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Leveraging human expert image 
annotations to improve pneumonia 
differentiation through human 
knowledge distillation
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In medical imaging, deep learning models can be a critical tool to shorten time-to-diagnosis and 
support specialized medical staff in clinical decision making. The successful training of deep learning 
models usually requires large amounts of quality data, which are often not available in many medical 
imaging tasks. In this work we train a deep learning model on university hospital chest X-ray data, 
containing 1082 images. The data was reviewed, differentiated into 4 causes for pneumonia, and 
annotated by an expert radiologist. To successfully train a model on this small amount of complex 
image data, we propose a special knowledge distillation process, which we call Human Knowledge 
Distillation. This process enables deep learning models to utilize annotated regions in the images 
during the training process. This form of guidance by a human expert improves model convergence 
and performance. We evaluate the proposed process on our study data for multiple types of models, 
all of which show improved results. The best model of this study, called PneuKnowNet, shows an 
improvement of + 2.3% points in overall accuracy compared to a baseline model and also leads to more 
meaningful decision regions. Utilizing this implicit data quality-quantity trade-off can be a promising 
approach for many scarce data domains beyond medical imaging.

Having fast and reliable ways to screen infected patients is a learning from the COVID-19 pandemic. Developing 
machine learning models to assist clinical decision making in the beginning of a pandemic can be critical as it can 
shorten time-to-diagnosis and support specialized medical staff in an emergency  setting1. A major hindrance to 
quickly building models and reacting to new infectious diseases is the restricted availability of (quality) data. This 
applies to the medical domain in general, where gathering large amounts of data is often difficult due to privacy 
concerns or high costs. This facilitates the need to leverage scarce data in a reasonable way.

Despite having methods like transfer learning and self-/semi-supervised learning, the performance of 
deep learning models depends significantly on the quantity of available data, as shown  theoretically2,3 and 
 empirically4–6. In this study we present such a case with limited amounts of data in the medical domain. We 
analyze chest X-ray (CXR) images of 4 different causes for pneumonia, as well as healthy patients, with as little 
as 74 images for viral/non-COVID-19 cases. It is our aim to leverage human expert knowledge to get medically 
adequate predictive results, despite working with scarce data.

For this purpose, we analyze COVID-19, other viral, fungal and bacterial pneumonia images. This makes 
the data quite complex and non-trivial to differentiate. To still achieve medically adequate performances, we 
leverage high quality annotated data to improve our classification model in a special knowledge distillation 
process. We dubbed our novel approach Human Knowledge Distillation. This process allows human experts to 
provide guidance during model training to improve performance and convergence, which is especially helpful 
in domains with very limited amounts of data. We demonstrate the usefulness of this approach by comparing 
different model types and architectures trained with Human Knowledge Distillation, all of which show improved 
performances compared to their respective baselines. We further examine the classification performance of the 
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best resulting model, which we call PneuKnowNet. Compared to the respective baseline model, PneuKnowNet 
is able to adequately differentiate between 4 pneumonia classes in the presented study data.

In addition to this relevant application of Human Knowledge Distillation, we see many possible applications 
in further image domains with limited amounts of data. In summary, our main contributions are:

• We propose a novel approach, Human Knowledge Distillation, as a combination of feature-based knowledge 
distillation and consistency regularization. This approach enables deep learning image models to implicitly 
learn from human annotations on images to improve performance.

• We demonstrate the beneficial effect of our approach on CXR images to train a model that is able to dif-
ferentiate between 4 causes for pneumonia as well as healthy patients as an example. The resulting models 
show significant improvements compared to their baselines, especially regarding the detection of specific 
pneumonia classes.

• We validate our approach for multiple different model architectures and training configurations, most of 
which show improved results compared to their respective baselines. We also examine the effect of a reduc-
tion of annotation data to potentially reduce annotation efforts.

Related work
Pneumonia detection. There exist many works applying deep learning to CXR images to detect a COVID-
19 pulmonary  disease7–12 or pneumonia in  general13–15. However, most of these works use large publicly avail-
able CXR and COVID-19 image datasets. Most of these images are collected from heterogeneous sources with 
varying image and label quality, which raises concerns about the quality and valid evaluation of deep learning 
 models16,17. Furthermore, they work with much more image data, often exceeding the data for this study by a 
factor between 10 and 100, while simultaneously only looking at a very limited number of pneumonia classes 
(mostly just two). For this study we analyze high quality, homogeneous image data from a single source and we 
differentiate between 4 causes for pneumonia and healthy cases.

Human knowledge distillation. Using human knowledge to guide deep learning models is especially 
common in interactive image  segmentation18–21. These models use human interactions (clicks or scribbles) to 
guide segmentation models towards the correct segmentation of regions. While these methods show very prom-
ising results, they focus on segmentation tasks. We on the other hand, want to improve classification tasks.

Zhang et al.22 use human categories for wrongly classified dermoscopic images to evaluate possibilities to 
improve classification models with human expertise. Jadhav et al.23 use knowledge learned from X-ray reports 
to improve a deep learning model’s performance on chest X-ray images. While both works try to achieve a 
goal similar to our approach, they do not use annotations on the image to guide the deep learning model with 
localization information. Zagoruyko et al.24 uses attention maps in a knowledge distillation process to improve 
a student model, but without using human-made annotations. This is achieved by Fukui et al.25 and Mitsuhara 
et al.26, who employ attention branch networks to manually edit visual explanations to embed human knowledge 
into classification models. Compared to our work, these works focus on editing the resulting attribution map 
and not the image itself.

Our Human Knowledge Distillation process can be understood as a mixture of semi-/self-supervised learning 
consistency  regularization27–29 and the teacher-student architecture commonly found in knowledge  distillation30, 
specifically in feature-based knowledge  distillation24,31–37. In knowledge distillation the goal is typically to extract 
a condensed version of a big and cumbersome teacher model to reduce computational load while preserving 
almost identical performances. In our approach, both teacher and student model can have the same architecture 
and be of small size as well. Our goal is to simply learn an implicit representation for explicitly modified data. We 
take inspiration from Sohn et al.38, where weakly and strongly augmented variants of the same image were used 
to train a model. Instead of using augmentations, our student model learns from an additionally annotated image 
variant. As opposed to semi-/self-supervised methods, this provides the model with higher quality information 
present on the image. Thereby, we aim for consistency between a raw image and its corresponding annotated 
region of interest (ROI) variant.

Materials and methods
To demonstrate the effect of Human Knowledge Distillation, we train a deep learning model to differentiate 
between 4 causes for pneumonia as well as healthy patients based on chest X-ray images from local university 
hospital study data. This section explains the origin and distribution of the data, as well as the deep learning 
model and Human Knowledge Distillation process.

Data. The dataset specific to this single-center retrospective analysis consists of 1082 chest X-ray images 
from a total of 828 patients (342 female and 486 male) with ages ranging from 18 to 89 years (mean age 52.52 
± 17.45 years). These patients had chest radiography examinations due to their clinical symptoms. Radiographs 
were acquired on a portable flat detector (Flurospot Compact Siemens Healthcare, Erlangen Germany and DRX 
Evolution Carestream, Stuttgart Germany). The ethics board of the Medical Faculty and the University Hospital 
in Ulm approved this retrospective data evaluation study and waived the informed consent requirement (No. 
271/20). All methods were carried out in accordance with relevant guidelines and regulations. Figure 1 shows 
two male patient example CXR images from our study data along with the relevant annotations.
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Data acquisition. Radiographs were identified by retrospective database analysis of the local radiology depart-
ment. Bacterial infections were proven using sample material collected by bronchoalveolar lavage or sputum. 
Fungal infections were confirmed by positive microscopy or cultured organisms. All patients with COVID-19 
were confirmed by nasopharyngeal swabs followed by RT-PCR assay to confirm the diagnosis. Detection and 
verification of virus infect was done from bronchoalveolar lavage by real time PCR using a commercially avail-
able assay.

Data labeling. A dedicated thoracic radiologist (CK) with 9 years experience in lung imaging verified and 
relabeled the datasets. Images were differentiated and labeled as cases of 110 (10.17%) COVID-19 (C), 673 
(62.20%) healthy patients (H), 100 (9.24%) bacterial infection (B), 125 (11.56%) fungal infection (F), and 74 
(6.84%) other viral infection (V). Table 1 shows the demographic variables for training and validation cohorts 
used in this study.

Data annotation. An Impax EE R 20 XVIII SU1 image archiving and communication system was applied for 
selecting the radiographs from the radiological database. A freehand drawing tool was used to segment the 
lung based on its anatomical landmarks. Furthermore, the pathological ROIs were marked, as shown in Fig. 1. 
These regions contain typical ground-glass opacifications, induced by pneumonia. The same blue color outline 
was used for all pneumonia classes. With the image archiving and communication system, the images were 

Figure 1.  Chest X-ray ROI images with lungs marked in red. (Left) Fungal infection, typical ground-glass 
opacification marked in blue (ROI) All ROI annotations of this study show only the boundary of the infection, 
instead of a complete mask and use the same blue color regardless of pneumonia class. (Right) Healthy patient 
image.

Table 1.  Summary of demographic variables and imaging protocol variables of CXR data for training and 
validation cohorts used in this study. Age and sex statistics are expressed on a patient level, while imaging view 
statistics are expressed on an image level with anteriorposterior (AP) and posterioranterior (PA) views.

Variable Group Training data Validation data

Age

mean ± std 51.75 ± 17.54 53.82 ± 18.05

<20 20 (2.31%) 3 (1.38%)

20–29 110 (12.72%) 29 (13.36%)

30–39 105 (12.14%) 22 (10.14%)

40–49 127 (14.68%) 28 (12.90%)

50–59 191 (22.08%) 58 (26.73%)

60–69 171 (19.77%) 26 (11.98%)

70–79 102 (11.79%) 36 (16.59%)

80–89 39 (4.51%) 15 (6.91%)

Sex
Male 533 (61.62%) 134 (61.75%)

Female 332 (38.38%) 83 (38.25%)

Imaging view
AP 238 (27.51%) 68 (31.34%)

PA 625 (72.25%) 149 (68.66%)
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anonymized and exported as JPEG files and stored separately. Going forward, the original non-annotated images 
are called raw images, whereas the ROI annotated images are denoted as ROI images.

The quality of the presented dataset is unique with regard to its annotation detail. To the best of our knowl-
edge, no openly available CXR dataset matches the freehand ROI annotations of this study data. Some openly 
available datasets do provide annotations in the form of bounding  boxes39, which provide only coarse localiza-
tion information.

Image preprocessing. The raw and ROI images have 3 RGB channels and a width between 2084 pixels and 
4240 pixels with a mean of 2825.01 pixels, as well as a height between 1800 pixels and 4240 pixels with a mean 
of 3053.89 pixels. Raw images and their corresponding ROI version have the same size and only differ in their 
annotation. As input image size we keep the pretrained resolution of 224× 224 pixels. All images are resized with 
bilinear interpolation and normalized with the mean and standard deviation values from  ImageNet40 images. 
Although the image space of this study is different from ImageNet, changing these values would interfere with 
the pretrained models. Raw and ROI images are treated equally with regards to preprocessing and augmentation 
steps. The ROI images are fed directly into the model in the same manner as the raw images, without using any 
segmentation mask, allowing for freehand expert annotations without using specific tools to extract masks. The 
input tensors are of shape [batchsize,channels,height,width], resulting in input dimensions of 
[8,3,224,224] in our experiments.

Evaluation splits. To evaluate our models, we use a holdout method. To avoid patient overlap between the 
splits, we use a random subject-based split based on patients with roughly 20% of images as validation data. We 
attempt to preserve the percentage of samples for each label as much as possible, given the constraint of non-
overlapping patients between the splits. Table 2 shows the resulting label distribution for training and validation 
splits.

Human knowledge distillation. We employ our Human Knowledge Distillation process in 3 stages: 
teacher training, teacher-student training, and student fine-tuning, as shown in Fig. 2. In the first stage, a 
teacher model is trained on annotated images that present complete localization information. In the second 
stage, a student model is trained on raw images with an additional consistency regularization from the teacher 
model of a corresponding annotated image. Thereby, the student model indirectly learns to use this localization 
information through the teacher model. In the last stage, the student model is fine-tuned in a standard classifica-
tion pipeline without using consistency regularization. This process enables the final student model to implicitly 
utilize localization information in a human-guided fashion, thus indirectly applying it during inference on raw 
images. The application demonstrated in this work employs medical ROIs on CXR images as annotations to 
learn from. We call our final model PneuKnowNet.

Stage 1 (Teacher training). In this stage we train a Convolutional Neural Network on the annotated ROI images. 
Thus, the model has access to localization information of pathogenic ROIs and the outline of the lung. This 
stage can be understood as a human-guided training, where we point the model towards areas of the image that 
a human expert deems important. Using this additional information, we expect the teacher model to perform 
well, even early in the training process. Note, that the ROIs only provide localization information and do not 
reveal the label of a pathogenic image, i.e. the cause of the pneumonia, since all pneumonia positive images use 
the same blue color outline. The weights of the teacher model are fixed after this stage and not trained any further 
during our process.

Stage 2 (Teacher-student training). In this stage we distill the knowledge of the teacher model ft for its use in a 
student model fs , which thereby learns to look for pertinent information in the important regions. To achieve 
this, we define a combined loss function LC using a weighted sum of the consistency loss and the classification 
loss with weight αe . We adapt the weight αe for each epoch e ∈ {0, . . . ,Edistill, . . . ,Etotal} linearly during training 
between 0 and 0.5:

(1)LC = αe ·MSE

(

f
(−1)
t (xROI), f

(−1)
s (xraw)

)

+ (1− αe) · CE
(

fs(xraw),Y
)

, with

Table 2.  Label distribution for training and validation splits.

Label Training data (%) Validation data (%)

Healthy 543 (62.77) 130 (59.91)

Fungal infection 96 (11.1) 29 (13.36)

COVID-19 87 (10.06) 23 (10.60)

Bacterial infection 81 (9.36) 19 (8.76)

Viral infection 58 (6.71) 16 (7.37)
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    The consistency loss is calculated by using the mean squared error (MSE) between the feature maps of the 
last convolutional layer f (−1)

m  for m ∈ {s, t} of the teacher and student model. Integrating feature maps into a 
knowledge distillation process to improve student model learning is a known approach and has been explored 
in numerous  ways24,31–37 with similar loss functions. In this work we use two different image variants to motivate 
a consistency loss component similar to semi-supervised-learning  approaches27–29. While the student model 
receives raw images xraw as input, the teacher model uses the corresponding ROI images xROI . As for the clas-
sification loss, we use cross-entropy (CE) between softmax model output and ground truth labels Y. Edistill is a 
hyperparameter, that specifies the amount of epochs in stage 2, and as such, the amount of epochs for the teacher-
student training. We start with a balanced loss function and reduce the influence of the consistency component 
during training. This way, the student model receives strong guidance at the beginning of the training process, 
while also needing to adapt to the raw images towards the end of the training.

Stage 3 (Student fine-tuning). In this stage the consistency regularization component vanishes due to e exceed-
ing Edistill and αe subsequently becoming 0. Without any guidance from the teacher model, the student is being 
fine-tuned on raw images only. After this final training stage, the student model fs can now be used for inference.

Training details and configurations for pneumonia differentiation. We demonstrate the effect of Human Knowl-
edge Distillation on our presented CXR study data for pneumonia differentiation. To validate our approach, 
we train multiple model architectures with this process:  ResNet5041, EfficientNet-B042, EfficientNet-B142, Con-
vNeXt-T43, and ConvNeXt-S43. Since we want to focus on our Human Knowledge Distillation process, we are 
not overly concerned with the type or architecture of the selected models themselves. Therefore, we present a 
broader selection of older and newer state-of-the-art models, which have been used extensively in academic 
literature. All experiments were repeated 5 times to increase the robustness of our results.

We train baseline models for all architectures and configurations to compare our Human Knowledge Distil-
lation models as a point of reference. These models use the same architectures and hyperparameter settings as 
our knowledge distillation models and are trained in a standard end-to-end pipeline on the raw images of our 
CXR study data.

All models have been pretrained on the  ImageNet40 database. This allows us to use finely calibrated weights 
as a starting point for our training. Contrary to traditional transfer learning, we do not freeze any weights for 

(2)αe =

{

1
2
·

(

1− e
Edistill

)

if e < Edistill,

0 otherwise.

Figure 2.  Overview of our Human Knowledge Distillation training process, demonstrated here with medical 
ROIs as annotated images and 5 classes for pneumonia differentiation. (Stage 1) Teacher training on ROI 
images. (Stage 2) Student training with consistency regularization from the teacher model by using ROI images. 
(Stage 3) Student training without consistency regularization on raw images.
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the training process, but use all gradients for updates. This is to compensate for the shift in image distributions 
between the pretraining data and our CXR data. ImageNet depicts a diverse dataset with 1000 classes and has 
therefore a very different image space compared to the desaturated CXR images of this study. We replace the 
final layer with a linear layer of 5 output nodes, one for each class.

Furthermore, we use image augmentation pipelines to artificially increase the size of the training data and 
reduce overfitting during model training. To examine the effects of augmentations on our method, we consider 
2 different pipelines. Table 3 shows a strong and a weak augmentation pipeline. The weak augmentation pipeline 
consists only of a resize operation and an affine transformation. This pipeline should preserve the nature of the 
image and produce only slight variations. The strong augmentation pipeline includes the same transformations 
as the weak pipeline, but also introduces variations in brightness and contrast, as well as sharpen and blur opera-
tions. This pipeline was inspired by the winning solution to the 2021 SIIM-FISABIO-RSNA Machine Learning 
COVID-19  Challenge44. All augmentations are done via the Albumentations  library45.

We pair these augmentation pipelines with varying settings of dropout, since these hyperparameters can 
impact the performance of deep learning models significantly. We examine our method with 4 different configu-
rations of dropout and augmentations, as shown in Table 4. If used, dropout is applied before the classification 
layer with a probability of 0.5. While we alternate dropout and augmentation pipelines for baseline and student 
models, we keep dropout active for all teacher models. This is to weaken overfitting as seen in Fig. 3, which 
seems to appear faster with ROI images. Examining different configurations for augmentation and dropout 
works as an ablation study to show the robustness of our method, independently of changes to those impactful 
hyperparameters.

All other hyperparameter settings for the baseline model and Human Knowledge Distillation models are 
shown in Table 5. We keep most of these hyperparameters constant for all trained models to validate the effect of 

Table 3.  Strong and weak augmentation pipelines. Augmentations carried out with Albumentations  library45.

Augmentation Parameters Probability

Strong augmentations

 Resize height=224, width=224 1.0

 ShiftScaleRotate scale_limit = 0.5, rotate_limit = 0, shift_limit = 0.1 1.0

 One of: 0.9

[CLAHE, clip_limit = 4.0, grid_size = (8, 8) 1.0

RandomBrightnessContrast, brightness_limit = 0.2, contrast_limit = 0.2, brightness_by_max = True 1.0

RandomGamma] gamma_limit = (80, 120) 1.0

 One of: 0.9

[Sharpen, alpha = (0.2, 0.5), lightness = (0.5,1.0) 1.0

Blur, blur_limit = 7 1.0

MotionBlur] blur_limit = 7 1.0

 One of: 0.9

[RandomBrightnessContrast, brightness_limit = 0.2, contrast_limit = 0.2, brightness_by_max = True 1.0

HueSaturationValue] hue_shift_limit = 20, sat_shift_limit = 30, val_shift_limit = 20 1.0

 Normalize mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225) 1.0

Weak augmentations

 Resize height = 224, width = 224 1.0

 ShiftScaleRotate scale_limit = 0.5, rotate_limit = 0, shift_limit = 0.1 1.0

 Normalize mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225) 1.0

Table 4.  Different training configurations for dropout and augmentations for baseline, teacher and student 
models. Same settings apply for all evaluated model architectures.

Model Configuration 1 Configuration 2 Configuration 3 Configuration 4

Baseline

 Dropout 0.5 None 0.5 None

 Augmentations Strong Strong Weak Weak

Teacher

 Dropout 0.5 0.5 0.5 0.5

 Augmentations Strong Strong Weak Weak

Student

 Dropout 0.5 None 0.5 None

 Augmentation Strong Strong Weak Weak
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our Human Knowledge Distillation process. To make the comparison between baseline and Human Knowledge 
Distillation models fair, we use the same amount of total training epochs ( Etotal = 60 each). The amount of epochs 
are chosen as a generous upper bound for model improvement. In our experiments, the models diverge much 
faster than that, as shown by the loss curves in Fig. 3. This is especially true for teacher models, which we only 
train for 20 epochs respectively. All final models are selected from the epoch with the lowest validation loss. We 
use  PyTorch46 to carry out the computations.

Ethical approval. The ethics board of the Medical Faculty and the University Hospital in Ulm approved this 
retrospective data evaluation study and waived the informed consent requirement (No. 271/20).

Results
In this section we compare the results of our Human Knowledge Distillation training process with a baseline 
model for multiple model architectures on our CXR pneumonia differentiation study data. For the best perform-
ing model, we compare precision, recall, and F1-score for all 5 classes. We also examine the effect of reducing 
the amount of ROI images for the teacher model, which could potentially reduce annotation costs. Lastly, we 
compare the GradCAM  activations48 of the models by leveraging the given ROIs to see which model is more in 
line with human expert decision regions. All metrics are being calculated on the validation data and reported 
as mean ±std of 5 independent runs.

Table 6 shows the overall accuracy for different model architectures and training configurations for all stages 
of our Human Knowledge Distillation process and their respective baseline models. Remarkably, 17 out of 20 
different combinations of models and configurations show improvements using Human Knowledge Distilla-
tion. Only 3 combinations show reduced performances compared to their respective baseline. The remaining 
improvement ranges from + 0.19% points to + 3.23% points. Configurations 1 and 3 yield favorable results due 
to the application of dropout to reduce overfitting. Looking at the different configurations for augmentation 

Table 5.  Hyperparameter settings for baseline model and Human Knowledge Distillation models. Same 
settings apply for all evaluated model architectures.

Hyperparameter Baseline Teacher Student

Optimizer Adam47 Adam47 Adam47

Loss function Cross-entropy Cross-entropy LC 2

Batchsize 8 8 8

Base learning rate 1e−4 1e−4 1e−4

Learning rate scheduler Cosine decay Cosine decay Cosine decay

Distillation epochs ( Edistill) N/A N/A 40

Total epochs ( Etotal) 60 20 60

Optimizer momentum β1,β2 = 0.9, 0.999 β1,β2 = 0.9, 0.999 β1,β2 = 0.9, 0.999

Figure 3.  Training and validation loss curves for ConvNeXt-S baseline (a), teacher (b), and student (c) models. 
Bold lines represent the mean of 5 repeated runs.
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and dropout as an ablation study, our method shows consistent improvements for different settings of these 
impactful hyperparameters.

The stage 1 teacher models consistently have the highest performance. This makes sense, since these models 
have access to the most information during training, provided by the ROIs. Still, Human Knowledge Distillation 
models seem to achieve almost the same performance, despite having no explicit access to the additional image 
information. It is important to note, that the teacher model can not be used for inference on raw, non-annotated 
images since the model learned to rely on the annotations to make predictions. Thus, we have successfully trans-
ferred knowledge to a model to be used in an implicit way when classifying new images without annotations.

The best absolute performance is achieved by the ConvNeXt-S models in configuration 1 with 80.83% overall 
accuracy with Human Knowledge Distillation. We further examine more detailed classification metrics for these 
models. Table 7 shows precision, recall, and F1-score for baseline and student models. While the baseline model 
shows better precision for COVID-19, all other metrics favor the student model. While most improvements are 
minor, the increase in precision for the viral class is notable. The student models also show better recall values 
for all classes, which is especially important in this sensitive medical setting, since false-negatives would lead 
to undetected cases.

Figure 3 shows the training and validation loss curves for ConvNeXt-S models. The baseline and teacher 
models show significant overfitting due to the low amount of data. The loss curves for the student model show a 
reduced overfitting effect. This could indicate an implicit regularization effect through the consistency loss. The 
MSE loss shows a significant increase after epoch 40, which is expected, as Edistill = 40 was chosen. The different 
training configurations do not seem to influence the loss curves significantly.

Table 6.  Overall accuracy (in %) for Human Knowledge Distillation process for different model architectures 
and configurations. Improvement of student models compared to baseline models in percentage points. All 
results are reported as mean ± std of 5 independent training runs. Significant values are in bold.

Model/Architecture ResNet50 EfficientNet-B0 EfficientNet-B1 ConvNeXt-T ConvNeXt-S

Configuration 1

 Baseline 78.25 ± 1.14 78.71 ± 1.22 77.60 ± 1.19 78.25 ± 1.47 78.53 ± 0.37

 Teacher (Stage 1) 75.21 ± 1.63 83.32 ± 1.22 82.03 ± 1.96 81.57 ± 1.20 83.69 ± 1.64

 Student (Stage 2 + 3) 79.08 ± 0.99 76.22 ± 1.99 78.34 ± 1.24 79.35 ± 1.47 80.83 ± 1.03

 Improvement (in pp.) + 0.83 − 2.49 + 0.74 + 1.09 + 2.3

Configuration 2

 Baseline 77.33 ± 1.47 76.22 ± 2.80 76.68 ± 1.86 76.22 ± 1.59 79.72 ± 1.57

 Teacher (Stage 1) 72.90 ± 1.14 81.47 ± 0.18 83.50 ± 1.96 83.50 ± 1.44 82.12 ± 1.71

 Student (Stage 2 + 3) 77.51 ± 2.09 79.17 ± 1.53 78.06 ± 1.66 79.45 ± 0.95 80.65 ± 1.54

 Improvement (in pp.) + 0.18 + 2.95 + 1.38 + 3.23 + 0.93

Configuration 3

 Baseline 77.97 ± 0.84 77.97 ± 1.07 76.31 ± 2.11 78.16 ± 0.69 79.63 ± 1.14

 Teacher (Stage 1) 76.41 ± 3.37 82.21 ± 1.15 80.83 ± 1.59 82.58 ± 2.45 82.49 ± 0.65

 Student (Stage 2 + 3) 78.62 ± 1.15 79.26 ± 1.72 77.05 ± 0.98 80.18 ± 1.05 79.35 ± 1.44

 Improvement (in pp.) + 0.65 + 1.29 + 0.74 + 2.02 − 0.28

Configuration 4

 Baseline 79.45 ± 1.42 77.60 ± 1.29 75.39 ± 1.88 77.42 ± 2.04 79.35 ± 2.32

 Teacher (Stage 1) 77.88 ± 2.96 82.58 ± 1.35 81.01 ± 1.28 82.40 ± 1.25 81.57 ± 1.51

 Student (Stage 2 + 3) 78.89 ± 0.61 77.79 ± 2.66 76.13 ± 2.27 79.63 ± 0.94 80.74 ± 2.27

 Improvement (in pp.) − 0.56 + 0.19 + 0.77 + 2.21 + 1.39

Table 7.  Evaluation metrics for ConvNeXt-S baseline and student models on validation data. All results are 
reported as mean ± std of 5 independent training runs. Significant values are in bold.

Label

Precision Recall F1-Score

Baseline Student Baseline Student Baseline Student

Bacterial .3260 ± .0498 .3650 ± .0328 .3474 ± .0976 .3895 ± .0714 .3307 ± .0579 .3734 ± .0376

COVID-19 .8292 ± .0573 .7906 ± .0692 .7478 ± .0928 .7826 ± .0615 .7793 ± .0296 .7864 ± .0644

Healthy .9641 ± .0028 .9745 ± .0074 .9923 ± .0049 .9954 ± .0038 .9780 ± .0016 .9848 ± .0033

Fungal .4946 ± .0141 .5282 ± .0185 .5517 ± .0899 .6483 ± .0593 .5179 ± .0386 .5810 ± .0294

Viral (other) .1329 ± .1097 .2167 ± .1944 .1000 ± .0848 .1125 ± .1212 .1136 ± .0949 .1449 ± .1487
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We further examine the ConvNeXt-S baseline and student models with the lowest validation error out of the 5 
repeated runs. We name this most promising student model PneuKnowNet. Figure 4 shows the confusion matrix 
for the baseline model and PneuKnowNet in absolute values for all 5 classes on the validation data. It is notable, 
that the baseline model does not predict any viral cases correctly, while PneuKnowNet does. Furthermore, the 
bacterial and fungal cases seem to get confused by both models, which are non-trivial to separate, even for 
human experts. In case of a binary decision (pneumonia vs healthy) PneuKnowNet achieves 97.70% accuracy.

Reduction of annotation effort. In this study we use a dataset that is labeled with extra annotations by 
a human expert. For those cases where this labeling process is non-trivial and potentially costly, the amount of 
extra annotations might be limited. We therefore investigate the impact of a reduced amount of ROI images on 
our method. Table 8 shows the results for our ConvNeXt-S models when using only 10%, 30% or 50% of the 
available ROI images. These experiments use dropout and the strong augmentation pipeline (Configuration 1).

Interestingly, a model trained with only 10% of ROI images can almost achieve the same performance as our 
baseline model. The 30% ROI model surpasses the baseline by a significant margin and the 50% baseline model 
is only 0.55 percentage points behind the 100% ROI model (PneuKnowNet). This suggests, that positive training 
effects can still be achieved when using a fraction of the available data for extra annotations.

Training teacher on raw images. We want to investigate whether the improvement of our Human 
Knowledge Distillation method stems from a transfer of knowledge of the infiltration areas, or is due to a regu-
larizing effect of the distillation process. To verify the effectiveness of the presence of ROIs on images for our 
method, we train the teacher models on raw images instead. In this setup, no information about the presence and 
location of infiltration areas is introduced to the models, only the regularization effect of the distillation process 
remains. Table 9 shows the results for all evaluated models. These experiments use dropout and the strong aug-
mentation pipeline (Configuration 1).

Using raw images instead of ROI images to train the teacher models yields worse results for all model archi-
tectures except the EfficientNet-B0. For this specific architecture, using neither ROI images nor raw images shows 
any improvement over the baseline model. In all other cases, training the teacher models with ROI images leads 

Figure 4.  Confusion matrix for baseline model (left) and PneuKnowNet (right) on validation data.

Table 8.  Impact on performance with reduced amount of ROI images for ConvNeXt-S models.

ROI % Model Accuracy

10% ROI
Teacher 80.00 ± 2.57

Student 78.25 ± 1.50

30% ROI
Teacher 82.03 ± 0.82

Student 80.09 ± 1.11

50% ROI
Teacher 83.78 ± 0.54

Student 80.28 ± 1.58

100% ROI Baseline 78.53 ± 0.37

(for reference) PneuKnowNet 80.83 ± 1.03
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to the described improvement of our Human Knowledge Distillation process compared to the baseline models. 
This is somewhat expected, since the teacher model can not learn and distill the additional information that 
comes from using the ROI images to the student model.

Explainability. While it is not the focus of this paper, we want to point out that our approach also lends itself 
well to the important aspect of explainability. The latter is of special interest in the health care domain. Using an 
attribution method like GradCAM, we can highlight important decision regions in the  image48. Figure 5 shows 
two example classifications and corresponding GradCAM activations. Both images show a clear advantage for 
PneuKnowNet, which correctly identifies the relevant areas in both cases.

Table 9.  Overall accuracy (in %) for Human Knowledge Distillation process on ROI images and raw images 
for different model architectures. Change in accuracy between both student models in percentage points. 
Baseline model accuracy for reference. All results are reported as mean ± std of 5 independent training runs. 
Significant values are in bold.

Model/Architecture ResNet50 EfficientNet-B0 EfficientNet-B1 ConvNeXt-T ConvNeXt-S

Baseline 78.25 ± 1.14 78.71 ± 1.22 77.60 ± 1.19 78.25 ± 1.47 78.53 ± 0.37

Student (ROI images) 79.08 ± 0.99 76.22 ± 1.99 78.34 ± 1.24 79.35 ± 1.47 80.83 ± 1.03

Student (Raw images) 77.51 ± 0.68 78.62 ± 1.71 77.88 ± 2.46 78.25 ± 1.76 78.80 ± 1.40

Change (in pp.) − 1.57 + 2.40 − 0.46 − 1.10 − 2.03

Figure 5.  (Top row) GradCAM attribution for a bacterial pneumonia case, 56 years old male patient with 
fungal infection in the right lower lung. For this case, the attribution of the baseline model is more diffuse and 
not as clean as PneuKnowNet. Furthermore, the baseline model does not predict the fungal infection, but rather 
a bacterial infection. (Bottom row) GradCAM attribution for a bacterial case, 44 years old male patient with 
bacterial infection of the left apical lung. Peribronchial consolidation area with positive bronchopneumogramm 
and associated a little bit fluid in the pleura. In this instance, the baseline model incorrectly attributes the right 
lung. Both models make incorrect predictions, but the baseline model predicts a healthy patient, which would 
be detrimental.
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Limitations and discussion
In this work, we presented a novel training process, Human Knowledge Distillation, which enables deep learning 
image models to implicitly learn from additional human-made annotations on the images. This can be especially 
useful for domains with very limited amounts of data available and presents an opportunity for a data quality-
quantity trade-off to improve model performance and enable better convergence. We demonstrate the positive 
effects on performance on our CXR study data to differentiate between 4 causes of pneumonia, as well as healthy 
patients as an example. We showed that our Human Knowledge Distillation models do not only perform better 
than a baseline classification pipeline in regards to classification metrics, but also seem to be more consistent 
with human decision regions. We evaluated our results on multiple model types and architectures, as well as 
training configurations, all of which show improved performances with our training approach. We also exam-
ined a reduction in the amount of ROI images to potentially reduce annotation costs. Therefore, we presented a 
method to obtain a potent and trustworthy model for scarce data domains.

Our method requires the training of multiple deep learning models in a more complex pipeline, making the 
approach computationally more expensive. Since this method is specifically tailored towards scenarios with 
small sample sizes and therefore short training cycles, this seems an acceptable trade-off. Depending on the 
level of detail, creating the extra annotations can be quite costly and/or time-consuming, although we showed, 
that a reduced amount of annotations could still be serviceable. In our demonstration, medical ROIs were used 
as annotations, but further annotation techniques could be explored. The introduced loss function LC for our 
stage 2 training could also be examined further. So far, we conducted our experiments with a decreasing consist-
ency loss component (reducing αe during training), slowly decreasing the influence of the teacher model. Other 
methods of modeling the teacher models influence might include increasing the consistency loss during training 
or keeping it constant. Examination of such effects on our method facilitates the need for further experiments. 
Lastly, we visually compared the GradCAM attributions for single examples. Our future work will measure 
and quantize the quality of attributions for both models over all images. A more rigorous investigation of this 
prevalent explainability method would also be desirable in this medical context.

The presented method was only evaluated on a single-center dataset. Since the method has specific require-
ments in regards to the quality of annotations, an external validation on CXR data is non-trivial. To the best of 
our knowledge, no publicly available CXR dataset meets the quality of the freehand-annotations of the dataset in 
this study. We conducted experiments on the CXR dataset of the 2021 SIIM-FISABIO-RSNA Machine Learning 
COVID-19  Challenge44. This dataset contains 6334 CXR images with 4 labels and bounding boxes, indicating 
infiltrated lung areas. We used the bounding boxes as ROI images to employ Human Knowledge Distillation 
equivalent to the presented study. Unfortunately, the amount of bounding boxes in the image introduced an 
unwanted bias to the dataset. This leads to a strong separation between classes, only from counting the bounding 
boxes themselves. This setup lead to a teacher model, that did not learn to use the localization of the bounding 
box, but rather the count of occurrence and was therefore not able to distill useful knowledge to the student 
model. Still, we think that external validation of our method will be important and could also be done on a dif-
ferent (medical) imaging domain.

While the performance of our models might not yet fulfill medical requirements for the presented study data 
in terms of overall performance, we argue that the improvements from applying Human Knowledge Distillation 
are valuable and promising. This is especially true in a medical context, where even small performance improve-
ments are very desirable and can make a valuable difference in correct treatments. Rather than focusing on the 
absolute performance measures, we wanted to examine if Human Knowledge Distillation can have a positive 
effect on model training and performance for this study data. We think that the improvements across many 
models and configurations could prompt further research and adoption of our method.

Data availability
The data that support the findings of this study are not openly available due to relevant data protection laws 
for human data. A sample of the data will be made available upon reasonable academic request from the cor-
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Code availability
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