
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8991  | https://doi.org/10.1038/s41598-023-36159-4

www.nature.com/scientificreports

Quantifiable peptide library bridges 
the gap for proteomics based 
biomarker discovery and validation 
on breast cancer
Sung‑Soo Kim 1,2,6, HyeonSeok Shin 2,6, Kyung‑Geun Ahn 1, Young‑Min Park 1, Min‑Chul Kwon 1, 
Jae‑Min Lim 1, Eun‑Kyung Oh 1, Yumi Kim 3, Seung‑Man Han 4 & Dong‑Young Noh 3,4,5*

Mass spectrometry (MS) based proteomics is widely used for biomarker discovery. However, often, 
most biomarker candidates from discovery are discarded during the validation processes. Such 
discrepancies between biomarker discovery and validation are caused by several factors, mainly due to 
the differences in analytical methodology and experimental conditions. Here, we generated a peptide 
library which allows discovery of biomarkers in the equal settings as the validation process, thereby 
making the transition from discovery to validation more robust and efficient. The peptide library 
initiated with a list of 3393 proteins detectable in the blood from public databases. For each protein, 
surrogate peptides favorable for detection in mass spectrometry was selected and synthesized. A 
total of 4683 synthesized peptides were spiked into neat serum and plasma samples to check their 
quantifiability in a 10 min liquid chromatography‑MS/MS run time. This led to the PepQuant library, 
which is composed of 852 quantifiable peptides that cover 452 human blood proteins. Using the 
PepQuant library, we discovered 30 candidate biomarkers for breast cancer. Among the 30 candidates, 
nine biomarkers, FN1, VWF, PRG4, MMP9, CLU, PRDX6, PPBP, APOC1, and CHL1 were validated. 
By combining the quantification values of these markers, we generated a machine learning model 
predicting breast cancer, showing an average area under the curve of 0.9105 for the receiver operating 
characteristic curve.

Blood proteins are valuable analytes for the diagnosis and prognosis of various  diseases1. In particular, the 
application of proteomic platforms to blood proteins has received increasing attention from both academics 
and clinical  industries2. With the technological development of mass spectrometry and data analysis methods, 
MS-based proteomics platforms have gained more depth and quantitative strength to identify and quantify 
 proteins3. Accordingly, studies have employed tandem mass tag (TMT)-based methods, label-free quantification 
methods, and data-independent acquisition (DIA) methods to quantify large number of proteins from complex 
samples to identify differentially expressed proteins and isoforms as potential candidates for novel  biomarkers3–5. 
However, only a small percentage of the candidate biomarkers was identified as effective during the validation 
 phase1. This was also observed in the number of biomarkers approved and used clinically. Compared to the 
over 4,300 plasma proteins identified, only about 100 biomarkers have been approved or cleared by the FDA, 
despite many discovery  studies2,6,7. The discrepancy between the discovery and validation phases may be due to 
differences in the sample size, type, and number, preparation protocol, and  equipment1,8. Among the processes 
between the discovery and validation phases, sample size, type, and number can be better controlled at the 
experimental design stage. However, the differences in preparation methods for different equipment cannot be 
solved by experimental design. For a typical discovery process, a non-targeted shot-gun proteomic approach 
using high-resolution mass spectrometry with abundant protein depletion, prefractionation, and a long gradient 
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running time (1–3 h) is used to maximize the number of profiled proteins. In contrast, the validation pipeline 
is based on a targeted approach on neat serum or plasma via liquid chromatography-triple quadrupole tandem 
MS (LC–MS/MS), which is more focused on quantitative  measurement9. The differences between the discovery 
and validation processes increase time and costs for clinically usable biomarker discovery.

To overcome this problem, previous studies suggested using protocols allowing reproducible analysis in dif-
ferent types of equipment, such as nanoflow and microflow  LC9,10. These studies focused more on generating a 
suitable biomarker candidate within a typical discovery setup using an untargeted approach. This may shorten 
the time of the discovery phase; however, it does not reduce the gap between discovery and validation.

To bridge the gap between discovery and validation, we generated a PepQuant library, which enables the 
discovery of biomarkers in the setting of a validation process. To construct this library, a list of peptides was first 
generated and selected from the proteins known to exist or is secreted to blood from public databases and papers. 
Peptides that are advantageous to be detected by MS/MS were selected, chemically synthesized, and quantified in 
a 10 min gradient with multiple reaction monitoring (MRM) mode for neat (high-abundant protein undepleted) 
serum or plasma. This library is thus composed of peptides from the blood protein, that are detectable in a very 
short gradient time with targeted MRM mode. We next applied the PepQuant library for breast cancer biomarker 
discovery and validation which resulted in nine final biomarkers. A machine learning (ML) algorithm trained 
with the identified biomarker candidates discriminated between breast cancer patients and healthy controls 
with a mean area under the curve (AUC) for the receiver operating characteristic curve (ROC) value of 0.9105.

Results
Library generation. To generate the PepQuant library, we first selected proteins likely to exist in or be 
secreted into the blood using the human secretome database and Blood  Atlas11,12. We also added 235 disease-
related proteins, resulting in a total of 3393 (Fig. 1a). We created a list of tryptic peptides for each protein from 
this list, wherein peptide length, hydrophobicity, modifications, and charge were used for selection (Fig. 1b). 
The selection criteria identified peptides more likely to be detectable in the blood under the harsh condition of a 
short gradient time and in neat condition, that is serum or plasma used without depletion of the high-abundant 
proteins. The initial library candidates consisted of 4683 peptides covering 3393 proteins.

To find quantifiable peptides among the 4683 peptide candidates, we first prepared a mixture of 40 breast, 20 
pancreatic, 20 thyroid, 20 ovarian, 18 lung, and 20 colorectal cancer samples, along with 30 disease-free samples 
collected from different hospitals to increase the blood sample diversity. We next analyzed the MS chromatogram 
for each peptide candidate, by comparing the retention time (RT) of precursor ion and the top three product 
y-ion peaks between the standard synthetic peptide and the endogenous peptide in the mixture. Among the 
4683 peptides, 852 peptides covering 452 proteins were quantifiable with a signal to noise ratio (SNR) above 3, 
and 95.60% had an SNR higher than 10 (Supplementary Data 1). We also found that approximately 75.22% of 
the proteins were quantifiable in both plasma and serum, indicating that the library can be applied to for both 
serum and plasma (Fig. 1c).

Library characteristics. The PepQuant library was designed to contain peptides 6–16 amino acids long, 
which are advantageous for detection during LC–MS/MS runs (Fig. 2a,b)13. Only 12 library peptides were over 
16 or under six amino acids long, as other peptides within the same protein either did not exist or were not 
detected in the MRM runs. We analyzed the peak intensities in both plasma and serum (Fig. 2c,d) to confirm 
the dynamic range of the selected peptides, which was approximately  103–108 nm in intensity (Fig. 2c,d). We 

Figure 1.  Pep-Quant library generation. (a) Schematic diagram showing process of Pep-Quant library 
generation. (b) Schematic diagram showing process of in silico peptide candidate generation from list of 
proteins in blood. (c) A Venn diagram showing number of proteins quantified using Pep-Quant library 
generation from serum and plasma.
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then compared the intensity values of each peptide with the known concentration of the protein, which did not 
show a high correlation (Fig. 2e). However, this was expected because the concentration of each protein in the 
study mixture differed from that in the Blood Atlas. Furthermore, such a difference can occur due to different 
proteoforms, post-translational modifications, and  isoforms14.

To verify the coverage of the PepQuant library, we compared the proteins to those identified via the non-
targeted approach by the data-independent acquisition (DIA) method using the same concocted samples used 
to generate the PepQuant library. Among the 850–900 identified proteins, 271 were quantifiable by DIA analy-
sis; among which, 186 proteins were also found in the PepQuant library (Fig. 2f). These data suggest that the 
PepQuant library covers a similar number of proteins in the human blood, compared to the higher resolution 
equipment (orbitrap), which uses the DIA method. Next, we compared the proteins in the PepQuant library to 
those identified by Geyer et al.15, where higher-resolution equipment was used to quantify neat blood samples. 
The proteins in the PepQuant library and profiling were also similar to those found by Geyer et al. despite the 
difference in sample, methodology, and  equipment15. These results indicate that the PepQuant library enables 
the quantification of peptides in the blood with similar level of performance as the higher-resolution equipment.

Next, we investigated the functional enrichment of the PepQuant library using gene ontology (GO). The 
PepQuant library proteins were enriched for the secretome and extracellular regions, as shown by the clustered 
networks representing vesicles, granules, lipoproteins, and membranes (Fig. 2g and Supplementary Fig. S1). We 
did not find enrichment for any single cancer or disease type, which was expected because the proteins in the 
PepQuant library aim to detect as many quantifiable proteins in the blood as possible without bias to a specific 
disease.

PepQuant‑library application for breast cancer detection. To confirm that the PepQuant library 
enabled rapid biomarker discovery, we analyzed the library against 50 breast cancer and 50 normal serum sam-
ples. This resulted in 30 peptides showing at least a 1.20-fold change with a P-value less than 0.05 (Fig. 3 and 
Supplementary Table S1). We then validated the expression levels of the 30 candidates using LC–MS/MS with a 
separate and larger scale of another 96 breast cancer and 95 normal samples. Sixteen biomarkers reproduced the 
fold change cutoffs on a larger scale and thus were subjected to further tests (Supplementary Table S2). To test the 
usability of the peptides as biomarkers in clinical tests, we proceeded to analytical performance evaluation, test-

Figure 2.  Pep-Quant library characteristics. Bar graph showing distribution of (a) peptide length and (b) 
peptide charge. Dot plots showing intensity of peptides in abundance rank for (c) serum and (d) plasma. (e) 
Dot plot showing comparison between protein concentration from blood atlas, and their reciprocal intensity 
in MRM mode. (f) Venn diagram showing number of proteins commonly found in Pep-Quant library, DIA 
profile run, and DDA run from Geyer et al.17. (g) GO functional enrichment network of Pep-Quant library that 
satisfy a hypergeometric test with false discovery rate correction of P < 0.05. The darker blue color indicates 
higher enrichment of proteins to function. Only major function or cell components are shown by acronyms; full 
GO names are shown in Supplementary Fig S1. CY cytoplasmic, MEM membrane, Lum lumen, VS vesicle, GR 
granule, PL plasma, LP lipoprotein, ET extracellular.
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ing their precision, stability, and reproducibility under different conditions. Among the 16 peptide candidates, 
nine showed reproducible quantification results for all tests performed (Supplementary Table S3). The final set 
of selected biomarkers included FN1, VWF, PRG4, MMP9, CLU, PRDX6, PPBP, CHL1, and APOC1 (Table 1).

Breast cancer prediction. We next attempted to generate a ML model for breast cancer prediction using 
the nine discovered biomarkers. The samples used for training comprised 187 healthy controls and 215 breast 
cancer samples. A total of 402 samples were used to train several machine learning models; 70% of the pooled 
samples were used for training and 30% were put aside to be used as test data. To avoid bias, samples were meas-
ured in random shuffles with two technical replicates (Supplementary Fig. S2). All algorithms were trained and 
evaluated five times using the hold-out method (Supplementary Fig. S3). Regardless of the type of ML algorithm, 
the average AUC value of the prediction exceeded 0.88, higher than the accuracy of molecular-based diagnostic 
tests of CA15-3 and carcinoembryonic  antigen16. There was no significant difference in performance between 
the ML models, indicating that the biomarkers adequately discriminated between the breast cancer and healthy 
control samples. Among the ML models, the deep learning model showed a slightly higher performance, with a 
mean AUC of 0.9000 (Supplementary Fig. S3).

We further developed the deep learning model by adding 98 other cancer samples to the original training 
and test data (Supplementary Table S4). The mean AUC value of the trained model for breast cancer detection 
was 0.9105, similar to that of the model trained without other cancer data (Fig. 4a). These data suggest that the 
trained model distinguishes between normal controls and breast cancer samples from data mixed with other 
cancer samples. To further evaluate the model, we plotted the distribution of the predicted probability of the 
test data for different stages of breast cancer. The model predicted the early stages of breast cancer in a similar 

Figure 3.  PepQuant library analysis of breast cancer samples. Heatmap showing z-score and fold change values 
of 30 peptides showing at least 1.2-fold change with a P-value of less than 0.05 for Wilcoxon rank sum test for 50 
breast cancer and 50 normal samples. The first three amino acid sequences of each peptide are shown.

Table 1.  The final validated biomarker-candidates.

Gene Protein Peptide sequence

APOC1 Apolipoprotein C1 TPDVSSALDK

CHL1 Neural cell adhesion molecule L1 like VIAVNEVGR

MMP9 Matrix metalloproteinase-9 AVIDDAFAR

FN1 Fibronectin STTPDITGYR 

VWF Von Willebrand factor ILAGPAGDSNVVK

PRDX6 Peroxiredoxin-6 LSILYPATTGR 

PPBP Pro-platelet basic protein TTSGIHPK

PRG4 Proteoglycan 4 AIGPSQTHTIR

CLU Clusterin TLLSNLEEAK
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pattern as the later stages (Fig. 4b). Overall, these data indicate that the discovered biomarkers and trained model 
showed high performance in distinguishing between breast cancer and normal control samples.

Discussion
The PepQuant-library was designed to boost the validation process and increase the number of validated bio-
marker candidates from discovery. This was achieved by generating a library composed of peptides that have 
already been confirmed to be quantifiable from the blood in a neat serum or plasma in a 10 min run in MRM 
mode. The PepQuant library thus allows the process of biomarker discovery in the identical experimental setting 
as the biomarker validation which significantly reduces the time and cost required to validate each biomarker 
candidates from discovery. In a typical biomarker discovery and validation study, the number of discovered 
biomarker candidates may reach up to 50–100. To validate these candidates, first, it would require the synthesis 
of peptide standards and method optimization for at least 50–100 candidates which may take up to six months 
(Fig. 5a)11. Second, the detectable and quantifiable peptides would need to be quantified again in a larger cohort 
to confirm reproducibility. However, the PepQuant library allows the skipping of the first step as the method 
optimization is unrequired and allows to jump directly to the reproducibility confirm step (Fig. 5b). Moreover, 
the list of peptides in the PepQuant library can benefit future research by providing a list of peptides that are 
detectable in a validation condition (Fig. 5c).

In this study, nine potential breast cancer biomarkers were discovered using the PepQuant library. All nine 
biomarker candidates  (FN117,  VWF18,  PRG419,  APOC120,  CHL120,  CLU21,  PRDX622,  PPBP23, and  MMP924,25) 
are known to be associated to tumor cells and their micro-environmental changes. MMP9 is a metalloproteinase 

Figure 4.  Breast cancer prediction accuracy. (a) Area under curve (AUC) receiver operating characteristic 
(ROC) graph for deep learning. (b) Box plot showing predicted probability distribution of breast cancer samples 
for normal, other cancer and breast cancer for different stages.

Figure 5.  Schematic diagram showing process of discovery and validation of biomarkers for (a) typical 
process and (b) using PepQuant library. (c) Schematic diagram showing the flow of candidate biomarkers from 
experiments and public data filtered by PepQuant library.
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known to degrade extracellular matrix proteins, which is also known to be a step for cancer cell invasion. It has 
been reported to be upregulated in tumor cells and facilitate EMT (epithelial-mesenchymal transition) or tumor 
cell migration in breast cancer  progression26,27. The overexpression of MMP9 was also found in HER2-positive, 
Triple negative breast cancer and also in metastatic lymph  nodes28. CLU is a glycoprotein found abundantly 
in extracellular fluid. It has a chaperone-like properties and plays part in diverse cellular processes such as cell 
death, inflammation, and tissue remodeling. A study on was conducted on the secretory CLU by overexpression 
on MCF-7 cell  line29. The results from the overexpression showed that tumor cells growth rapidly increased and 
metastasized to the lungs, suggesting significant role of CLU is tumor  growth29. The role of VWF, PRG4, and 
PPBP on breast cancer is predicted to be on tumor progression and metastasis. While these three proteins have 
different functions, all three proteins interact with integrins, which leads to the activation of PI3K/AKT and 
MAPK signaling pathways that induce cell  proliferation18,19,23,30–32. Alternatively, PPBP, also known as Chemokine 
(C-X-C motif) ligand 7 acts on the FAK activation and matrix metalloproteinase promoting migration and 
 invasion23. Another study also showed that recombinant PRG4 expression led to the tumor suppression by inhib-
iting transforming growth factor beta (TGFβ) which led to the decreased hyaluronan (HA)-cell surface cluster 
of differentiation 44 (CD44)33. FN1 interact with different growth factor receptors such as receptor tyrosine 
kinases and when overexpressed, it leads to unfavorable prognosis for breast  cancer34. APOC1 and CHL1 have 
been found in a previous study as biomarkers for a breast cancer in serum which correlates with the discovery 
and validation of breast cancer biomarkers from PepQuant  library20.

The nine biomarker candidates for breast cancer are known to be localized in multiple cellular components 
including extracellular region such as membranes, vesicles and granule and liposome (Supplementary Table S5). 
They are assumed to secreted to extracellular regions by the canonical secretion pathway through endoplasmic 
reticulum (ER)-Golgi route. Since the localization and the functional roles of the nine biomarker candidates 
occur in the extracellular regions, they are detected in serum of normal group as well as in breast cancer group, 
but differentially expressed. Despite the studied secretion and localization of the biomarker candidates, only a 
few markers have been previously reported to be as a potential biomarker for breast cancer detectable in neat 
serum condition. Among them, three breast cancer biomarkers (APOC1, CA1, and CHL1) were found in a pre-
vious study and is used as biomarkers for a breast cancer detection algorithm  (Mastocheck®)20. The Mastocheck 
algorithm performs at a sensitivity of 71.6%, specificity of 85.3%, and AUC of 0.832 in clinical validation studies 
(normal 122, cancer 183)35. In contrast, the ML model developed in this study showed an average sensitivity of 
87.9%, specificity of 80.7% and AUC of 0.9105 (Table 2). This result show that the developed ML model with nine 
biomarkers can be an effective alternative or an assistance blood test for current breast cancer detection system. 
While effective, the current breast cancer detection heavily relies on the imaging system, which is expensive, 
carries a risk of radiation exposure and is inaccurate for dense breasts.

In conclusion, we showed that the PepQuant library can be an effective alternative method for human blood 
biomarker discovery without high resolution mass spectrometry. By allowing the discovery into a validation set-
up where a targeted triple-quadrupole machines is used, it provides more efficiency and reproducibility during 
validation of biomarkers. With further research, the coverage of the PepQuant-library for the blood proteins and 
peptides can be improved. While the generated PepQuant-library used public databases on blood and secretome 
for protein selection, this could be further improved by using more MS/MS databases such as the SRM atlas for 
peptide selection. Different types of protein databases for membrane or cytoplasmic proteins could be used to 
expand the PepQuant library. Peptides more suitable for validation setup, quantifiable in MRM mode, higher 
stability and better representative peptide for a protein, will be researched and added to the library. Overall, we 
plan to expand PepQuant-library continuously, which would be useful for biomarker discovery and validation 
research.

Methods
Peptide candidate generation. For each protein, a list of all the possible tryptic peptides was generated. 
The tryptic peptides included all those containing either R or K at both ends, except for sequences containing 
trypsin-cleavage-resistant amino-acid combinations such as C-terminal RR (arginine-arginine), KK (lysine-
lysine), RK, KR, KP and RP. From this list, the peptides with characteristics favorable for detection by MS/
MS were selected. The characteristics considered were length, oxidation, post-translational modifications, and 
hydrophobicity. A higher priority was given to peptides with lengths between six and 16 amino acids, which were 
detected at higher percentages in a typical MS/MS result compared to other lengths. Extremely hydrophilic or 
hydrophobic peptides were lower priority because of their lower reproducibility in terms of retention time. Pep-
tides containing possible post-translational modifications, such as glycosylation, and unstable amino acids, such 

Table 2.  Performance of breast cancer prediction.

Random state Specificity Sensitivity AUC Accuracy

Random 1st 0.9225 0.8171 0.9207 0.8618

Random 2nd 0.8295 0.8057 0.8928 0.8158

Random 3rd 0.9147 0.7943 0.9091 0.8454

Random 4th 0.8605 0.8229 0.9257 0.8388

Random 5th 0.8682 0.7943 0.9043 0.8257

Average 0.8791 0.8069 0.9105 0.8375
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as cysteine (C), methionine (M), or N-terminal tryptophan (W), were given lower priority. For each protein, a 
peptide candidate was selected for synthesis. Those with similar priorities were selected randomly, and for some 
proteins, peptide candidates with lower priorities were selected because peptides with higher priorities were 
missing. Multiple peptides have been synthesized for a few proteins of interest. All peptides were synthesized 
at the Good Manufacturing Practice facility for medical reagents (Bertis Inc., Korea). The initial library of 4683 
peptides were unlabeled and the 452 peptides were isotope-labeled at either Lysine-13C6, 15N2 or Arginine 13C6, 
15N4.

Peptide candidate selection by MS/MS. To identify quantifiable peptide candidates from blood, we 
spiked the synthetic standard peptides into the serum and plasma samples to a mixture containing 138 blood 
samples composed of six different cancer types (40 breast, 20 pancreatic, 20 thyroid, 20 ovarian, 18 lung, and 
20 colorectal cancer) and 30 healthy blood samples. The endogenous serum/plasma target peptide spectra were 
compared to those of the synthetic standard peptides (unlabeled) to identify quantifiable peptide from serum/
plasma. To identify the target peptide within the sample, the ratio of the top three peaks of the target peptide for 
standards and samples were compared (Supplementary Fig. S4a,b). Also, the retention time of the target peptide 
in the standard, sample, standard spiked in the samples were compared (Supplementary Fig. S4c,d). A peptide 
was deemed quantifiable when the signal to noise ratio (SNR) was higher than three within a 10 min retention 
time in an LC run.

Sample collection. A total of 500 serum samples were collected from 12 Korean hospitals for breast cancer 
detection. Of these, 215 samples were from breast cancer patients, and 187 were from healthy participants. The 
remaining 98 samples were from cancer patients from Seoul National University Hospital, with four cancer 
types: ovarian (20), stomach (20), pancreas (20), lung (18), and colon (20). The healthy samples were listed 
as category 2 (benign) under BI-RADS (Breast Imaging Reporting and Data System). All samples were from 
patients who had never been diagnosed with another cancer or had not experienced recurrence within five years.

The samples were collected from August 2019 to September 2020 for a prospective multicenter clinical trial 
registered at the Clinical Research Information Service of Korea, a member of the WHO International Clinical 
Trials Registry Platform (ICTRP). The identification number is KCT0004847. The number of samples from each 
hospital was as follows: Seoul National University Hospital (187), Seoul National University Bundang Hospital 
(14), Dankook University Hospital (27), Chung-Ang University Hospital (26), Hallym University Gangnam 
Sacred Heart Hospital (13), National Cancer Center (22), Myongji Hospital (25), Hanyang University Hospital 
(9), The Catholic University of Korea, Seoul, St. Mary’s Hospital (11), Korea University Anam Hospital (14), Korea 
University Guro Hospital (29), and Gyeongsang National University Hospital (25). Other cancer serum samples 
were approved by the Institutional Review Board of Seoul National University Hospital (IRB No. H-1911–085-
1079) as non-clinical research using the Human Material Repository. Other cancer serum samples were approved 
by the Institutional Review Board of Seoul National University Hospital (Approval No. H-1911-085-1079) as 
non-clinical research using the Human Material Repository. Informed consents were obtained from all partici-
pants. This study was conducted in accordance with the Declaration of Helsinki.

Serum and plasma separation. Whole blood was collected by venipuncture with a 23G syringe and 
transferred to “vacutainer” serum separation tubes and EDTA blood collection tubes (BD, U.S.A., NJ) for serum 
and plasma, respectively. They were centrifuged at 2100 × g for 20 min at 4 °C, and the supernatant layers were 
transferred to fresh tubes, and stored at − 80 °C. Prior to mass analysis, the frozen samples were thawed com-
pletely at 4 °C and vortexed lightly.

Sample preprocessing (protein digestion) before MRM analysis. Neat serum samples were directly 
used without any depletion of high abundant proteins. Five µl of the separated sample were added to an 8 M urea 
solution containing 18 mM dithiothreitol (Sigma-Aldrich, U.S.A., MA) and incubated for 90 min at 35 °C. The 
sample is cooled to room temperature and Iodoacetamide (Sigma-Aldrich, U.S.A., MA) is added to a concentra-
tion 26 mM and incubated at RT for 30 min in the dark. Ammonium bicarbonate (Sigma-Aldrich, U.S.A., MA) 
was added (final concentration: 100 mM) to dilute the urea concentration to less than 1 M. Five µg of trypsin 
(sequencing grade, Promega, U.S.A., WI) was added, followed by incubation at 37 °C for 16 h for protein diges-
tion. Trifluoroacetic acid (Thermo Fisher Scientific, U.S.A., MA) was added to the solution to quench the trypsin 
activity (final concentration: 1%). Samples were cleaned up using C18 cartridges (Sep-pak C18, 100 mg, Waters) 
following the manufacturer’s instructions. The cleaned-up samples were dried completely and stored at − 80 °C 
until use. Prior to MS/MS analysis, dried samples were resuspended in 0.1% formic acid.

MRM mode mass spectrometry analysis. The mass spectrometer used was a Qtrap5500 Plus (Sciex, 
U.S.A., MA). For LC separation, a C18 reverse phase column was used (0.5 mm × 150 mm, 3.5 μm, Agilent, 
U.S.A., CA), and analysis was performed on the positive MRM mode. The flow rate was 20 μL/min, the gradient 
configuration was set at 5–30% for 0–10 min (10 min gradient time). The mass spectrometric parameter Colli-
sion Energy (CE) value for each ionized peptide was determined using SKYLINE software (https:// skyli ne. ms/ 
proje ct/ home/ begin. view). The mass spectra and chromatography analysis were done using Analyst (1.7.2), and 
the quantification program used was Multiquant (3.0.2).

LC–MS/MS deep profiling with data independent acquisition method. The digested peptides were 
analyzed using a Q Exactive Hf-x Orbitrap mass spectrometer coupled with an Ultimate 3000 UPLC (Thermo 

https://skyline.ms/project/home/begin.view
https://skyline.ms/project/home/begin.view
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Fisher Scientific, U.S.A., MA). For the proteome DIA analysis, the run time was set at 130 min, and the UPLC 
gradient was set as follows (T min/% of solvent B): 0/3, 5/3, 80/20, 105/40, 105.1/80, 115/80, 115.1/3, 130/3. The 
peptides were ionized through an EASY-spray column (50 cm × 75 μm ID) packed with 2 μm C18 particles at an 
electric potential of 1.5 kV. The full MS scan range was set to 300–1400 m/z and the resolution was set to 60,000 
at m/z 200. The MS2 scan range was set to 300–1400 m/z, with 44 windows of 25 m/z. The automated gain con-
trol target value was set as 3.0 ×  106 with a maximum ion injection time of 100 ms.

DIA analysis. To analyze the DIA data, the raw files were first converted to mzML and imported into DIA-
NN36. The spectral library comprising 12,046 proteins was downloaded from SWATHAtlas (www. swath atlas. 
org). A library search was performed according to the DIA-NN manual as previously  described36. Briefly, the 
precursor and fragment ion m/z range were set as 300–1400, and the precursor charge range was set as 2–6. Only 
short-term Methionine excision and Cysteine carbamidomethylation were considered for peptide modification. 
Up to two missed cleavages were allowed, and the precursor false discovery rate was set to 1%. A default param-
eter of 0.0 was used for the MS1 accuracy and scan window.

Breast cancer biomarker discovery and validation. To identify breast cancer biomarkers, all peptides 
comprising the PepQuant library were tested against 50 healthy and 50 breast cancer patient samples randomly 
selected from the total samples. Peptides with a fold-change difference of at least 1.2 were selected first. The 
selected candidates were quantified with additional 95 healthy and 96 breast cancer patient samples. Peptides 
that satisfy to an at least 1.2 fold-change difference between breast cancer and healthy control samples were sub-
jected to analytical performance evaluation.

Peptide analytical performance evaluation. The analytical performance evaluation of the LC–MS/MS 
quantification of protein markers is an essential factor for clinical  application37. The parameters for analytical 
performance is mainly consisted in linearity, accuracy, selectivity, precision, and sample  stability9. The linearity 
was checked by deriving a linear equation for at least six different concentrations of the peptides and calculating 
the coefficient of determination  (R2) between the quantified value and the estimated value obtained from the 
linear equation. The accuracy was obtained by calculating the ratio between the estimated value from the linear 
equation to the quantified value for each point of concentration. The peptide was considered acceptable when 
at least five out of six concentration points were within ± 20% of the accuracy value. The intra-day precision and 
inter-day precision were tested by repeated measurement of the peptides at different sample concentrations in 
five technical replicates, within one day and several days, respectively. The stability of the sample peptides was 
also tested after seven days of storage at 80 °C and 4 °C. For all experiments, isotope-labeled synthetic peptides 
were used as internal standards (IS). The analyte (peptide) to IS ratio was multiplied by the specific amount of IS 
to determine the analyte concentration (Supplementary Table S3).

Diagnostic model development environment. A diagnostic algorithm was developed using deep 
learning, logistic regression, random forest, and a light-gradient boost algorithm. Logistic regression and Ran-
dom Forest algorithms were trained with default parameters using ‘Scikit learn v. 0.23.2’38. For the gradient 
boosting algorithm, Python modules ‘Lightgbm v. 3.2.1’ were used. All the machine learning models were tested 
iteratively using the hold-out method, in which five different random states were used to train and evaluate the 
algorithm. The deep learning algorithm was developed using Torch v. 1.7.1. Unless otherwise mentioned, all the 
algorithms were developed using Python v. 3.8.13  environment39. The deep learning model structure resembled 
a GrowNet, which was briefly tweaked to fit the current  dataset40.

Data availability
The data generated in this study are available in the Supplementary Data 2 and uploaded in PASSEL (http:// www. 
pepti deatl as. org/ passel/), Dataset ID PASS04818.
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