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Early and fair COVID‑19 outcome 
risk assessment using robust 
feature selection
Felipe O. Giuste  1, Lawrence He 1, Peter Lais 1, Wenqi Shi 2, Yuanda Zhu 2, Andrew Hornback 3, 
Chiche Tsai 1, Monica Isgut 4, Blake Anderson 5 & May D. Wang 1*

Personalized medicine plays an important role in treatment optimization for COVID-19 patient 
management. Early treatment in patients at high risk of severe complications is vital to prevent death 
and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a 
fast and data-driven solution for optimizing patient care by estimating the need for early treatment. 
In addition, it is essential to accurately predict risk across demographic groups, particularly those 
underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the 
equitable performance of machine learning models across patient demographics. To overcome this 
existing limitation, we generate a robust machine learning model to predict patient-specific risk of 
death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. 
We establish the value of our solution across patient demographics, including gender and race. In 
addition, we improve clinical trust in our automated predictions by generating interpretable patient 
clustering, patient-level clinical feature importance, and global clinical feature importance within 
our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver 
operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking 
approach identified the presence of dementia as a key indicator for worse patient outcomes. We 
also demonstrated that our deep-learning clustering approach outperforms traditional clustering in 
separating patients by severity of outcome based on mutual information performance. Finally, we 
developed an application for automated and fair patient risk assessment with minimal manual data 
entry using existing data exchange standards.

COVID-19 testing is now commonplace, and has become a requirement for many public activities. It has been 
demonstrated that early treatment of COVID-19 positive decreases risk of serious adverse events1–3. Neverthe-
less, a standard approach to triaging patients with positive test results to optimize treatment delivery has not 
been established. This is in part due to the wide variation in symptom severity among patients and the paucity of 
recent clinical data on patients available at the time of diagnosis. Therefore, it is crucial to predict severe patient 
outcomes once a positive test result has been obtained. In addition, it has been demonstrated that COVID-19 
healthcare outcomes are disproportionately more devastating in traditionally underserved populations4. Under-
standing how data-driven solutions to healthcare delivery optimization affects these populations is vital to the 
equitable delivery of potentially life saving care.

To address this ongoing challenge, we generated an interpretable AI workflow to predict individualized risk for 
death and ventilator use using data available at the time of COVID-19 diagnosis. To support our predictions, we 
visualize the importance of patient-level features using SHapley Additive exPlanations (SHAP)5. In addition, we 
generate a robust rank of clinical feature importance to provide clinical insights into the factors most influential 
to catastrophic outcomes. Specifically, we use explainable AI techniques to rank features by their importance 
across seven different conventional machine learning models and four variants of a deep learning model. A final 
feature ranking was generated using an average weighted rank of each feature across all models weighted by 
model performance, measured by area under the receiver operating curve (AUROC).
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To further elucidate the factors affecting patient outcomes, we sought to identify the best unsupervised 
clustering approach to separate patients with severe outcomes from those without. Specifically, we clustered 
patients using three conventional approaches (agglomerative, K-means, and spectral clustering) and a novel 
deep learning-based clustering technique. For each conventional clustering method, we generated 2, 3, 5, and 10 
clusters with five different feature sets (four deep learning features and the original clinical features). To compare 
clustering approaches, we used normalized mutual information (NMI) to measure the ability of each approach 
to separate patients with severe outcomes from non-severe outcomes.

Finally, we establish the equity of our model across race and sex by comparing differences in performance 
of our optimized classifier within patient populations in our holdout testing dataset, as shown in Fig. 1. We 
show that our approach generates accurate and interpretable risk predictions and meaningful clinical insights 
by leveraging a robust combination of machine learning and explainable AI approaches (Fig. 1). A preliminary 
version of this work, which established a proof-of-concept of using our deep learning framework for outcomes 
prediction, has been reported6. Our major contributions in this work include:

•	 We developed an interpretable clinical decision support system for patient risk assessment.
•	 We demonstrated equitable model performance across communities most severely affected by COVID-19.
•	 We generated meaningful clinical insights using robust feature importance rankings and clustering approaches 

to identify novel biomarkers for patient outcomes.
•	 We facilitated clinical deployment of our optimized model via a user-friendly web application.

Related works
Risk prediction.  Timely risk assessment of COVID-19 patients can significantly improve the quality of 
patient care and in-hospital resource allocation7. Recent studies have leveraged machine learning to derive and 
validate risk prediction algorithms via electronic health records (EHRs) in order to estimate the risk of COVID-
19-related adverse events, such as ICU readmission and mortality.

Yan et al.8 proposed conventional machine learning tools to predict 10-day mortality based on the blood 
sample data of 485 infected patients in order to support decision-making and logistical planning in healthcare 
systems during pandemics. The machine learning model achieved greater than 90% accuracy, and several positive 
results from external validation9–11 demonstrated the effectiveness of the proposed model in early and accurate 
risk assessment for COVID-19 patients. Kuanr et al.12 used a patient similarity-based approach to develop a 
patient recommendation system. Fu et al.13 proposed a risk prediction model using logistic regression based on 
laboratory findings for the early identification of high-risk hospital admission patients and achieved an AUROC 
of 84% during external validation. In addition, Barda et al.14 proposed a hybrid methodology to develop a baseline 
severe respiratory infection risk prediction model and a post-processing algorithm to calibrate the predictions 
to reported COVID-19 mortality risk using population-level data. Similarly, several recent studies15–30 also 
took advantage of conventional machine learning methods (e.g., Logistic Regression, Support Vector Machine, 
XGBoost, Decision Tree, and Random Forest) to develop a machine learning based early warning system enabling 
mortality or hospital admission risk prediction for COVID-19 patients.

Existing studies have demonstrated that early warning risk prediction models play a significant role in the 
allocation of scarce hospital resources8,13–32; however, there are still several limitations preventing the wide-
spread adoption of risk prediction models in clinical practice. First, compared to conventional machine learning 
algorithms, fewer studies15,18,28,31–33 have been conducted on COVID-19 risk prediction based on deep learning 
methods, which have the potential to achieve better performance due to their enhanced capability to perform 

Figure 1.   Overview of our approach to generation of explainable clinical decision support tools for clinical 
outcomes risk prediction.
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representation learning. Second, model transparency is one of the most significant obstacles preventing clini-
cians from comprehending and implementing black box models (e.g., XGBoost, neural networks) in clinical 
practice34. Few existing studies tried to interpret prediction models by identifying potential important clinical 
features using tree-based8,32 or SHAP feature importance14,21,27,33. In addition, none of the aforementioned stud-
ies have considered the issue of model fairness to achieve equitable model performance across the most severely 
affected communities. Finally, without integrating a prediction model into a functional web application with a 
user interface, it is extremely difficult to promote the adoption of the technology among non-technical users. 
Few existing studies35,36 have taken user interface into consideration to provide real-time progression prediction 
and risk calculation for policy decision-making and intervention guidance.

Model fairness.  During the COVID-19 pandemic, AI-enabled clinical decision support became an integral 
part of the diagnosis, triage, and treatment processes. Gender, racial, and other ethnic disparities in healthcare 
have been well-documented in terms of COVID-19 infection, hospital admissions, and in-hospital outcomes37.

According to COVID-19 inequity and disparities studies, different gender groups have different levels of risk 
associated with COVID-19 infection and mortality, with males having a higher COVID-19 death rate across all 
age groups38. Existing studies have also highlighted racial disparities through the non-representative morbid-
ity rate, hospitalization risk, and mortality rates among Black and Latinx populations39–41. In addition, African 
Americans are at a greater risk for COVID-19 due to the higher prevalence of comorbidities, such as diabetes 
and hypertension39. Furthermore, Black people and other minority groups are more susceptible to both the 
acute and long-term effects of COVID-19 due to a lack of access to adequate healthcare services42. As a result, 
identifying gender- and race-specific clinical bio-markers is important for the development of risk prediction 
tools to combat systemic healthcare disparities for racial and ethnic minorities43.

Consistent model performance across demographic populations is important for optimal and fair patient care 
decision making. However, it is challenging to achieve robust model performance in underrepresented popula-
tions due to the large data requirements of cutting-edge models. To solve this problem, Yang et al.44 introduced 
an adversarial training framework for rapid COVID-19 diagnosis to mitigate demographic biases that acquired 
from data collection and magnified during model development. In risk prediction for other diseases, Do et al.45 
proposed a joint fairness model based on logistic regression models for binary outcomes that estimates group-
specific classifiers with a joint modeling objective function integrated fairness criteria. In addition, Pfohl et al.46 
established a counterfactual fairness reasoning model that extends the group fairness criterion of equalized odds 
to provide a trade-off between maintaining fairness and performance.

During the data collection phase, our patient cohort contains a robust representation of patients from the 
Atlanta metropolitan area in order to promote model equity and reduce disparities in COVID-19 risk predic-
tion. During the stage of model development, we examine the impact of significant characteristics on the out-
put of our models for potential bio-maker exploration, including those associated with sex and race, as well as 
clinical characteristics of particular importance. In addition, we analyze biases in additional features that may 
have contributed to the effect of these significant features in order to provide a fair machine learning model for 
COVID-19 risk prediction. Our research on individual equalized risk prediction could also be extended to future 
disease risk prediction beyond COVID-19 in order to achieve a robust and consistent clinical decision support.

Materials and methods
Data description and preprocessing.  Our dataset consisted of de-identified data from 17,806 COVID-
19-positive patients containing 71 clinical features from across the Emory University Hospital System sites in 
Atlanta, Georgia, USA (Table 1). Prior to using the data for model training, we conducted quality control on the 
dataset. We first removed 11 discrete features with a non-zero value in less than 1% of all patients to eliminate any 
noise that may have been introduced in the data by rare, or incorrectly entered, medications or conditions (i.e. 
outliers). We then removed 4 features that were missing in more than 75% of all patients, because these features 
may not be reliably filled in with data imputation. Among the remaining features, we normalized all continuous 
features followed by imputation of missing feature values (12.6% of remaining values) using K-nearest neighbors 

Table 1.   Patient demographics.

Demographics Patients (%) Death within 90 days (%) Ventilator (%) Any catastrophic (%)

Sex

  Male 7695 (43.2) 308 (55.9) 562 (57.2) 659 (56.4)

  Not male 10,111 (56.8) 243 (44.1) 420 (42.8) 510 (43.6)

Race

  African American 7367 (41.4) 565 (57.5) 262 (47.5) 640 (54.7)

  Asian 506 (2.8) 29 (3.0) 16 (2.9) 35 (3.0)

  Caucasian 5050 (28.4) 279 (28.4) 215 (39.0) 373 (31.9)

  Hispanic 964 (5.4) 67 (6.8) 28 (5.1) 69 (5.9)

  Other/unknown 4360 (24.5) 66 (6.7) 42 (7.6) 77 (6.6)

Total 17,806 551 (3.1) 982 (5.5) 1169 (6.6)
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imputation (with K = 5). One patient was removed because they were missing over 40% of their features (a clear 
outlier on visual analysis). A 80/20 split at the patient level was performed to create training and testing cohorts. 
The resulting dataset consisted of 17,805 patients containing 56 clinical features including: 17 drug categories, 
17 vitals and labs, 14 chronic conditions, 6 demographic features, and 2 prior hospital visit features (number of 
prior ER visits and number of prior hospital admissions). The primary outcome variable was any catastrophic 
outcome, defined as the use of a ventilator or death within 90 days after positive COVID-19 testing. 

Ethical approval and informed consent.  The Institutional Review Board (IRB) of Emory University, 
Atlanta, Georgia, USA granted the ethics approval in 2020 (Protocol STUDY00001408). All experiments were 
performed in accordance with relevant guidelines and regulations; informed consent was obtained from all 
participants. All research data are de-identified and securely stored. Data access is limited to approved study 
personnel.

Models.  Risk scores within the range [0,1] indicating a person’s susceptibility to catastrophic outcomes from 
COVID-19 infection were first calculated for all patients using seven conventional learners: Logistic Regression, 
K-Nearest Neighbors (KNN), AdaBoost47, Gaussian Naive Bayes, Support Vector Classifier (SVC)48, Random 
Forest49, and XGBoost50. Specifically, we performed hyperparameter tuning independently for each model using 
grid-search and five-fold cross-validation on the training dataset. Throughout this process, we developed a total 
of 216 variations of the aforementioned conventional models. The best hyperparameter set for each model was 
chosen as the set producing the highest mean AUROC score across the five-folds. Hyperparameter tuned models 
were used for all subsequent analyses.

Deep learning models were trained on the training dataset. Giuste et al. demonstrated a process of optimiz-
ing a neural network architecture including the number of fully connected layers, the depth of each layer, and 
the intensity of each dropout layer6. Thus, we used the developed common core architecture in our deep learn-
ing classifier models. Expanding upon this work, we developed and tested 44 different variations of this deep 
learning model framework to further optimize two hyperparameters using the training dataset: the activation 
function for the penultimate layer and the depth of the penultimate layer. Specifically, activation functions 
for the penultimate layer included ReLU, Sigmoid, Softmax, and Gumbel-Softmax; tested sizes for the depth 
of the penultimate layer included 2, 3, 4, 5, 8, 10, 15, 20, 30, 50, and 100 neurons. Optimal values for the core 
architecture, such as overall model depth and sizes for layers other than the penultimate layer, were determined 
by analyzing the model performance (AUROC)6. Early stopping with patience of 100 was used to stop model 
training when testing AUROC failed to improve after 100 epochs. Class imbalance effects were minimized by 
balancing each training epoch to ensure the model would be exposed to the same amount of data from each class. 
Specifically, during each epoch, we trained the models on all data points from the minority class (catastrophic 
outcome) and a random sample of observations from the majority class (no catastrophic outcome). The size of 
this random sample was equal to the size of the minority class. We utilized this technique to prevent our models 
from developing a bias in favor of the majority class.

Feature importance.  SHAP feature importance values were calculated for each conventional learner to 
identify the clinical features that were most influential in generating risk score predictions5. Average SHAP val-
ues across training and validation patients were used to rank the features by importance for each conventional 
and deep learning model variant. We obtained the feature rankings for each conventional model. These feature 
rankings were weighted by model performance and averaged across models to obtain a list of the top ten most 
important features across conventional models and deep model variants.

The original feature rankings of all high performing conventional learners and deep learners were also 
weighted by model performance and averaged to generate a third table demonstrating the top ten most impor-
tant features across conventional and deep learning models.

Clustering.  After training, the features generated in the penultimate layer of each deep learning model were 
obtained and used for clustering. The generated deep features were of special interest due to their potential to 
separate patients into groups of different (high vs. low) risk scores more distinctly than existing clinical features. 
We therefore compared the distribution of patients qualitatively and quantitatively using clinical and deep fea-
ture spaces to identify meaningful patient clusters to generate clinical insights.

We first sought to qualitatively analyze how patients were distributed in the clinical feature space as compared 
to the deep feature space. We did so using T-distributed Stochastic Neighbor Embedding (t-SNE) plots51, which 
provides a lower-dimensional projection of high-dimensional feature spaces for visualization of observation 
clusters. We first generated a baseline t-SNE plot of points using only the preprocessed clinical feature space, 
followed by several additional t-SNE visualizations of the deep feature spaces for each deep learner. Points in 
each plot were colored according to whether their corresponding patients had a low or high risk of catastrophic 
COVID-19-related outcome based on ground-truth labels. This approach allows the qualitative analysis of poten-
tial clusters and their relationships with our primary outcome of interest (i.e., catastrophic outcomes).

Following t-SNE plot generation, we sought to quantitatively rank the quality of deep feature clusters in rela-
tion to clinical feature clusters. To generate and compare sets of clinical feature clusters, we used three clustering 
algorithms including K-Means, Agglomerative, and Spectral clustering with number of clusters (K) equal to 2, 3, 
5, and 10. To generate deep feature clusters, we used the same three clustering algorithms on the feature spaces 
corresponding to three of our four deep learning variants (ReLU, Sigmoid, and Softmax). Our Gumbel-Softmax 
approach automatically assigns each patient to a single cluster, where each cluster is represented as a dimension 
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of the deep learning feature space. Therefore, this approach does not require independent feature generation and 
clustering approaches. Altogether, 37 sets of deep feature clusters were generated in total.

To quantify clustering performance, we calculated the normalized mutual information (NMI)52 of each set of 
clusters with the known feature indicating catastrophic outcome. Higher NMI scores for a clustering approach 
corresponds to better separation of patients based on this outcome of interest. A high NMI of clusters with our 
primary outcome suggests effective separation of patients by meaningful clinical endpoints, lending credibility 
to our unsupervised approach. We also compared NMI scores of the deep feature clusters to MI scores of the 
clinical feature clusters to test the hypothesis that the utilization of our novel deep learning feature spaces may 
better separate low- and high-risk patients compared with clinical features.

Having ranked all cluster sets based on NMI score, we then viewed the five best-performing clustering results 
in greater detail by generating bar plots that illustrated how low- and high-risk patients were segregated within 
the clusters. We compared our observations to similar bar plots illustrating patient distributions within the five 
best-performing clinical feature clusters, visually comparing the compositions of cluster sets to make observa-
tions concerning the quality of deep and clinical feature clusters.

Model performance equity across demographics.  We sought to confirm that our models achieved 
similar levels of performance across different sexual and racial groups. We first analyzed our XGBoost classifier 
trained on the entire feature set. To analyze the differences between sex groups, we calculated the performance 
of the model using the AUROC score for males and females. To analyze the differences between race groups, we 
calculated the performance of the model using the AUROC score for African Americans, Asians, Caucasians, 
Hispanics, and unlabeled patients. We performed this same process for the XGBoost classifier trained on just 
the top ten features determined previously. We also performed this same process for the optimized deep learner 
(ReLU variant) trained on the full feature set and the optimized deep learner trained on just the top ten features. 
This approach allowed us to determine if decreasing the number of input features during model training would 
affect the bias of model performance.

Final model evaluation on holdout set.  Finally, we tested our ReLU model variant and XGBoost model 
on our holdout (e.i. test) dataset (20% of the preprocessed dataset). We also compared the test-set performance 
of our trained models on the full feature set as well as those trained on just the top ten feature set. The feature 
subsets were determined previously using training data only. The degree of importance attributed to the top fea-
tures was then investigated. We created eleven subsets of the original processed dataset. The first feature subset 
included only the top ten most important features. Each of the other ten subsets included the top-10 features, 
iteratively excluding one of the top ten features (e.g. all top-10 features except dementia), for a total of 9 features 
each. The conventional and deep learners were retrained using the previously outlined procedures with each 
feature subset. AUROC values were collected and compared to the original AUROC values. A Kruskal–Wal-
lis H-test test was used to determine whether each feature subset performed significantly differently from the 
original processed dataset using results obtained from all models (each observation was the test-set AUROC of 
a single trained model).

Results
Risk prediction.  Out of our best 7 conventional conventional learning models tested on the testing dataset, 
XGBoost, Random Forest, AdaBoost, and SVC all obtained AUROC scores over 87% (Fig.  2) and weighted 
averaged F1 scores over 90% (Fig. 3). The worst performing conventional model was KNN with an AUROC 
of 84.99%. These positive results are consistent with previously published works using these models on clinical 
decision support tasks15,16,18,19,21,23,24,30. Our 4 deep learning model variants, which differ by their penultimate 
activation function, performed similarly to conventional models, with the exception of the Gumbel Softmax 
variant. This was not unexpected as the Gumbel Softmax activation layer one-hot encodes the data, which 
greatly decreases the information available for the final classification layer. Despite this significant reduction in 
granularity, the Gumbel Softmax variant still achieved AUROC of 81.91% while automatically assigning each 
patient to a mutually exclusive cluster. To the best of our knowledge, this is the first work using Gumbel Softmax 
to enable deep-learning clustering and classification within the same model.

Test performance.  XGBoost and our ReLU neural network were chosen as representative conventional and 
deep learning models (respectively) for testing on our holdout dataset (Fig. 2). In addition, we trained our two 
models using just the top 10 global features (see Table 2) to understand the impact of feature reduction on model 
performance. We show that the AUROC of our conventional and deep models are similar (AUROC of 88.7% 
and 88.8%, respectively) when trained on all available features in the training dataset and applied to our holdout 
dataset. In addition, we note that training our two models using our identified top 10 features reduced perfor-
mance by less than 2% for both models when applied to the holdout dataset. This is significant because clinical 
models with many features may pose a significant burden on clinicians if manual data entry is required. Many 
features take time to be found in the patient’s electronic healthcare records, and the fewer features required to 
obtain a reliable risk assessment, the more time the clinician has to spend on shared decision making with the 
patient. This is especially important in urgent care settings where decisions must be made quickly and reliably.

We examine the sensitivity and specificity of our deep learning (ReLU) model trained on only the top 10 
clinical features across model risk prediction probabilities to allow end-users to customize threshold for their 
specific clinical setting (e.g., urgent care vs. asymptomatic testing). The sensitivity and specificity of our model are 
identical (both 81.93%) when predicted risk for catastrophic outcome is equal to 64.2%. If additional sensitivity 
is required, as may be the case when treatment is cheap and effective, a risk threshold of 28.8% may be used to 
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achieve a sensitivity of 90.34% and specificity of 71.14%. We achieved similar AUROC score to those reported in 
peer-reviewed literature53–55. Estiri et al.53 reported a mean AUROC score of 0.898 using generalized linear model 
with gradient boosting on mortality prediction with electronic health records of 16,709 COVID-19 patients. 
Sottile et al.54 presented a stacked generalization model for mortality prediction on COVID-19 patients using 
EHR data, achieving 0.94 AUROC score, outperforming the baseline models based on Charlson Comorbidity 
Index (0.72 AUROC score) and sequential organ failure assessment (SOFA) (0.90 AUROC score). Therefore, 
our best model achieves state-of-the-art results for risk analysis.

Global feature ranking.  The presence of hypertension, age, congestive heart failure (CHF), diabetes, and 
dementia are highly ranked after calculating their weighted average rank across conventional models. It has been 
well established that there exists a strong relationship between kidney disease and CHF56. The presence of these 
features likely demonstrate a patient profile which is already suffering from chronic disease, which results in an 
increased COVID-19 burden on their health. Along with CHF, dementia, and kidney disease are also top impor-
tant features within our deep learners. It may be interesting to note that our explainable AI approach identified 
count of prior admissions as an important feature within deep learning models, but not in our conventional 
learners. Count of prior admits may be increased in patients with chronic disease, which would be consistent 
with the chronic diseases identified by both models.

Figure 2.   Model performance (AUROC) from models trained on just the top 10 features compared with 
models trained on all features. Performance metrics for the 11 trained classifiers were generated on the same 
test set, which was not seen during training. We show that the performance of the 7 conventional learning 
approaches is comparable with that of the 4 deep learning architectures. Top: Performance of models trained 
on all features. Bottom: Performance of models trained on the top 10 features. K-Nearest Neighbors (KNN), 
Support Vector Classifier (SVC), Neural Network (NN). Blue and green bars represent conventional models 
trained on all features or just the top 10 features, respectively. Light blue and light green bars represent deep 
learning models trained on all features or just the top 10 features, respectively.
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XGBoost: All Features (F1=91.33%) XGBoost: Top10 Features (F1=91.71%)

89.44% (3185) 3.88% (163) 91.74% (3267)

1.57% (192)

1.29% 
(46)

4.58% (138)
2.11% 
(75)

5.39% 
(56)

1:derP0:derP1:derP0:derP

ReLu Variant: All Features (F1=91.97%) ReLu Variant: Top10 Features (F1=91.24%)

89.61% (3191) 3.71% (149) 90.73% (3231) 2.58% (187)

4.18% (132)
2.5% 
(89)

5.25% 
(92)

1.43% 
(51)

1:derP0:derP1:derP0:derP

Figure 3.   Confusion matrices illustrating the performance of our XGBoost and ReLU neural network models trained 
on either all features or just the top 10 features. (A–D) The threshold used to binarize model risk estimates (expressed as 
probabilities) was determined for each model to maximize the weighted averaged F1 score on the training dataset. The 
performance scores on the testing (holdout) dataset for the four models were: 91.33% (XGBoost, all features), 91.71% 
(XGBoost, top 10 features), 91.97% (ReLU, all features), and 91.24% (ReLU, top 10 features). The numbers in parentheses 
represent the number of test set observations within each category. Blue matrices represent models trained on all features, and 
green for models trained on just the top 10 important features.
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We were determined to understand the clinical biomarkers most important for determining catastrophic 
outcome risk. To achieve this goal, we used SHAP to examine the rank of each clinical feature within each model, 
and across model subsets (e.g., conventional and deep models). As each model generates similar, but different, 
feature ranks, we calculated the weighted average rank of each feature, using model performance (measured 
by AUROC) as the weight (Table 2). We show that the presence of dementia is a consistently important clinical 
feature for predicting catastrophic outcome. This insight becomes clearer after comparing the average ranks 
of all features. The top three important features across all models: CHF, age, and high glucose, are consistent 
with prior literature on catastrophic COVID-19 outcome risk57. Results of our statistical analysis of models 
trained on feature subsets indicate that using top-10 features does not significantly decrease model performance 
(p = 0.1228), yet removing additional top-10 features, including CHF, dementia, count of prior admits, and MI, 
demonstrate significantly reduced performance (p = 0.0197, 0.0138, 0.0328, and 0.0235, respectively). These 
results supports the use of a much reduced input feature space to facilitate clinical integration by reducing the 
burden of searching for features within patients’ EHRs and manual data entry (e.g. finding and entering 10 
features is much more convenient than 56 features spread across EHR locations and patient visit dates). Many 
of the features included within the top-10 rankings do not require additional blood tests or imaging. Glucose 
measurements can be quickly achieved using finger pricks, thus avoiding any delay in patient triage and treat-
ment due to obtaining additional data.

State-of-the-art works used different approaches to identify the top-ranking features in risk prediction. Estiri 
et al.53 used odds ratios with interquartile ranges to estimate the feature importance relative to mortality predic-
tion. Age, several respiratory diseases, and cardiovascular diseases were identified as the top features associated 
with patient outcome. Similarly, Clark-Boucher et al.58 used Firth bias-corrected odds ratios in logistic regression 
model to report patient demographic and disease-related survey variables as top ranking features. Many of our 
top-ranking features are reinforced in these literature including patient demographics (e.g. age), cardiovascular 
disease (e.g., CHF and MI), and respiratory disease (e.g. COPD).

Patient subphenotyping.  Early differentiation of patients into subphenotypes based on their likelihood of 
suffering catastrophic outcomes may provide insights into the clinical spectrum of disease presentation. Visual 
inspection of patient similarities using the original clinical features available at the time of diagnosis results in 
poorly differentiated sub-populations using t-SNE visual inspection (Fig. 4A). There is an increased concentra-
tion of patients suffering catastrophic outcomes within the top-left area after t-SNE transformation of patient fea-
tures, which we hypothesized could be further isolated from the general population using alternative clustering 
approaches. We show that clustering of patients using features obtained by deep models produces qualitatively 
improved patient separation by our outcome of interest (catastrophic outcomes) (Fig. 4B–D). Patients suffering 
from catastrophic outcomes (not a feature used to generate clusters) were colored in orange after t-SNE embed-
ding to aid in visualization of qualitative clusters. Our deep learning models (Softmax, Sigmoid, and ReLU vari-
ants) generated patient features which result in more enriched groups of catastrophic patients (Fig. 4B–D), as 
compared with using clinical features directly for clustering (Fig. 4A).

Quantitative comparison of clustering approaches demonstrates that deep features produce better separation 
of patients by our outcome of interest compared with clinical features alone (Fig. 5). This result is consistent with 
our understanding of the deep learning training process, as deep features were generated during the patient clas-
sification task, and therefore would serve as an improved patient descriptor for separation of patients by outcome 
compared with the input model features (clinical features). In addition, our proposed Gumbel-Softmax model 
variant performed within the top-5 of all other approaches without the need for post-hoc clustering of deep 
features. More specifically, our Gumbel-Softmax model variant learns patient clusters directly at the time of clas-
sification, and uses the cluster assignments themselves to classify patients by outcome. These results support the 
use of our deep learning-based clustering approach for patient classification and clustering within a single model. 
The largest cluster within all top-5 models contained less than 2% prevalence of catastrophic outcomes, compared 

Table 2.   Weighted average feature ranks across model type.

Conventional learners Deep learners All learners

 Feature Avg. rank Feature Avg. rank Feature Avg. rank

Glucose median 5.116 CHF 1.000 CHF 4.422

Hypertension 5.142 Count prior admits 2.236 Age 6.610

Age 6.273 MI 3.528 Glucose median 8.347

CHF 6.360 Dementia 4.517 Dementia 8.682

GFR last 9.724 Stroke 5.485 Diabetes 9.401

Diabetes 10.047 Kidney disease 6.025 Count prior admits 10.038

COPD 10.769 Age 7.205 COPD 10.140

Dementia 11.040 Diabetes 8.260 Hypertension 10.438

Average BMI 11.603 COPD 9.027 MI 10.445

Glucose last 12.434 Average BMI 9.751 Average BMI 10.934



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18981  | https://doi.org/10.1038/s41598-023-36175-4

www.nature.com/scientificreports/

Figure 4.   Patients without catastrophic outcomes (blue) and patients with catastrophic outcomes (red) are 
more clearly separated after t-SNE of patients using deep learning features. Patient outcome was not a feature 
used during clustering. (A) Original clinical features do not clearly separate patients by outcome. (B–D) Deep 
learning features (ReLU, Sigmoid, and Softmax variants, respectively) successfully identify patient subgroups 
based on qualitative analysis.

Figure 5.   Quantitative comparison of clustering approaches via NMI analysis using deep features (green) or 
original clinical features (blue). Mutual information is generated by comparing overlap between cluster labels 
with patients suffering catastrophic outcomes to measure clustering effectiveness. Gumbel-Softmax model 
variant requires no additional clustering method to assign patients to clusters, and is within the top-5 clustering 
approaches.
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with over 20% prevalence within the catastrophic outcome-enriched clusters. It is important to note that the 
prevalence of catastrophic outcome in our population was 6.6% (1169 out of 17806 in the original dataset).

This significant enrichment of patients with catastrophic outcomes within a single cluster demonstrates the 
potential use of these clusters for patient triage. In addition, the three top-5 clustering approaches using Softmax 
variant features assigned patients into much smaller clusters with much lower prevalence of catastrophic out-
comes compared with the original population. Patients within these catastrophic outcome-enriched clusters may 
be placed higher on the priority list for aggressive early treatment to maximize patient outcomes. In addition, 
patients within clusters with significantly lower percentage of catastrophic outcomes may be treated less aggres-
sively to minimize patient discomfort and healthcare costs. It is interesting to note that our Gumbel-Softmax 
model variant assigned all but 14 patients to only two clusters, despite having the potential to separate patients 
into 5 clusters. This feature of the model may be valuable if the number of true clusters within the dataset are 
unknown. In this case, an upper-bound may be provided to allow the model to chose the appropriate number 
of final clusters. Future works to establish the robustness of this approach may be conducted prior to clinical 
integration.

Equitable model performance.  Consistent model performance across demographic populations is vital 
to ensure optimal decision making during patient care. Unfortunately, obtaining robust model performance 
within underrepresented populations is difficult due to the large data requirements of state-of-art models. For-
tunately, our dataset contains a robust representation of patients within the Atlanta metropolitan area. Our 
top models perform consistently across racial categories, as encoded within the electronic healthcare record 
system (Fig. 6). In addition, our model performance remains consistent even when trained on only the top 10 
clinical features, which does not include race. This supports the application of our model to obtain patient risk 
for catastrophic outcomes across racial demographics. It is also interesting to note that performance is highest 
in those patients with Asian or unknown (unlabeled) race, two groups which contain minimal representation 
within our dataset. The cause of this pattern may be elucidated in future studies which include more granular 
racial identities. Our top models perform consistently across sex categories, as encoded within the electronic 
healthcare record system (Fig. 6). In addition, our model performance remains consistent even when trained 
on only the top 10 clinical features, which does not include sex as a feature. This consistency in performance 
across sex supports the application of our model to obtain patient risk for catastrophic outcomes across available 
demographics.

Application.  To enhance the real-world clinical impact of our work, we developed a user-friendly web 
application for automated patient risk assessment based on our findings. Our application is built using the Fast 

Figure 6.   Our conventional and deep learning models perform consistently above 80% AUROC across patient 
race and gender, even after feature reduction. Performance was highest in those patients identifying as Asian 
and those which were unlabeled, despite their low representation within our training and holdout (testing) 
datasets. (A) Deep learning ReLU variant performance trained on all clinical features. (B) ReLU variant trained 
on just the top 10 clinical features. (C) XGBoost model trained on all features. (D) XGBoost model trained 
on the top 10 clinical features. (E) Deep learning ReLU variant performance trained on all clinical features. 
(F) ReLU variant trained on just the top 10 clinical features. (G) XGBoost model trained on all features. H) 
XGBoost model trained on the top 10 clinical features.
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Healthcare Interoperability Resources (FHIR) standard and complimentary SMART-on-FHIR technology, an 
open-source framework that provides secure access to EHRs. FHIR enables quick and efficient exchange of 
healthcare data based on modern web information exchange standards59. Once a healthcare provider logs in 
securely and selects a patient within the EHR system, our application uses ICD-10 (International Classification 
of Diseases, Tenth Revision) and SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) 
codes to automatically fill in the patient’s clinical features including: dementia, CHF, kidney disease, and COPD 
status; and whether or not the patient has had a prior myocardial infarction or stroke. ICD-10 and SNOMED-CT 
are both widely used standards in healthcare for classifying and coding conditions, diagnoses, symptoms, etc., 
in a systematic manner. The number of prior hospital visits and gender are also automatically extracted. This 
approach leverages standardized data resources further minimizing data entry time requirements. If any value 
is unable to be retrieved from the appropriate FHIR resource, the provider can perform manual selection. Once 
the information is populated, the data is automatically standardized by the application and submitted to our best 
model (deep learning, ReLU variant) which returns a risk assessment score (Fig. 7).

Discussion
In this work, we demonstrate an automated approach to conducting patient risk assessment using AI which gen-
erates data-driven clinical insights consistent with published clinical and epidemiological research. Specifically, 
we developed a clinical decision support system which achieves state-of-art performance of 89.38% AUROC 
early patient risk assessment. In addition, we demonstrated equitable model performance across demographic 
populations. To improve model interpretation, we generated feature importance rankings and patient clustering 
to identify robust biomarkers for risk assessment. Lastly, we encouraged clinical testing of our work by reducing 
model feature requirements and facilitating electronic healthcare record system integration of a user-friendly web 
application. This work demonstrates the ability of AI to generate clinical insights early in the course of disease 
for optimizing patient treatment while encouraging usage and trust in clinical end-users.

Our finding of dementia as a significant independent biomarker for severe COVID-19 clinical outcomes 
demonstrates the utility of our workflow in identifying data-driven patterns within clinical outcomes predictions 
tasks not previously demonstrated in similar prior work. We demonstrate that this significant effect is due to the 
presence of dementia, and not due to the association of dementia with age using both SHAP and ablation stud-
ies to support this finding. In addition, we elucidate demographic-specific feature contributions to patient-level 
risks to support the use of our approach where establishing trust in model performance across demographics 
is vital. Known limitations of our work include the use of data from a single metropolitan region. Although our 
results demonstrate consistent performance across demographic groups within our cohort, further testing of 
our approach within individual hospital systems is necessary prior to integration within clinical workflows with 
significantly different demographic representation.

Future work will focus on expanding our test dataset to include data from additional hospital systems. We 
will seek to better understand if our approach to generating clinical biomarkers identifies similar patterns across 
sites and additional demographic groups, or if additional insight may be gained on the relationship of clinical 
features and disease outcomes. We will also test our approach within other clinical tasks requiring reliable risk 
prediction early in the disease course (e.g., sepsis and heart disease). We believe this work may establish a con-
sistent approach to clinical decision support tool generation by maximizing interpretability and clinical utility.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to Protected Health 
Information restrictions applying to the availability of the clinical data, which were used under IRB approval for 
use only in the current study, but are available from the corresponding author on reasonable request.

Figure 7.   Our web application shows the COVID-19 risk assessment score based on our top ten identified 
clinical features. Values are automatically filled by accessing patient’s electronic health records using the FHIR 
data exchange standard. Expert validation of clinical values allows confirmation of correct model input. A plot 
of model sensitivity and specificity across generated risk scores facilitates clinical interpretation of generated 
patient risk.
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