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Predicting the presence of tinnitus 
using ecological momentary 
assessments
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Winfried Schlee 4,5, Thomas Probst 6, Berthold Langguth 5 & Rüdiger Pryss 2

Mobile applications have gained popularity in healthcare in recent years. These applications are an 
increasingly important pillar of public health care, as they open up new possibilities for data collection 
and can lead to new insights into various diseases and disorders thanks to modern data analysis 
approaches. In this context, Ecological Momentary Assessment (EMA) is a commonly used research 
method that aims to assess phenomena with a focus on ecological validity and to help both the 
user and the researcher observe these phenomena over time. One phenomenon that benefits from 
this capability is the chronic condition tinnitus. TrackYourTinnitus (TYT) is an EMA-based mobile 
crowdsensing platform designed to provide more insight into tinnitus by repeatedly assessing various 
dimensions of tinnitus, including perception (i.e., perceived presence). Because the presence of 
tinnitus is the dimension that is of great importance to chronic tinnitus patients and changes over time 
in many tinnitus patients, we seek to predict the presence of tinnitus based on the not directly related 
dimensions of mood, stress level, arousal, and concentration level that are captured in TYT. In this 
work, we analyzed a dataset of 45,935 responses to a harmonized EMA questionnaire using different 
machine learning techniques. In addition, we considered five different subgroups after consultation 
with clinicians to further validate our results. Finally, we were able to predict the presence of tinnitus 
with an accuracy of up to 78% and an AUC of up to 85.7%.

The ubiquity of smart mobile devices (e.g., smartphones) opens new opportunities for data collection in health-
care. Ecological Momentary Assessment (EMA)1 is a research method that aims to assess phenomena with a 
focus on ecological validity by allowing subjects and patients to report repeatedly in real time, in real environ-
ments, over time, and in different contexts, thus avoiding retrospective reporting  bias2. The mHealth platform 
TrackYourTinnitus (TYT) uses EMA in combination with mobile crowdsensing (MCS) to track a user’s individual 
tinnitus and monitor and assess its variability over  time3,4. More specifically, baseline questionnaires are first used 
to collect users’ sociodemographic data. Then, a dynamic EMA questionnaire (EMA-D) is used to repeatedly 
assess the user’s tinnitus at randomly selected times of day using eight dimensions. These dimensions include 
the perception (i.e., whether tinnitus is perceived at that moment) of the tinnitus (first question of the EMA-D 
questionnaire) in addition to its loudness and distress, as well as mood, arousal, stress, concentration, and the 
presence of the user’s previously reported worst  symptom4,5. The response to the first question (i.e., perceived 
presence) of the EMA-D questionnaire is highly clinically relevant. Therefore, it would be strongly desirable to be 
able to predict the presence of tinnitus based on the other information provided by the app users. Consequently, 
the first question of the dynamic questionnaire is investigated in this paper and whether it can be predicted using 
machine learning methods.

On the further background of TrackYourTinnitus (TYT), it was launched in 2014. It follows the study design 
of an open observational study in which users can freely enroll. TYT is not and has not been advertised and we 
follow the principle of word of mouth as well as discovering the apps in the app stores. The general procedure 
consists of two parts after downloading the app, 3 baseline questionnaires have to be filled in at the beginning, 
concerning demographics and tinnitus history. Only after completing these questionnaires, users can enter the 
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dynamic EMA questionnaires (EMA-D). Here, the user can choose to have up to 14 questionnaires randomly 
delivered per day or they can set the times themselves (in both cases, a notification will be sent). In addition, the 
questionnaire can always be self-initiated. The aim is to record the current tinnitus situation as best as possible 
with as many unpredictable points in time as possible. The principle has now been working very successfully 
since 2014 and many more of our apps have followed this principle.

Furthermore, in several studies, EMA has proven to be a highly versatile method for data collection. By 
collecting longitudinal data with high ecological validity, EMA is often used to gain insight into psychological 
and behavioral  phenomena6–8. With regard to data assessment, a pilot study was conducted showing that EMA 
is an applicable method and an accepted assessment method for tinnitus  data9. The latter is supported by the 
results of another study showing that emotional states influence the process of how tinnitus loudness leads to 
tinnitus  distress10.

When using smart mobile devices, EMA is often combined with MCS to collect contextual  data3–5,11. In a 
exploratory study, opportunistic MCS was used to collect smartphone usage logs as a proxy measure for mood 
 monitoring12. The results show that highly accurate predictions based on EMA in combination with MCS are 
possible.

Because of the quantity of data points, longitudinal data are ideally suited for modern data analysis techniques 
that require large data sets. For example, longitudinal EMA data were used in one study to detect warning signs 
of suicidal ideation using functional linear  models13. By collecting response times of EMA questions, another 
paper introduced a method for predicting short-term mood  changes14. Similarly, EMA metadata sourced from 
the TYT platform was used to make predictions in a study that was able to predict users’ operating system with 
up to 80%  accuracy15. While there are some machine learning approaches in the context of tinnitus, to our 
knowledge, there is no clear a priori model for predicting tinnitus using EMA data. Therefore, we take a data-
centric approach by testing different classification models (which take different approaches to classification) to 
determine the model that best fits the context. In addition, the aspect of small gains in predictive power is also 
tracked. In the context of tinnitus, little is known about the important factors and due to the heterogeneity of 
the disease pattern, even small differences may play a role.

As mentioned above, the responses of the EMA-D questionnaire will be examined. In particular, the ques-
tion will be answered to what extent the questions of the EMA-D questionnaire that do not assess the tinnitus 
experience per se (i.e., loudness and distress of the tinnitus) can be used to predict the answer to the first ques-
tion, whether someone is aware of the tinnitus at a particular point in time. In addition, for the first time, the 
study will take into account another circumstance that has been ignored in most of the previous TYT analyses 
(e.g.,16,17: one problem with open-label observational studies using MCS and EMA such as TYT is that the fre-
quency of responses from participating users varies  widely18,19). There are many reasons for this. Some reasons 
could be elicited in interviews, such as a user feeling out of treatment and grasping at the proverbial last straw. 
Other reasons can only be conjectured. However, the way an app is designed and what feedback is given back to 
the user may play a role. Nevertheless, the paradigms of EMA and MCS in the application of medical questions 
are still very young, which is also reflected in the fact that there are still few results supporting the evidence. 
In the context of evidence, for example, it is noticeable that the WHO mERA  checklist20 is very rarely cited or 
discussed. Given the variation in response behavior (i.e., frequency of responses among participating users), the 
prediction of the first question should consider different user groups. This is to address the question of whether 
the planned prediction should specifically consider different user groups and whether there are indicators to 
take this clinically more into account in the future.

In order to distinguish user groups, the TYT data was closely examined and threshold values were identified 
to divide the user groups. First, only users who completed more than 10 EMA-D questionnaires were included 
(threshold 1). Then, the upper limit of 400 completed EMA-D questionnaires was identified (threshold 2), which 
can distinguish between normal users (11-400 completed EMA-D questionnaires; referred to as Normal Users) 
and power users (more than 400 completed EMA-D questionnaires; referred to as Power Users). The number of 
EMA-D questionnaires per user are depicted in Fig. 2. Another threshold 3 was identified whether users actu-
ally report tinnitus and non-tinnitus in the dynamic questionnaire. Here, we arrived at a further distinction 
of whether both values were recorded at least once for each user (labeled Non-permanent Tinnitus Users), or 
presence at least once and absence at least three times (labeled Rather absent Tinnitus Users). This resulted in a 
stratification of 5 user groups. To our knowledge, such a subdivision has not been done in other mHealth work 
related to tinnitus, but neither has it been done in other mHealth work in general.

Regarding the prediction of whether someone perceives tinnitus or not, another disparity in the data set is 
how often someone perceives one or the other status. This resulted in us having very unequal data sets not only 
in terms of frequency of completed questionnaires, but also in terms of classes of a user (class 0: do not perceive 
tinnitus, class 1: perceive tinnitus). To account for this, two approaches were taken to balance the data set. On the 
one hand, when possible, we automatically adjusted the weights assigned to the classes for the machine learning 
procedures inversely proportional to the class frequencies in the input data (we call this balanced) to account 
for the imbalance in the dataset. On the other hand, entries in the majority class were eliminated (we call this 
downsampling) to have the same number as in the minority class. These variants are also presented in the context 
of the results. Note that we did not add entries in the minority class (i.e., upsampling using approaches such 
as  SMOTE21), as this artificially generates responses to the EMA questionnaire that would not otherwise exist.

Based on the above findings and work, in this paper, we investigate the following research questions using 
machine learning methods. It should be noted that for each of the predictions, we only considered independent 
variables (i.e., variables that are non-trivially indicative of the presence of tinnitus) to predict the presence of 
tinnitus for a given EMA questionnaire: 
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RQ1:  To what extent can we predict the presence of tinnitus for a given EMA-D answer sheet?
RQ2:  To what extent does the number of completed EMA-D questionnaires per user influence the prediction?
RQ3:  To what extent does the type of tinnitus (non-permanent and rather absent) influence the prediction?

Results
The results of the predictions are presented below. As mentioned earlier, the predictions were performed based 
on five user groups, so the results are presented along these user groups. As mentioned earlier, two strategies 
were followed to balance the dataset, and this distinction is also reflected in the results.

The eight machine learning approaches used provided different results, both in terms of the different research 
questions and the evaluation metrics. In summary, the results suggest that there is some relationship between the 
analyzed data and the presence or absence of tinnitus, which may help to better understand the causes of tinnitus.

Results balanced. The results for the case where all users are included in the classification with the bal-
anced approach are shown in Table 1. It is noticeable that the different classifiers are not very far apart, even 
though the MLP classifier performs best. About 70%-predictive power can be achieved for all users in the bal-
anced case. The largest area under the curve is achieved by LRC.

The results for the Power Users in the case of balanced are shown in Table 2. It is noticeable that the results 
vary more between the classifiers in the balanced case than for all users, but that a higher prediction can also be 
achieved (although even higher results were expected). The largest area under the curve is provided by the SVM.

In the cases of Normal Users plus balanced approach (see Table 3), the bandwidth between the results of the 
classifiers is again smaller, and it is also noticeable that the best prediction here is worse than in the previous 
two cases of Power Users and all users. Here, it is interesting that the XGB produces the best result the first time. 
LRC has the largest area under the curve.

For the Non-permanent Tinnitus Users plus balanced approach (see Table 4), no new findings can be made, 
except that the prediction rates are generally somewhat lower.

For the Rather absent Tinnitus Users plus balanced approach (see Table 5), the results are even lower than for 
Non-permanent Tinnitus Users. This indicates above all that the tinnitus and non-tinnitus classes are too poorly 

Table 1.  Results for all users, including standard deviation. Decision Tree (DT), Random Forest (RFC), 
Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic 
Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values are in 
bold.

All Users

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.629 (+/− 0.035) 0.645 (+/− 0.027) 0.525 (+/− 0.023) 0.788 (+/− 0.012) 0.713 (+/− 0.050) 0.336 (+/− 0.046)

RFC 0.678 (+/− 0.036) 0.674 (+/− 0.026) 0.560 (+/− 0.049) 0.788 (+/− 0.011) 0.799 (+/− 0.052) 0.257 (+/− 0.050)

SVM 0.585 (+/− 0.066) 0.615 (+/− 0.063) 0.625 (+/− 0.040) 0.833 (+/− 0.023) 0.582 (+/− 0.104) 0.596 (+/− 0.102)

CNB 0.527 (+/− 0.103) 0.555 (+/− 0.108) 0.623 (+/− 0.068) 0.826 (+/− 0.050) 0.488 (+/− 0.146) 0.661 (+/− 0.108)

KNC 0.733 (+/− 0.034) 0.683 (+/− 0.022) 0.588 (+/− 0.053) 0.777 (+/− 0.009) 0.919 (+/− 0.045) 0.091 (+/− 0.027)

LRC 0.575 (+/− 0.092) 0.604 (+/− 0.089) 0.634 (+/− 0.047) 0.834 (+/− 0.036) 0.561 (+/− 0.128) 0.624 (+/− 0.089)

MLP 0.754 (+/− 0.024) 0.683 (+/− 0.012) 0.618 (+/− 0.055) 0.777 (+/− 0.005) 0.959 (+/− 0.035) 0.048 (+/− 0.025)

XGB 0.678 (+/− 0.047) 0.678 (+/− 0.034) 0.597 (+/− 0.048) 0.795 (+/− 0.013) 0.787 (+/− 0.071) 0.300 (+/− 0.062)

Table 2.  Results for Power Users, including standard deviation. Decision Tree (DT), Random Forest (RFC), 
Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic 
Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values are in 
bold.

Power Users

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.679 (+/− 0.070) 0.701 (+/− 0.056) 0.556 (+/− 0.059) 0.841 (+/− 0.023) 0.748 (+/v 0.082) 0.367 (+/− 0.089)

RFC 0.708 (+/− 0.072) 0.718 (+/− 0.058) 0.619 (+/− 0.140) 0.837 (+/− 0.027) 0.797 (+/− 0.083) 0.305 (+/− 0.114)

SVM 0.618 (+/− 0.107) 0.657 (+/− 0.094) 0.632 (+/− 0.183) 0.882 (+/− 0.070) 0.618 (+/− 0.122) 0.614 (+/− 0.251)

CNB 0.503 (+/− 0.176) 0.540 (+/− 0.174) 0.582 (+/− 0.208) 0.825 (+/− 0.139) 0.481 (+/− 0.212) 0.603 (+/− 0.227)

KNC 0.723 (+/− 0.070) 0.725 (+/− 0.062) 0.616 (+/− 0.147) 0.835 (+/− 0.031) 0.824 (+/− 0.075) 0.267 (+/− 0.148)

LRC 0.461 (+/− 0.147) 0.498 (+/− 0.156) 0.512 (+/− 0.202) 0.818 (+/− 0.124) 0.423 (+/− 0.185) 0.636 (+/− 0.213)

MLP 0.780 (+/− 0.039) 0.750 (+/− 0.026) 0.580 (+/− 0.185) 0.835 (+/− 0.015) 0.913 (+/− 0.067) 0.178 (+/− 0.129)

XGB 0.680 (+/− 0.100) 0.703 (+/− 0.085) 0.619 (+/− 0.155) 0.845 (+/− 0.041) 0.743 (+/− 0.108) 0.393 (+/− 0.161)
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distributed in question 1 of the EMA-D questionnaire. Furthermore, as we analyze specific subsets of users, we 
would have expected higher results compared to non-permanent Tinnitus Users.

Across all datasets, the multi-layer perceptron classifier (i.e., neural network) is the approach with the best 
accuracy. The 10-fold cross validated AUC of the MLP classifier for all users is depicted in Fig.  1. However, other 
approaches (e.g., KNC, XGB, or RFC) also provide promising results. Illustrations of all other approaches can 
be found in the supplementary material.

Table 3.  Results for Normal Users, including standard deviation. Decision Tree (DT), Random Forest (RFC), 
Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic 
Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values are in 
bold.

Normal Users

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.629 (+/− 0.015) 0.638 (+/− 0.013) 0.531 (+/− 0.020) 0.770 (+/− 0.009) 0.725 (+/− 0.024) 0.331 (+/− 0.043)

RFC 0.675 (+/− 0.018) 0.664 (+/− 0.016) 0.565 (+/− 0.040) 0.771 (+/− 0.010) 0.812 (+/− 0.026) 0.252 (+/− 0.046)

SVM 0.623 (+/− 0.048) 0.645 (+/− 0.042) 0.646 (+/− 0.062) 0.824 (+/− 0.038) 0.639 (+/− 0.074) 0.639 (+/− 0.074)

CNB 0.542 (+/− 0.065) 0.569 (+/− 0.066) 0.630 (+/− 0.058) 0.819 (+/− 0.030) 0.506 (+/− 0.100) 0.655 (+/− 0.101)

KNC 0.733 (+/− 0.029) 0.661 (+/− 0.018) 0.612 (+/− 0.047) 0.758 (+/− 0.008) 0.951 (+/− 0.037) 0.060 (+/− 0.011)

LRC 0.626 (+/− 0.037) 0.649 (+/− 0.033) 0.657 (+/− 0.061) 0.834 (+/− 0.035) 0.633 (+/− 0.062) 0.603 (+/− 0.122)

MLP 0.735 (+/− 0.031) 0.660 (+/− 0.022) 0.644 (+/− 0.057) 0.757 (+/− 0.009) 0.955 (+/− 0.041) 0.054 (+/− 0.030)

XGB 0.682 (+/− 0.028) 0.676 (+/− 0.028) 0.599 (+/− 0.048) 0.781 (+/− 0.019) 0.806 (+/− 0.031) 0.299 (+/− 0.076)

Table 4.  Results for Non-permanent Tinnitus Users, including standard deviation. Decision Tree (DT), 
Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors 
(KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest 
values are in bold.

Non-permanent Tinnitus Users

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.598 (+/− 0.045) 0.611 (+/− 0.036) 0.522 (+/− 0.034) 0.753 (+/− 0.018) 0.681 (+/− 0.067) 0.359 (+/− 0.052)

RFC 0.641 (+/− 0.052) 0.636 (+/− 0.040) 0.554 (+/− 0.076) 0.752 (+/− 0.021) 0.769 (+/− 0.076) 0.273 (+/− 0.063)

SVM 0.554 (+/− 0.084) 0.576 (+/− 0.085) 0.578 (+/− 0.086) 0.789 (+/− 0.056) 0.539 (+/− 0.119) 0.595 (+/− 0.111)

CNB 0.519 (+/− 0.107) 0.538 (+/− 0.112) 0.580 (+/− 0.107) 0.777 (+/− 0.087) 0.484 (+/− 0.154) 0.622 (+/− 0.132)

KNC 0.702 (+/− 0.045) 0.641 (+/− 0.033) 0.576 (+/− 0.077) 0.743 (+/− 0.017) 0.914 (+/− 0.067) 0.093 (+/− 0.070)

LRC 0.529 (+/− 0.097) 0.550 (+/− 0.097) 0.572 (+/− 0.104) 0.779 (+/− 0.076) 0.505 (+/− 0.139) 0.597 (+/− 0.132)

MLP 0.720 (+/− 0.036) 0.648 (+/− 0.024) 0.601 (+/− 0.092) 0.746 (+/− 0.011) 0.943 (+/− 0.057) 0.078 (+/− 0.055)

XGB 0.632 (+/− 0.061) 0.635 (+/− 0.048) 0.576 (+/− 0.088) 0.761 (+/− 0.027) 0.734 (+/− 0.094) 0.339 (+/− 0.096)

Table 5.  Results for Rather absent Tinnitus Users, including standard deviation. Decision Tree (DT), Random 
Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), 
Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values 
are in bold.

Rather absent Tinnitus Users

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.565 (+/− 0.045) 0.573 (+/− 0.038) 0.518 (+/− 0.030) 0.702 (+/− 0.020) 0.643 (+/− 0.076) 0.389 (+/− 0.056)

RFC 0.599 (+/− 0.049) 0.593 (+/− 0.037) 0.548 (+/− 0.075) 0.704 (+/− 0.020) 0.723 (+/− 0.084) 0.319 (+/− 0.062)

SVM 0.566 (+/− 0.095) 0.578 (+/− 0.096) 0.603 (+/− 0.111) 0.765 (+/− 0.061) 0.531 (+/− 0.135) 0.646 (+/− 0.094)

CNB 0.531 (+/− 0.090) 0.541 (+/− 0.090) 0.586 (+/− 0.100) 0.741 (+/− 0.074) 0.494 (+/− 0.141) 0.614 (+/− 0.136)

KNC 0.644 (+/− 0.052) 0.607 (+/− 0.038) 0.586 (+/− 0.087) 0.703 (+/− 0.022) 0.839 (+/− 0.094) 0.205 (+/− 0.091)

LRC 0.548 (+/− 0.100) 0.558 (+/− 0.102) 0.583 (+/− 0.088) 0.733 (+/− 0.077) 0.534 (+/− 0.152) 0.578 (+/− 0.123)

MLP 0.663 (+/− 0.039) 0.606 (+/− 0.033) 0.609 (+/− 0.100) 0.702 (+/− 0.017) 0.891 (+/− 0.069) 0.149 (+/− 0.075)

XGB 0.598 (+/− 0.055) 0.599 (+/− 0.044) 0.573 (+/− 0.082) 0.716 (+/− 0.021) 0.693 (+/− 0.101) 0.384 (+/− 0.080)
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Results downsampling. In the case of downsampling for the five user groups, it is noticeable that the 
prediction rates decrease and that in some cases other classifiers only perform better than when balanced. This 
suggests that imputation can either be improved or is even counterproductive in this case. However, it could also 
indicate that very meaningful values were eliminated during downsampling.

When all users are considered (see Table 6), the results do not vary much between classifiers, but for the first 
time, the RFC classifier is stronger than before.

For Power Users, the picture is similar (see Table 7). However, compared to the balanced approach, the general 
jump between all users and Power Users is larger this time.

No further insights are gained from the Normal Users (see Table 8). Only, as with the balanced approach, the 
same classifier beats all others in all metrics, except for sensitivity.

There is no further findings compared with the previous results for Non-permanent Tinnitus Users, as shown 
in Table 9.

With Rather absent Tinnitus Users and downsampling (see Table 10), the results are closer to Non-permanent 
Tinnitus Users than in the balanced case.

The basic prediction rate varies between 60 and 70%. At the subtle level, we find differences that are rather 
unusual, but can also occur depending on the strategy, so they may not have any medical significance. Also, 
one would have expected the prediction to perform disproportionately better for Power Users than for the other 
classes. Moreover, it is interesting that the algorithms sometimes predict strikingly differently between the bal-
anced and downsampling variants.

Discussion
At the beginning of the work, we hypothesized along the five user groups with which significance the presence of 
a tinnitus perception — asked by question 1 in the EMA-D questionnaire — can be predicted by the other ques-
tions of the EMA-D questionnaire. For this purpose, we excluded those questions from the EMA-D questionnaire 
that showed medical correlation (dependent variables, i.e., questions 2, 3, and 8). Since the same objective is in 
the room for all five user groups and the results do not differ significantly, we discuss the results in their entirety 

Figure 1.  10-folds ROC curve, AUC MLP.

Table 6.  Results for all users (downsampled), including standard deviation. Decision Tree (DT), Random 
Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), 
Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values 
are in bold.

All Users down

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.643 (+/− 0.012) 0.645 (+/− 0.015) 0.648 (+/− 0.013) 0.641 (+/− 0.012) 0.651 (+/− 0.026) 0.635 (+/− 0.023)

RFC 0.665 (+/− 0.013) 0.668 (+/− 0.013) 0.731 (+/− 0.013) 0.662 (+/− 0.014) 0.674 (+/− 0.014) 0.655 (+/− 0.017)

SVM 0.618 (+/− 0.007) 0.604 (+/− 0.007) 0.663 (+/− 0.009) 0.627 (+/− 0.008) 0.582 (+/− 0.011) 0.653 (+/− 0.014)

CNB 0.580 (+/− 0.006) 0.539 (+/− 0.007) 0.635 (+/− 0.006) 0.598 (+/− 0.008) 0.490 (+/− 0.009) 0.671 (+/− 0.013)

KNC 0.646 (+/− 0.013) 0.646 (+/− 0.014) 0.698 (+/− 0.013) 0.646 (+/− 0.013) 0.645 (+/− 0.015) 0.646 (+/− 0.014)

LRC 0.607 (+/− 0.006) 0.589 (+/− 0.009) 0.650 (+/− 0.008) 0.616 (+/− 0.007) 0.564 (+/− 0.015) 0.649 (+/− 0.013)

MLP 0.644 (+/− 0.010) 0.631 (+/− 0.014) 0.700 (+/− 0.010) 0.656 (+/− 0.013) 0.608 (+/− 0.026) 0.680 (+/− 0.026)

XGB 0.667 (+/− 0.011) 0.658 (+/− 0.011) 0.732 (+/− 0.009) 0.676 (+/− 0.013) 0.642 (+/− 0.011) 0.692 (+/− 0.017)
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with regard to the three research questions raised. Basically, it is noticeable that despite the different scenarios, a 
prediction in the range of 50–70% is always possible, with the prediction tending towards 60–70%. Since question 
1 of the EMA-D questionnaire has a binary scale (cf. Table 11; 0: no tinnitus perceived, 1: tinnitus perceived), the 
ground truth in this case is 50%. Comparing the results with the ground truth, a significant improvement can 
be obtained, indicating that the dynamic questions of the EMA questionnaire not directly related to question 1 
contain predictive power, again for all user groups. However, the TYT dataset is not a small mHealth dataset, so 
one would have expected a higher predictive value than 70% fluctuating. Therefore, the result should be consid-
ered indicative only, even though the ground truth might be exceeded.

Table 7.  Results for Power Users (downsampled), including standard deviation. Decision Tree (DT), Random 
Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), 
Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values 
are in bold.

Power Users down

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.734 (+/− 0.011) 0.738 (+/− 0.009) 0.739 (+/− 0.011) 0.729 (+/− 0.018) 0.748 (+/− 0.018) 0.720 (+/− 0.030)

RFC 0.773 (+/− 0.013) 0.773 (+/− 0.013) 0.855 (+/− 0.011) 0.775 (+/− 0.017) 0.771 (+/− 0.021) 0.775 (+/− 0.023)

SVM 0.684 (+/− 0.018) 0.685 (+/− 0.022) 0.722 (+/− 0.017) 0.682 (+/− 0.018) 0.689 (+/− 0.035) 0.679 (+/− 0.026)

CNB 0.563 (+/− 0.018) 0.536 (+/− 0.019) 0.622 (+/− 0.021) 0.572 (+/− 0.023) 0.504 (+/− 0.023) 0.621 (+/− 0.033)

KNC 0.760 (+/− 0.014) 0.757 (+/− 0.017) 0.827 (+/− 0.014) 0.766 (+/− 0.013) 0.749 (+/− 0.030) 0.771 (+/− 0.020)

LRC 0.608 (+/− 0.016) 0.566 (+/− 0.018) 0.665 (+/− 0.015) 0.635 (+/− 0.022) 0.511 (+/− 0.022) 0.706 (+/− 0.028)

MLP 0.730 (+/− 0.011) 0.725 (+/− 0.016) 0.797 (+/− 0.015) 0.739 (+/− 0.023) 0.715 (+/− 0.042) 0.745 (+/− 0.042)

XGB 0.777 (+/− 0.018) 0.772 (+/− 0.021) 0.857 (+/− 0.013) 0.788 (+/− 0.015) 0.757 (+/− 0.034) 0.796 (+/− 0.017)

Table 8.  Results for Normal Users (downsampled), including standard deviation. Decision Tree (DT), Random 
Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), 
Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB) Highest values 
are in bold.

Normal Users down

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.633 (+/− 0.010) 0.636 (+/− 0.010) 0.638 (+/− 0.011) 0.630 (+/− 0.011) 0.642 (+/− 0.013) 0.623 (+/− 0.016)

RFC 0.662 (+/− 0.010) 0.668 (+/− 0.010) 0.723 (+/− 0.009) 0.656 (+/− 0.012) 0.681 (+/− 0.014) 0.643 (+/− 0.018)

SVM 0.627 (+/− 0.011) 0.647 (+/− 0.012) 0.669 (+/− 0.011) 0.614 (+/− 0.010) 0.683 (+/− 0.021) 0.571 (+/− 0.018)

CNB 0.588 (+/− 0.010) 0.553 (+/− 0.011) 0.636 (+/− 0.010) 0.605 (+/− 0.013) 0.510 (+/− 0.014) 0.666 (+/− 0.018)

KNC 0.627 (+/− 0.011) 0.632 (+/− 0.012) 0.670 (+/− 0.010) 0.623 (+/− 0.011) 0.642 (+/− 0.015) 0.611 (+/− 0.014)

LRC 0.629 (+/− 0.010) 0.634 (+/− 0.012) 0.668 (+/− 0.011) 0.627 (+/− 0.010) 0.641 (+/− 0.021) 0.618 (+/− 0.019)

MLP 0.641 (+/− 0.014) 0.640 (+/− 0.015) 0.688 (+/− 0.014) 0.641 (+/− 0.017) 0.639 (+/− 0.025) 0.642 (+/− 0.028)

XGB 0.654 (+/− 0.011) 0.654 (+/− 0.014) 0.712 (+/− 0.011) 0.655 (+/− 0.010) 0.653 (+/− 0.021) 0.656 (+/− 0.013)

Table 9.  Results for Non-permanent Tinnitus Users (downsampled), including standard deviation. Decision 
Tree (DT), Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), 
k-nearest neighbors (KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient 
Boosting (XGB) Highest values are in bold.

Non-permanent Tinnitus Users down

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.640 (+/− 0.009) 0.648 (+/− 0.012) 0.641 (+/− 0.012) 0.634 (+/− 0.009) 0.663 (+/− 0.023) 0.618 (+/− 0.020)

RFC 0.665 (+/− 0.011) 0.670 (+/− 0.012) 0.733 (+/− 0.013) 0.661 (+/− 0.011) 0.678 (+/− 0.017) 0.652 (+/− 0.015)

SVM 0.608 (+/− 0.010) 0.605 (+/− 0.009) 0.640 (+/− 0.012) 0.610 (+/− 0.012) 0.599 (+/− 0.008) 0.617 (+/− 0.017)

CNB 0.569 (+/− 0.012) 0.542 (+/− 0.011) 0.609 (+/− 0.014) 0.579 (+/− 0.014) 0.510 (+/− 0.010) 0.629 (+/− 0.018)

KNC 0.642 (+/− 0.011) 0.643 (+/− 0.010) 0.690 (+/− 0.011) 0.641 (+/− 0.013) 0.646 (+/− 0.013) 0.638 (+/− 0.020)

LRC 0.593 (+/− 0.010) 0.577 (+/− 0.010) 0.618 (+/− 0.013) 0.600 (+/− 0.011) 0.556 (+/− 0.011) 0.629 (+/− 0.014)

MLP 0.637 (+/− 0.008) 0.630 (+/− 0.013) 0.694 (+/− 0.010) 0.643 (+/− 0.015) 0.620 (+/− 0.033) 0.654 (+/− 0.038)

XGB 0.665 (+/− 0.012) 0.657 (+/− 0.015) 0.723 (+/− 0.012) 0.674 (+/− 0.012) 0.641 (+/− 0.022) 0.689 (+/− 0.015)
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However, it is noticeable that the Power Users can only achieve a small improvement in the prediction, 
especially in the case of the downsampling scenario with 77.7%. Comparing this with the best result of all users 
(66.8%), the difference is not that big. On the one hand, this is unfortunate, because one could have expected a 
better prediction here, since these users use the system more and probably give honest answers over time. On 
the other hand, the result is very good, at least with respect to the research questions of this paper, namely that 
the totality of all measurements already gives a representative picture. What provides another very good state-
ment is the fact that in the case of downsampling and Power Users the best possible result was obtained. Again, 
no data was imputed in the case of downsampling, so obviously the pure data from users who frequently use the 
platform is more meaningful at the rating level, which supports the basic tendency of the positive prediction of 
question 1 of the EMA-D questionnaire.

Across all scenarios and data sets, the classifications score results above the baseline regarding sensitivity. In 
other words, they are able to predict cases of tinnitus. Regarding specificity, some classifications (i.e., DT, KNC, 
MLP, RFC, and XGB) yield results below the baseline for the balanced scenario, indicating that the prediction 
of cases in which no tinnitus was reported might not be ideal. This is, however, not the case for the scenario 
downsampling and may indicate that the downsampling approach should be preferred in case the prediction of 
no tinnitus cases is relevant.

It can also be seen that the two strategies balanced and downsampling produce little difference, at least as far 
as the prediction rates are concerned. The differences in the classifications related to balanced and downsam-
pling are partly considerable. For example, in the case of balanced, the MLP classifier performs best on average, 
while in the case of downsampling, the RFC and XGB classifiers perform better. Since both are tree methods, it 
is also possible that values are eliminated in downsampling or added in balanced that influence the respective 
tree method. This shows nicely how the individual methods react to data changes. Since the basic tendency of 
the predictions remains the same, it can be assumed that the different performance of the classifiers is due to the 
balanced and downsampling strategies and has nothing to do with medical significance. Precisely for the reasons 
mentioned above, we consider the work as a further contribution in the field of mHealth / Machine Learning / 
Tinnitus as well as mHealth / Machine Learning in general. When classifying at assessment level, ML-methods 
seem to perform similarly on tabular mHealth data, again independent of how the dataset is processed in terms of 
balance as shown in this work. One could also speak here of a comprehensive testing of the mentioned strategies 
for the assessment level. Since the dependent questions in the EMA-D questionnaire were also excluded, it can 
be assumed that with more data, tinnitus perception can be predicted even better on the basis of the independent 

Table 10.  Results for Rather absent Tinnitus Users (downsampled), including standard deviation. Decision 
Tree (DT), Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), 
k-nearest neighbors (KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient 
Boosting (XGB) Highest values are in bold.

Rather absent Tinnitus Users down

Accuracy F1-score AUC Precision Sensitivity Specificity

DT 0.657 (+/− 0.006) 0.661 (+/− 0.008) 0.662 (+/− 0.007) 0.653 (+/− 0.008) 0.669 (+/− 0.017) 0.644 (+/− 0.017)

RFC 0.683 (+/− 0.010) 0.687 (+/− 0.011) 0.753 (+/− 0.012) 0.678 (+/− 0.011) 0.697 (+/− 0.015) 0.669 (+/− 0.015)

SVM 0.620 (+/− 0.012) 0.590 (+/− 0.013) 0.659 (+/− 0.013) 0.641 (+/− 0.016) 0.547 (+/− 0.014) 0.693 (+/− 0.018)

CNB 0.595 (+/− 0.010) 0.578 (+/− 0.012) 0.616 (+/− 0.012) 0.603 (+/− 0.011) 0.556 (+/− 0.016) 0.635 (+/− 0.017)

KNC 0.651 (+/− 0.010) 0.652 (+/− 0.010) 0.703 (+/− 0.011) 0.650 (+/− 0.011) 0.655 (+/− 0.012) 0.647 (+/− 0.015)

LRC 0.601 (+/− 0.012) 0.605 (+/− 0.013) 0.632 (+/− 0.016) 0.600 (+/− 0.012) 0.610 (+/− 0.016) 0.592 (+/− 0.015)

MLP 0.648 (+/− 0.009) 0.633 (+/− 0.017) 0.704 (+/− 0.011) 0.663 (+/− 0.018) 0.607 (+/− 0.041) 0.690 (+/− 0.043)

XGB 0.672 (+/− 0.010) 0.664 (+/− 0.011) 0.739 (+/− 0.011) 0.681 (+/− 0.010) 0.649 (+/− 0.013) 0.696 (+/− 0.010)

Table 11.  Questions of the EMA-D questionnaire in the TYT smartphone application, along with their scale 
and the dimension that is  measured3,5. BS: Binary Scale, VAS: Visual Analogue Scale.

# Question Scale Dimension

1 Did you perceive the tinnitus right now? BS Perception

2 How loud is the tinnitus right now? VAS Loudness

3 How stressful is the tinnitus right now? VAS Distress

4 How is your mood right now? VAS Mood

5 How is your arousal right now? VAS Arousal

6 Do you feel stressed right now? VAS Stress

7 How much did you concentrate on the thingsyou are doing right now? VAS Concentration

8 Do you feel<reported worst symptom> right now? BS Worst symptom
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variables used in our EMA-D questionnaire: mood, arousal, stress, concentration. Therefore, a first indicator 
can be given that the independent variables are able to predict the momentary tinnitus on the assessment level.

In terms of clinical relevance, the outcome of this paper has enabled two main contributions. First, we want 
to better understand and learn how smartphone apps need to be developed to best support tinnitus patients in 
particular and patients in general, including in daily data collection. Only in this way, will we be able to collect 
data in the future that will give us further insight into tinnitus. Identifying subgroups is highly relevant clinically, 
as there is no general treatment method and thus the hope is to develop specific treatments for subgroups. Find-
ings like this take us further to better address subgroups. For example, as an outcome, we need to identify early on 
what are power users and what are normal users to incentivize accordingly. Second, the realization has matured 
that, data-driven, the various alternatives (classifiers, data preparation by the imbalances) related to subgroups do 
not have as great an impact as might have been suspected. Nevertheless, we will need more power users, because 
they promise us the deeper results in the future. Thus, it is imperative to find motivational mechanisms that do 
not have a detrimental effect on the other side (that data are collected only due to the motivational mechanism).

The work has some limitations, which must be considered carefully. First, the prediction is performed on 
the basis of the assessment level. In other work, it could be shown what a difference this can make with respect 
to the user  level17,22. Nevertheless, we are currently comparing the user and assessment level with the various 
options in a larger study. A further bias may arise from the user interface elements of the independent questions. 
Sliders bear the risk of the anchor  effect23 and can thus distort a  result15, since the independent questions are all 
slider questions, this has to be taken into account. Furthermore, a selection bias can be assumed, even though 
many things were compared in Table 12. Since TYT is an open observational study, i.e., we do not hand out a 
clear study protocol, the participating users can very much decide for themselves how the app is used (i.e., the 
number, daytime, pattern (random during the day / always at the same time) can be defined individually), so 
a selection bias is to be  expected24. Additionally, we do not obtain information about the number of prompts 
a user is exposed to. Consequently, some individuals may respond to all prompts they are exposed to, whereas 
others may only respond to few of the EMA prompts. Therefore, we cannot examine how the number of prompts 
completed is related to the number of prompts to which users were exposed. However, due to the number of 
EMA responses, it is to be assumed that power users respond more frequently to prompts compared to normal 
users. Since Android and iOS never look 100% the same in terms of user interface, information bias must also 
be assumed, since TYT is available on both platforms. In principle, the two strategies balanced and downsam-
pling can also be seen as bias, but since the results do not vary greatly, this bias can be seen as smaller. However, 
the fact that the users answered very strongly in the two classes whether tinnitus is perceived or not, this basic 
circumstance must be seen as bias. We do not know whether the classifiers could distinguishably see enough 
perceived and not perceived tinnitus states to an individual. Another limitation arises from the different user 
groups. In this case both tests for dependent as well as independent samples are not 100% correct, because there 
are partial dependencies and overlaps between the user groups. However, to ensure comparability between the 
user groups, we conducted tests for independent samples.

We view the analyses performed as another indicator that machine learning in mHealth data presents many 
challenges that must be approached with caution. From the data collection side (information bias, e.g., slider or 
Android vs. iOS) to the nature of the mHealth study (selection bias, e.g., for what reasons do I answer), there 
is much to consider that is not related to the actual machine learning. There is also the issue of assessment and 
user level, and how to validate to get more robust results. In this tension, it seems interesting for TYT to note 
that at the assessment level, the different strategies followed do not have as much impact as one might have 

Table 12.  Statistical comparison of the five user groups. χ2 tests for handedness 
( χ2(8,N = 1654) = 0.91, p = 1.0 ) and family history of tinnitus complaints ( χ2((4,N = 1650) = 0.16, p = 1.0 ) 
suggest that there are no significant differences between the groups. The same result appears for the age 
distributions.

n n_users

All Power Normal Non-permanent Rather absent

518 22 496 361 280

Age

count 500 21 480 352 273

mean 1969.72 1964.62 1969.9 1970.93 1971.35

std 13.57 10.39 13.67 13.98 13.78

min 1935 1940 1935 1935 1935

25% 1960 1958 1960 1961 1962

50% 1969 1966 1969 1970 1971

75% 1979 1974 1979.25 1980 1981

max 2019 1981 2019 2019 2018

Handedness

Right 76.30% 72.70% 76.50% 75.90% 75.70%

Both Sides 12.90% 13.60% 13.10% 12.30% 12.30%

Left 10.80% 13.60% 10.40% 11.80% 12.00%

Family history of tinnitus complaints
No 76.40% 77.30% 76.40% 75.60% 76.70%

Yes 23.60% 22.70% 23.60% 24.40% 23.30%
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suspected. It can be concluded that the as-is data with good cross-validation leads to meaningful results, at least 
in the sense of what the data basically give. The next point that should definitely be explored is how user and 
assessment levels differ.

Materials and methods
Overview. Data source. The TYT mHealth platform has been in operation since 2014 and has been con-
tinuously evolved since then. The platform consists of a registration and information website (https:// www. track 
yourt innit us. org/), a native mobile application available for both iOS and Android, and a central backend that 
stores the collected data in a relational database. The mobile applications (iOS, Android) track users’ individual 
tinnitus and tinnitus-related variables by asking them to complete EMA assessment questionnaires at randomly 
selected times of day (so-called EMA-D questionnaires). The structure of the EMA questionnaire is shown in 
Table 11. The exact procedure of the TYT application has been described in previous  work4,5.

Tinnitus is the perception of an internal sound in the ears with no corresponding external sound. Symptoms 
have been found to be subjective and to vary over time. Therefore, TYT was developed to assess this individual 
variability of symptoms based on EMA and  MCS3. TYT uses self-report questionnaires as a data collection tool to 
collect data on the user’s individual tinnitus. The collected responses, in turn, are stored in the central relational 
database along with a set of metadata (e.g., timestamp and user agent). Details of the TYT dataset as well as the 
underlying database structure have also been described in previous  work24.

User statistics. To ensure comparability between user groups, we examined important clinical base-
line characteristics of age distribution, handedness, and family history of tinnitus. For age distribution, 
there were no statistically significant differences between group means, as revealed by a one-way ANOVA 
( F(4, 1621) = 1.81, p = 0.12 ). For handedness, a χ2-independence test showed that there was no significant 
relationship between user groups, χ2(8,N = 1654) = 0.91, p = 1.0 . We obtained the same result for tinnitus 
family history, χ2((4,N = 1650) = 0.16, p = 1.0 . The different degrees of freedom resulted from missing values 
for some users. A summary of baseline characteristics for the five user groups is provided in Table 12.

Data preparation. To answer research questions 1–3 and understand the machine learning analysis, Fig. 3 
illustrates the steps taken during our data preparation. For the machine learning analysis, we considered 5 data-
sets, each corresponding to a research question. According to question 1, we analyzed 45,935 answers to the 
harmonized EMA-D questionnaire from all users (DS1). To further validate the results of the machine learning 
analysis, and to obtain different insights into the presence or absence of tinnitus, and also to answer research 
questions 2 & 3, we considered four additional subsets. Power Users (DS2) are users with 400 or more EMA ques-
tionnaire answers, i.e., the users in the top 5% quantile regarding the number of completed EMA questionnaires. 
They use the platform excessively and we assume that their subset therefore contains insightful knowledge, 
forming the first sample to answer RQ2. Normal Users (DS3) have completed less than 400 EMA questionnaires. 
Consequently, they correspond to the other 95% of users forming the second sample for RQ2. Since they are 
the opposite of Power Users, we hope to find new correlations in this subset that are unrelated to the number 
of questionnaires answered. While some users reported either always or never having tinnitus (e.g., all of their 
EMA questionnaires contain either only 1 or 0 for question 1), we considered this scenario with the remaining 
two subsets. Users with non-permanent tinnitus (DS4) reported both the presence and absence of tinnitus and 
at least once, whereas users with rather absent tinnitus (DS5) reported the absence of tinnitus at least three times 
and the presence at least once in all questionnaires they answered. These two datasets refer to RQ3.

This leads us to 5 different sub-datasets (DS) of our dataset: 

DS1:  All Users

  This dataset contains all answered EMA questionnaires of users with at least 11 filled out question-
naires and no missing values. It contains 45,935 filled-out questionnaires from 518 different users.

DS2:  Power Users

  This data set contains all answered EMA questionnaires of users with 400 or more filled-out question-
naires. It contains 14,743 questionnaire answers from 22 different users.

DS3:  Normal Users

  This data set consists of 31,192 answered EMA questionnaires from 496 users with less than 400 
filled-out questionnaires.

DS4:  Non-permanent Tinnitus Users

  This data set represents all users that reported both presence and absence of tinnitus at least once. 
This leads to 34,998 questionnaire answers from 361 different users.

DS5:  Rather absent Tinnitus Users

https://www.trackyourtinnitus.org/
https://www.trackyourtinnitus.org/
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  As a subset of DS4, this data set corresponds to all users that reported the absence of tinnitus at least 
3 times and the presence at least once. 28,964 questionnaires from 280 users are part of this data set.

 
Of course, there are also other possible thresholds than 400 questionnaires per user to distinguish between 

Power Users and Normal Users (see RQ2). Alternatives can be either more restrictive, such as 600 questionnaires 
per user or less restrictive such as 200 questionnaires. However, the setting of this threshold affects the size of 
the underlying data set both in terms of number of users and questionnaires (see Table 13). On the one hand, 
setting the threshold to 200 questionnaires per Power User results in 51 users (9.85%) and 22745 (49.52%) ques-
tionnaires. Using the top ∼ 10% of users seems to be a solid estimate; however, it would also result in ∼ 50% of 
questionnaires. On the other hand, setting the threshold to 600 questionnaires per Power User would result in 
9 users (1.74%) and 8406 (18.30%) questionnaires. In this scenario, the proportion of users would be too low, 
and considering only 18.30% of questionnaires seems too restrictive. Therefore, we set the threshold to 400, 
resulting in 4.25% of users and 32.1% of questionnaires. The threshold of 400 is close to the 95th percentile and 
also includes  30% of all questionnaires. Consequently, all values are a good average between 200 and 600. In 
addition, Fig. 2 shows the number of questionnaires per user. A separation at 400 questionnaires can be seen, 
which also supports the decision.

Machine learning analysis. We applied eight different machine learning approaches with the goal of pre-
dicting the presence or absence of tinnitus given an assessment in the context of the EMA-D data. In our data-
set, this corresponds to the answer to question 1. The following eight approaches were applied to the different 
datasets: a Decision Tree (DT), a Random Forest Classifier (RFC), a Support Vector Machine (SVM), a comple-
mentary Naive Bayes classifier (CNB), a K-nearest Neighbors Classifier (KNC), a Logistic Regression Classifier 
(LRC), a Multi-layer Perceptron Classifier (MLP), and an Extreme Gradient Boosting Classifier (XGB). These 
approaches were selected because they represent a variety of different classification approaches. It should be 
noted that all machine learning approaches were applied at the assessment level of the EMA-D questionnaires. In 
other words, a user’s score may be included in both the training and validation datasets, which could introduce 
bias. An alternative approach would be to separate users included in either the training or validation dataset. 
However, if users are only part of the training or validation dataset, it is important to ensure that there are no 
user characteristics between the two groups of users that could lead to bias. The TYT application follows an 
EMA-driven approach where random, voluntary, and dynamic assessments are the main goal. As a result, it is 
difficult to identify sufficiently large groups of users with similar rating characteristics. Other possibilities in this 
context are stratified cross  validation25, external  validation26 or  LOSO27. In further experiments, these methods 

Table 13.  Additional possible thresholds for Power User.

#Questionnaires % #User %

400
Power users 14743 32.10 22 4.25

Normal users 31192 67.90 496 95.75

200
Power users 22745 49.52 51 9.85

Normal users 23190 50.48 467 90.15

600
Power users 8406 18.30 9 1.74

Normal users 37529 81.70 509 98.26

Figure 2.  Number of EMA-D questionnaires per unique user. Users with less than 11 submitted questionnaires 
are omitted. Normal Users submitted 11–399 questionnaires and Power Users 400 or more questionnaires.
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will be applied to TYT data and also compared with other mHealth data sources. Beyond these considerations, 
the dataset was prepared as follows and before training the classifiers: In the case of downsampling, as many 
entries were randomly eliminated from the majority class (i.e., entries that report tinnitus), so that there were the 
same number of entries as in the minority class (i.e., entries that do not report tinnitus). This approach is called 
downsampling. The concrete steps for the downsampling approach are depicted in Fig. 4. Another approach, 
which we call balanced, adapts the weights of classes inversely proportional to class frequencies in the input data, 
if possible. This was the case for DT, RFC, SVM, XGB, and LR. Remaining approaches do not allow for weight 
adjustments and were therefore used with default specifications.

Finally, it should be mentioned here once again that the classifications were carried out separately on the 
basis of the five user groups shown above. The groups relativize the assessment-level bias, but in order to be 
comparable, all 5 groups were calculated at the assessment level.

Furthermore, for the KNC, we calculated the mean error for all k values between 1 and 500 and selected the 
k value with the lowest mean error for each data set. In addition, there is a intuitive relationship between ques-
tion 1, question 2, and question 3 (see Table 11). Question 8 is dynamic in the sense that the question may vary 
from user to user depending on the worst symptom collected in a previous questionnaire. Therefore, including 
questions 2, 3, and 8 in models predicting question 1 would introduce bias. To avoid this bias, we exclude ques-
tions 2, 3, and 8 from the machine learning analysis. In short, we predict the answer to question 1 based solely 
on the answers to questions 4, 5, 6, and 7.

To further validate our results, each reported result is based on a 10-fold cross-validation. In this process, 
the entire data set was divided into 10 equal parts. Nine of the ten parts were used to train the model, while the 
remaining part was used for testing and optimization. This is then repeated 10 times, whereas each repetition 

Figure 3.  Data Preparation process.
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uses a different part of the data set for testing and the remaining 9 parts for training. To address the imbalance 
in our data, we split the data using a stratified strategy. This ensures that both classes are correctly represented 
in both the training and testing sets. For classifiers that support this option, we also adjusted the weights of the 
two classes to account for the imbalance. By adjusting the weights to be inversely proportional to the class fre-
quency, we ensure that the classifiers do not ignore any classes. The whole procedure was repeated 10 times and 
the averages were calculated over all 10 runs. To corroborate our results, we applied the above procedure to all 
5 data sets shown in Fig. 3, and on each of the eight machine learning approaches.

Six different metrics are used to evaluate the results: Accuracy, the weighted F1 score, the area under the 
Receiver Operating Characteristic Curve (AUC), Precision, Sensitivity, and Specificity. All analyses were per-
formed in the following environment: a laptop with an i7 core (2.60 GHz) and Python scikit-Learn.

Ethics approval. The study was approved by the Ethics Committee of the University Clinic of Regensburg 
(ethical approval No. 15-101-0204).

Informed Consent. All users read and approved the informed consent before participating in the study.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to privacy reasons.
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Figure 4.  Downsampling process.
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