. This means that the vulnerability scale behaviour is consistent with the behaviour of the transient 

Figure 10.   Seasonal vulnerability estimations for the central region of the GH Catchment Management 
Authority, Victoria, Australia. Left, GWV for spring and autumn. Right, GWV for summer and winter.
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model in terms of groundwater net recharge. Two studies have reported seasonal estimations of the GWV for 
the pre-monsoon, monsoon and post-monsoon seasons61,68,69. However, those studies failed to comprehensively 
assess the relative weights for contributing factors for each season and considered all factors to be static over 
time. The results from this study suggest that the weights vary between seasons. The novelty of the proposed 
time-variant Pesticide DRASTICL model focuses on the separation of the factors (static and dynamic) and in 
the comprehensible calculation of the factors’ weights.

The seasonal CA suggests that the highest weight corresponds to the dynamic Factor R, followed by the static 
Factor L, while D showed a significant variation in weighting values between seasons, being highest in winter 
and spring. That is, in the season with the highest precipitation, D is weighted higher than in summer with the 
lowest weighting value.

Figure 11.   Model correlation between vulnerability values and NOX [mg/L], R2 = 0.568.

Figure 12.   Model correlation between vulnerability values and DRP [mg/L], R2 = 0.70.
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In groundwater pollution surveying, it is common for researchers to use surrogate pollutants to predict the 
likelihood of pesticide pollution, as pesticide analysis is expensive and requires sophisticated laboratory facili-
ties. Instead of analysing a large number of groundwater samples for pesticides, we selected a smaller number 
of samples that could show high concentrations of NOX and/or DRP for potential pesticide contamination. We 
also changed the original weights recommended by Allert et al.30 using a correspondence analysis that derived 
new weights based on how sound a factor is compared to the others.

Phosphors showed a better correlation with the predictions of the model. A fundamental step in standard 
index-based methods is the calibration process70; however, in this study, there are no seasonal data available for 
the seasonal calibration step, and this has been identified as a major gap requiring consistent effort and invest-
ment. We suggest that the calibration of the proposed time-variant Pesticide DRASTICL model should be carried 
out with seasonal nitrogen and/or phosphorus concentration data and that the continuous use and calibration 
of the model will lead to better performance.

Conclusions
In current index-based methods, the vulnerability index is mapped as a fixed scale assuming that such values 
do not change in the study area throughout the year. These methods ignore time variations in vulnerability. 
This study has addressed this knowledge gap by categorizing the influencing factors into two hydrogeological 
groups (static and dynamic) to estimate a time-variant groundwater vulnerability. In this approach, a Pesticide 
DRASTICL model was coupled with a double correspondence analysis to develop a seasonal vulnerability index.

The results of the model indicated that the vulnerability index varies between seasons and highly depends on 
the two dynamic factors, groundwater recharge and groundwater depth. We found that groundwater recharge 
and soil media are the explicative factors in the seasonal quantification of GWV. The model results showed a 
good correlation with the observed nitrogen and phosphorus levels. However, the model needs to be a recursive 
system of use, testing, and calibration, as there is not enough seasonal data. The quantification of temporal and 
spatial variations in the GWV will provide additional information to farmers and water administrators to better 
manage groundwater pollution prevention programs. It will also assist with the use of fertilizers and pesticides 
in agricultural areas.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
The code that supports the findings of this study is available from the corresponding author upon reasonable 
request.
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