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Identification of novel putative 
alleles related to important 
agronomic traits of wheat using 
robust strategies in GWAS
Hossein Abdi 1, Hadi Alipour 1, Iraj Bernousi 1*, Jafar Jafarzadeh 2 & Paulo Canas Rodrigues 3

Principal component analysis (PCA) is widely used in various genetics studies. In this study, the role 
of classical PCA (cPCA) and robust PCA (rPCA) was evaluated explicitly in genome-wide association 
studies (GWAS). We evaluated 294 wheat genotypes under well-watered and rain-fed, focusing on 
spike traits. First, we showed that some phenotypic and genotypic observations could be outliers 
based on cPCA and different rPCA algorithms (Proj, Grid, Hubert, and Locantore). Hubert’s method 
provided a better approach to identifying outliers, which helped to understand the nature of these 
samples. These outliers led to the deviation of the heritability of traits from the actual value. Then, 
we performed GWAS with 36,000 single nucleotide polymorphisms (SNPs) based on the traditional 
approach and two robust strategies. In the conventional approach and using the first three 
components of cPCA as population structure, 184 and 139 marker-trait associations (MTAs) were 
identified for five traits in well-watered and rain-fed environments, respectively. In the first robust 
strategy and when rPCA was used as population structure in GWAS, we observed that the Hubert and 
Grid methods identified new MTAs, especially for yield and spike weight on chromosomes 7A and 
6B. In the second strategy, we followed the classical and robust principal component-based GWAS, 
where the first two PCs obtained from phenotypic variables were used instead of traits. In the recent 
strategy, despite the similarity between the methods, some new MTAs were identified that can be 
considered pleiotropic. Hubert’s method provided a better linear combination of traits because it had 
the most MTAs in common with the traditional approach. Newly identified SNPs, including rs19833 
(5B) and rs48316 (2B), were annotated with important genes with vital biological processes and 
molecular functions. The approaches presented in this study can reduce the misleading GWAS results 
caused by the adverse effect of outlier observations.

Bread wheat (Triticum aestivum L.) is vital to the world’s agricultural economy. Understanding the basis of its 
genetic and phenotypic diversity is essential to increase grain yield. Such a goal requires statistical methods with 
the correct  application1. In this regard, cPCA has been one of the most important, simplest, and most widely 
used statistical tools for breeders. PCA aims to reduce data complexity in several principal components (PC). 
This multivariate method, in addition to studies of phenotypic and molecular  diversity2,3, has been used in con-
firming population  structure4,5, genotype  selection6, understanding the pattern of genotype-by-environment 
 interactions7,8, and selection of traits for yield  modeling9. Despite its widespread use, the results of this technique 
can be highly biased in population genetic  research10 and  GWAS11, which have been cited as potential  pitfalls12.

Most of the problems of PCA are due to the high sensitivity of this method to the presence of outliers in the 
data. Phenotypic and genotypic data are susceptible to outlier samples, regardless of the cause. Outlier observa-
tions have been observed in single-site and multi-environment  trials13,14, DNA-seq15,16, and RNA-seq17 data. 
Therefore, the presence of such observations in the data is inevitable and violates the underlying assumptions 
of many statistical  analyses18. The problem of outlier observations does not end only with their adverse effects, 
but identifying these observations and managing them is a very challenging  task19,20. So far, several statistical 
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methods have been developed to identify outliers, being the multivariate detection of outliers using PCA one of 
these  approaches12. The sensitivity of cPCA to outliers can be solved by using a robust PCA (rPCA)  algorithm17,21.

Over the past years, GWAS has proven its power in quantitative trait locus (QTL) mapping. Many researchers 
have tried deciphering and dissect the genetic basis of various wheat traits using this  approach22–26. Meanwhile, 
various QTLs distributed in almost all chromosomes have been identified for important wheat traits such as spike 
weight, grain number, thousand kernel weight, and grain  yield24,25,27–31. It was also concluded that many candi-
date genes for wheat grain yield under rainfed environments are in the form of gene  clusters32. In some GWAS 
studies based on gene annotation, it has been determined that SNPs identified for yield and yield components 
under drought stress are linked to genes that play an important role in plant growth and  survival33–35. Statistical 
methods are the core of  GWAS36. Although several of these methods have been developed for GWAS, most of 
them are sensitive to phenotypic outliers, making their results  unreliable11. Population structure is used as a 
covariate in GWAS to avoid false positive rates. Due to the high dimensionality, determining complex population 
substructures using SNPs is  challenging37. PCA is used as a simple method in setting population classification 
in these types of studies, and usually, its first few PCs are included as covariates of the population structure in 
the model. This method may not be suitable for properly diagnosing the population structure in the presence 
of outlier  data21. Such PCA can wrongly consider linkage disequilibrium (LD) structure instead of population 
structure, and principal component scores may capture  outliers12. Therefore, the linear combinations of the first 
three PCs, included as covariates in the model, can affect the GWAS results. On the other hand, sometimes, 
instead of phenotype variables, the PC obtained from them is used for  GWAS38–41. Therefore, the contamination 
of phenotypic data with outlier observations may also distort the GWAS results. In general, cleaning outliers and 
selecting robust statistical models in GWAS reduces the false positive and negative rates of QTL  detection42. In 
addition to GWAS, it has been reported that different methods of genome-wide QTL mapping studies are also 
susceptible to outliers, and in their presence, they bring misleading  results43.

This study has three specific aims: (i) to identify phenotypic and genotypic outlier observations using PCA 
and rPCA; (ii) to identify novel putative alleles associated with important spike traits under well-watered and 
rain-fed environments using GWAS; and (iii) to determine the power of PCA and rPCA linear combinations 
obtained from phenotypic and genotypic data to reduce the effect of outlier samples in GWAS analysis.

Materials and methods
Plant materials and phenotyping. A total of 294 Iranian bread wheat genotypes, including 90 cultivars 
released during the last century and 204 landraces collected from different locations (Supplementary Table 1), 
were evaluated in a randomized complete block design under well-watered (normal irrigation) and rain-fed 
environments. The experiments were carried out in a research farm with coordinates 50.58 E and 35.56 N and an 
altitude of 1112.5 m above sea level in 2019–2020. Climate information is presented in Supplementary Table 2 
according to the months of the experiment. Five spikes from each genotype were randomly selected, and differ-
ent traits were measured after being transferred to Urmia University. Spike weight (SW), grain number per spike 
(GN), grain yield (GY), thousand kernel weight (TKW), and spike internode length (SIL) were recorded. Spike 
internode length was obtained from the ratio of spike axis length to the number of nodes per  spike44. The broad-
sense heritability of these traits was calculated through the following equation:

where δ2g , δ2p , and δ2ge are the genotypic, phenotypic, and genotype-by-environment interaction variances, respec-

tively. δ2
ε
 is the error variance, Also, ne and nr are the number of environments and replicates, respectively. Finally, 

H2
BS was expressed as a percentage.

Genotyping. Iranian wheat landraces and cultivars were genotyped using the genotyping-by-sequencing 
(GBS) technique, the details of which have been described  previously45. In this method, SNPs were called using 
the UNEAK GBS  pipeline46, and imputation was performed in BEAGLE v3.3.27347 using the w7984 reference 
genome. For more details, refer to Alipour et al.48. Finally, SNPs with heterozygotes greater than 10% and minor 
allele frequency less than 5% were removed, and 36,000 SNPs remained for GWAS. The distribution of SNP 
markers in 21 chromosomes, kinship relationships, and genetic diversity indices have been reviewed in more 
detail in our previous  reports25,49.

Linkage disequilibrium (LD). Genome-wide linkage disequilibrium (LD) analysis was checked by calcu-
lating pairwise marker allele squared correlation coefficient (r2) for all pairwise comparisons. The LD decay pat-
tern for the whole genome and separately for A, B, and D genomes was displayed by plotting pairwise r2 values 
against genetic distance (bp).

Classical and robust principal component analysis. We used classical PCA analysis and four robust 
PCA (Proj, Grid, Hubert, and Locantore) methods to evaluate the population structure and identify outliers. 
Multivariate detection of outlier observations includes examining each observation based on a combination of 
variables. Usually, researchers deal with more than two variables in their data, so it is necessary to determine out-
lier observations in terms of a combination of variables. PCA uses the distance of the sample scores as a criterion 
for investigating outlier observations. The greater the distance between the observed scores, the higher the pos-
sibility of outliers. Most rPCAs use the Projection-Pursuit (PP) principle. PP methods are suitable for analyzing 
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data sets with many variables, and they aim to find structures in multivariate data by projecting them on a low-
dimensional subspace. These methods maximize a robust measure of spread to obtain consecutive directions on 
which the data points are  projected50. Here, the above four PCA methods are briefly described. The Grid method 
uses the PP technique to calculate PCA estimators, computed via a grid search algorithm in the plane rather than 
p-dimensional  space51. This algorithm leads to higher amounts of explained variability. Hubert’s method, called 
the ROBPCA algorithm, combines PP and robust covariance estimation, i.e., minimum covariance determinant 
(MCD) techniques, to compute the robust  loadings52. This rPCA method is resistant to outliers in the data and 
uses the MCD method for low-dimensional data sets. It is also very suitable for high-dimensional  data53. ROB-
PCA yields more accurate estimates of noncontaminated datasets and more robust estimates of contaminated 
data. In addition, the Hubert model produces a diagnostic plot that displays and classifies  outliers52. The spheri-
cal principal components procedure, called the Locantore method, is a functional data analysis method. This 
method performs cPCA on the data but is projected onto a unit sphere. The Locantore approach is very fast, and 
the estimates of the eigenvectors are consistent. This method is intended to explore the structure of populations 
of complex  objects54. Finally, the Proj approach, which is as fast as the previous method, was used. This approach 
includes a simple algorithm for approximating the PP-estimators for PCA whose PCs can be sequentially com-
puted. In other words, the Proj approach uses PP to calculate the robust eigenvalues and eigenvectors without 
going through robust covariance  estimation53,55. The cPCA and rPCA analyses were performed using the rrcov 
package in the R  program56. We used the outlier plots provided by these methods to identify outlier observa-
tions. Also, The first and second PCs were plotted to obtain a biplot.

Traditional single trait-GWAS. First, GWAS analysis was performed between SNP markers and average 
phenotypic data for each individual trait in each environment. Since the mixed linear model (MLM) is a stand-
ard method in GWAS for various wheat  traits57 and has better control over confounding  effects25, we used this 
model. In the MLM model, two covariates are used to prevent false positives: (i) matrix k, which represents kin-
ship relations or family relatedness, and (ii) the first three PCs of cPCA, which are considered as the population 
structure (stratification) in the model. Simply put, the equation of this model is as follows:

where Y represents the studied trait, SNP provides genotypic information, PCs are the population structure, and 
the kinship represents the relationship between individuals in the population using genotypic information, and e 
is the residual  error57. In the MLM model, individuals are considered random effects, and the relatedness among 
individuals is conveyed through a kinship matrix.

Single trait-GWAS with robust principal component covariates. As we mentioned earlier, classical 
PCA may not correctly represent the population structure. Therefore, in the second GWAS scenario, we used the 
four described rPCA methods as population structure. This work was done with the aim of obtaining different 
linear combinations of genotypic data to moderate the effect of genotypic outliers on GWAS results. Because 
rPCAs perform better in the presence of outlier observations.

Classical and robust principal component-based GWAS. PCs have been used instead of phenotype 
variables in GWAS in recent years. Since GWAS for PCs obtained from phenotypic data can be more valuable 
than traditional single trait-GWAS, we used two PCs instead of the traits themselves in the third scenario. The 
first two PCs were used because they explained more than 90% of the phenotypic changes, and the remaining 
PCs did not provide specific information. We also used the PCs obtained from cPCA and four rPCA methods. 
This work was done to reduce the effect of outlier observations from phenotypic data.

In all three scenarios above, the threshold of −  log10 (p) > 3 was used to state statistically significant marker-
trait associations (MTAs). Confidence intervals (CIs) for MTAs were calculated using the linkage disequilibrium 
(LD) decay. GWAS analyses were performed using genome association and prediction integrated tool (GAPIT) 
R-package58, but the necessary PCs were extracted through the rrcov package in the R  program56. The quan-
tile–quantile (Q-Q) plots of the observed and expected P values were plotted at − log10 (p) values to assess the 
adequacy of a fitted normal straight line to the markers. Finally, Venn diagrams were drawn using an online tool 
(https:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/) and the t-test was performed between the alleles of each 
SNP to compare the results.

Gene ontology (GO). The sequences surrounding all associated SNPs in the EnsemblPlants (http:// plants. 
ensem bl. org/ index. html) database were annotated using basic local alignment search tools (BLAST) and aligned 
with IWGSC v2.1 (International Wheat Genome Sequencing Consortium database) reference  genome59. After 
aligning the SNP sequences with the reference genome, overlapping genes with the highest percentage identity 
(%ID) and the lowest expected value (E-val) were selected for further processing and interpretation. Then, the 
ontology of genes, i.e., molecular function, biological process, and their cellular component, was extracted from 
the ensemble-gramene database. It should be noted that markers with almost identical sequences were filtered. 
Finally, the gene network was analyzed using the genes identified in the database for annotation, visualiza-
tion, and integrated discovery (DAVID) bioinformatics resources (https:// david. ncifc rf. gov/). This tool exam-
ines gene pathways based on the Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment  analysis60–62 
(https:// www. genome. jp/ kegg/; www. kegg. jp/ kegg/ kegg1. html).

Y = SNP + PCs + Kinship+ e

https://bioinformatics.psb.ugent.be/webtools/Venn/
http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
https://david.ncifcrf.gov/
https://www.genome.jp/kegg/
http://www.kegg.jp/kegg/kegg1.html


4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9927  | https://doi.org/10.1038/s41598-023-36134-z

www.nature.com/scientificreports/

Complying with relevant institutional, national, and international guidelines and legisla-
tion. The authors declare that all relevant institutional, national, and international guidelines and legislation 
were respected.

Permission for land study. The authors declare that all land experiments and studies were carried out 
according to authorized rules.

Results
Identification of outlier observations. Outlier samples were identified using cPCA and different rPCA 
methods based on phenotypic data in both environments and genotypic data (Table 1). These samples are deter-
mined based on the outlier plots provided by the rrcov R-package (outlier plots are not reported). Eight geno-
types were identified as outlier samples in well-watered and rain-fed environments, and only genotype 182 was 
common among them. Based on genotypic data, 16 samples were outliers. Genotypes 4, 200, and 252 were outli-
ers under well-watered using cPCA, and only genotype 252 was confirmed by other rPCA methods. However, 
in the rain-fed environment, all three genotypes that were identified as outliers by cPCA were also confirmed by 
rPCA methods. On the other hand, some outlier samples were identified only by robust methods.

According to the results, Hubert’s approach differs from other methods, especially in genotypic data. The 
Hubert method divides the outlier plot into four parts (Supplementary Fig. 1). The normal samples are on the 
bottom left and are different from the other three outlier types because this category’s score and orthogonal 
distances were low. The bottom right in the well-watered environment included genotypes No. 182, the rain-fed 
environment included genotypes No. 182 and 219, and the genotypic data included genotypes No. 19, 23, and 
24, which had high score distance and low orthogonal distance. In the upper left space of the outlier plot, the 
genotypes in which the orthogonal distance is high but the score distance is low, are located. It is interesting to 

Table 1.  Multivariate detection of outlier samples based on cPCA and various rPCA methods in different 
datasets.

Dataset No Code Type Classic Grid Hubert Locantore Proj

Well-watered

1 4 Landrace ✓

2 111 Landrace ✓ ✓ ✓

3 170 Landrace ✓

4 182 Landrace ✓

5 200 Landrace ✓

6 238 Cultivar ✓ ✓

7 252 Cultivar ✓ ✓ ✓ ✓ ✓

8 277 Cultivar ✓ ✓ ✓

Rain-fed

1 17 Landrace ✓

2 82 Landrace ✓ ✓ ✓

3 105 Landrace ✓ ✓ ✓ ✓

4 182 Landrace ✓ ✓

5 210 Cultivar ✓ ✓ ✓

6 215 Cultivar ✓ ✓

7 219 Cultivar ✓

8 286 Cultivar ✓

SNP

1 5 Landrace ✓ ✓

2 19 Landrace ✓

3 21 Landrace ✓

4 23 Landrace ✓

5 24 Landrace ✓

6 57 Landrace ✓

7 133 Landrace ✓

8 145 Landrace ✓

9 161 Landrace ✓

10 166 Landrace ✓

11 213 Cultivar ✓

12 219 Cultivar ✓

13 262 Cultivar ✓

14 270 Cultivar ✓

15 276 Cultivar ✓ ✓

16 283 Cultivar ✓
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note that in the phenotypic data, we did not see an example in this area, but in the genotypic data, three geno-
types (219, 262, and 283) were located there. The upper right will contain samples strongly deviated from normal 
samples and have high scores and orthogonal distances. We found such outlier examples only for phenotypic 
data. These results can help to understand the nature of outliers and determine their type.

There was a significant difference between genotypes in both environments for all traits. Also, except for SIL, 
the mean of traits in the rain-fed environment decreased (Supplementary Table 3). Descriptive statistics showed 
little changes by removing two genotypes (105 and 252) that were outliers by most methods. These changes were 
different from one trait to another. In SW, the mean decreased, but the genotypic variance increased. This mode 
for GN was increasing and decreasing, respectively. As expected, SD and δ2

GE decreased for all traits (except SIL). 
The amount of error variance also remained almost constant. The highest and lowest heritability were related to 
SIL and GY traits, respectively. Removing two outlier observations caused the heritability to increase by about 
2% in some traits (Table 2).

Linkage disequilibrium and population structure. The pattern of LD decay differed between sub-
genomes, ranging from 1707 to 5752 bp, so its level was high in the D genome and low in the B genome (Sup-
plementary Fig.  2). The distribution of genotypes based on the first two PCs in all methods showed a clear 
distinction between Iranian wheat cultivars and landraces (Fig. 1). Some cultivars were among landraces. By 
looking closely at the pedigree of these cultivars, we found that some of them, such as Ohadi, Roshan, and Homa, 
are originally landraces that have experienced various selection processes. Although, in general, the distribution 
pattern of genotypes was similar in all five PCA methods, it seems that the Grid approach is different from oth-
ers (Fig. 1).

Traditional single trait-GWAS. In GWAS analysis for five traits, 184 and 139 MTAs were identified in the 
well-watered and rain-fed environments, respectively. The details of these results are provided in Supplementary 
Tables 4 and 5. Briefly, In the well-watered, 38 SNPs were associated with GN, about 32% of which were located 
on chromosome 7A, and 90% of the markers had a significant difference between their two alleles in terms of 
GN (Table 3). For the same trait in rain-fed, 23 MTAs were discovered, mainly distributed in the A genome as 
in well-watered, and 60% of them were different between their two alleles. For SW under well-watered and rain-
fed environments, respectively, we observed 19 MTAs (mostly in genome A) and 18 MTAs (mostly in genome 
B), of which 68% and 55% differed between their alleles in terms of average SW. Among the traits studied, most 
MTAs were assigned to SIL. 65 and 53 MTAs were associated with SIL in well-watered and rain-fed environ-
ments, respectively, and most of these SNPs were located on chromosomes 6B and 2B. After SIL, TKW, with 44 
MTAs in a well-watered environment and 32 MTAs in a rain-fed environment, had the highest number of MTAs 
located in chromosome 2B. Mostly, we found a statistically significant difference between the two alleles of these 
markers in terms of average TKW. Finally, GY was significantly associated with 18 and 13 SNPs in well-watered 
and rain-fed, respectively, which were distributed in almost half of the 21 wheat chromosomes. Like the previous 
traits, the markers related to GY differed between their two alleles in terms of the average trait.

Single trait-GWAS with robust principal component covariates. The details of single trait-GWAS 
results with different PCs as population structure are presented in Supplementary Table 4. In addition, Venn 
plots are drawn in Fig. 2 to show the number of common SNPs between different methods. The effect of popula-
tion structure on GWAS results varied from one trait to another. In both environments, the number of common 
SNPs between cPCA and rPCA methods was high for GN, SIL, and TKW traits but low for traits such as GY and 
SW. Using the PCs provided by Hubert and Grid methods as population structure identified some new markers, 
especially in SW, GY, and SIL traits. Also, several new markers were identified using a covariate of the popula-
tion structure by the Proj method in most traits. In some cases, the new SNPs identified by the rPCA covariate 
were in the same chromosomal regions as those identified by the classical method. However, others were located 

Table 2.  Mean, standard deviation (SD), variance components, and general heritability  (H2
BS) for the studied 

traits in two environments. δ2
G, δ2

GE, and δ2
E represent the genotypic, genotype-by-environment, and error 

variances,  respectively$ In “no outlier”, genotypes 105 and 252, which were outliers by most methods, have 
been removed from the total data. *** significant at 0.001 probability levels by F test of genotypic variance.

Trait Type$ Mean SD δ2
G δ2

GE δ2
E H2

BS P

Spike weight (g)
Outlier 2.1603 0.8994 0.118 0.142 0.380 51.98 ***

No Outlier 2.1576 0.8968 0.120 0.134 0.380 53.33 ***

Grain number
Outlier 43.53 14.074 45.21 39.76 103.0 59.97 ***

No Outlier 43.40 13.967 44.32 38.24 102.1 60.18 ***

Grain yield (g/plant)
Outlier 1.539 0.7356 0.074 0.096 0.260 50.00 ***

No Outlier 1.537 0.7335 0.076 0.092 0.260 51.35 ***

Thousand kernel weight (g)
Outlier 35.022 11.483 23.9 27.4 52.0 55.84 ***

No Outlier 35.072 11.471 24.0 26.6 52.0 56.47 ***

Spike internode length (cm)
Outlier 0.5478 0.0763 0.00256 0.00128 0.00197 75.34 ***

No Outlier 0.5476 0.0764 0.00257 0.00129 0.00198 75.24 ***
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in new chromosomal regions that could be interesting. In Hubert and Proj’s methods, new regions were found 
on chromosomes 7A and 6B for both SW and GY traits. Using the PCs obtained by the Locantore method, the 
lowest number of new MTAs was detected compared to other methods.

We evaluated the fitness and efficiency of different models with Q-Q plots. The Q-Q plots of the 
expected − log10 (p) versus the observed − log10 (p) for PCA covariates were almost the same in both well-
watered (Fig. 3) and rain-fed (Fig. 4) environments. In general, in these methods, the observed values were 
close to the expected values. Only at the tail of the point distribution did we see a deviation from the expected 
value, indicating significant marker effects. However, minor differences are also visible; for example, the values 
observed in Hubert’s method for GY in well-watered were closer to the expected values. Also, the p-values for 
GY under rain-fed seems slightly inflated, which is solved in Hubert’s method.
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Figure 1.  Classical and robust principal component analysis (PCA) based on 36,000 SNP markers generated 
from 294 Iranian wheat landraces (blue) and cultivars (orange).
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Table 3.  The t test between two alleles of all SNPs associated with traits in two environments. SW Spike 
weight, GN Grain number, GY Grain yield, TKW Thousand kernel weight, SIL Spike internode length.

Environment t test Trait Classic Grid Hubert Locantore Proj

Well-watered

Significance

SW 13 (68.4) 16 (76.2) 26 (87.7) 12 (70.6) 18 (66.7)

GN 34 (89.5) 30 (85.7) 32 (94.1) 35 (92.1) 35 (97.2)

TKW 42 (95.5) 39 (90.7) 35 (94.6) 46 (95.8) 39 (95.1)

GY 11 (61.1) 17 (77.3) 26 (83.9) 12 (63.2) 11 (61.1)

SIL 62 (95.4) 58 (96.7) 55 (96.5) 63 (95.5) 63 (92.6)

Non-significance

SW 6 (31.6) 5 (23.8) 4 (13.3) 5 (29.4) 9 (33.3)

GN 4 (10.5) 5 (14.3) 2 (5.88) 3 (7.89) 1 (2.78)

TKW 2 (4.55) 4 (9.30) 2 (5.41) 2 (4.17) 2 (4.88)

GY 7 (38.9) 5 (22.7) 5 (16.1) 7 (36.8) 7 (38.9)

SIL 3 (4.62) 2 (3.33) 2 (3.51) 3 (4.55) 5 (7.35)

Rain-fed

Significance

SW 10 (55.6) 5 (45.5) 28 (84.8) 9 (50.0) 16 (72.7)

GN 14 (60.9) 13 (61.9) 12 (60) 15 (62.5) 13 (68.4)

TKW 31 (96.9) 26 (96.3) 29 (100) 28 (96.6) 34 (94.4)

GY 10 (76.9) 6 (50.0) 17 (85.0) 10 (76.9) 13 (76.5)

SIL 34 (64.2) 40 (69.0) 36 (69.2) 37 (63.8) 36 (70.6)

Non-significance

SW 8 (44.4) 6 (54.5) 5 (15.2) 9 (50.0) 6 (27.3)

GN 9 (39.1) 8 (38.1) 8 (40.0) 9 (37.5) 6 (31.6)

TKW 1 (3.1) 1 (3.7) 0 (0) 1 (3.5) 2 (5.6)

GY 3 (23.1) 6 (50.0) 3 (15.0) 3 (23.1) 4 (23.5)

SIL 19 (35.8) 18 (31.0) 16 (30.8) 21 (36.2) 15 (29.4)

Figure 2.  Venn plots represent the number of SNPs in classical PCA and robust PCA for evaluated traits. (A): 
grain number under well-watered, (B): grain number under rain-fed, (C): grain yield under well-watered, (D): 
grain yield under rain-fed, (E): spike internode length under well-watered, (F): spike internode length under 
rain-fed, (G): spike weight under well-watered, (H): spike weight under rain-fed, (I): thousand kernel weight 
under well-watered, (J): thousand kernel weight under rain-fed.
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We identified several markers associated with different traits, including two markers located in chromosomes 
2A and 5A that were associated with GN, GY, and SW in a well-watered environment by all methods. Markers 
in chromosomes 4A, 2B, and 5B were associated with the above three traits in rain-fed. The highest number of 
identical markers in both environments was related to GY and SW. On the other hand, except for TKW, at least 
one marker was the same for the other four traits in both well-watered and rain-fed environments, which can 
be considered stable QTLs. As we expected, there was a significant difference between the two alleles of most 
of the identified SNPs in terms of the studied traits. Nevertheless, significant SNPs were high for traits such as 
SIL, TKW, and GN in well-watered and TKW in rain-fed. SNPs identified by Hubert and Proj methods had the 
highest percentage of significant markers for some traits (Table 3).

Figure 3.  Quantile–quantile (Q–Q) plots for genome wide association study (GWAS) based on different PCA 
covariates in studied traits under well-watered environment. (A): Grain number, (B): Grain yield, (C): Spike 
internode length, (D): Spike weight, and (E): Thousand kernel weight.
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Classical and robust principal component-based GWAS. Under well-watered, 56 MTAs were dis-
covered for the first two PCs using the classical method, while this number was 63, 66, 55, and 61 MTAs in 
the Grid, Hubert, Locantore, and Proj methods, respectively (Supplementary Table  5). Almost 30% of SNPs 
associated with PC1 in all methods were on chromosome 7A. Chromosome 2B was one of the other important 
chromosomes on which 20% of SNPs related to PC1 were located in Grid and Proj methods and 10% in Hubert’s 
method. Hubert’s method obtained the highest number of MTAs identified for PC2. This indicates the different 
linear combinations of this method compared to others. Also, Hubert’s method had the highest number of com-
mon markers with traits. Almost 55% of the markers identified for traits were unrelated to any components. In 
contrast, 15% were observed by the components of all methods. PCs of other methods, especially Grid and Proj, 
discovered several MTAs that were not observed in other methods and single traits (Fig. 5A).

Figure 4.  Quantile–quantile (Q–Q) plots for genome wide association study (GWAS) based on different 
PCA covariates in studied traits under rain-fed environment. (A): Grain number, (B): Grain yield, (C): Spike 
internode length, (D): Spike weight, and (E): Thousand kernel weight.
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Such results were also obtained under drought rain-fed. Out of 139 MTAs identified for traits, 65 were absent 
in GWAS for the two principal components resulting from traits. The highest and lowest MTAs were assigned to 
PCs obtained from Locantore and Grid methods, respectively (Supplementary Table 5). In the classical method, 
the markers associated with PC1 and PC2 were mainly located in the A and B genomes, respectively. Unlike 
other methods with the most MTAs in chromosome 2B for PC2, in Grid and Proj methods, this chromosome 
contained more SNPs related to PC1. In Hubert’s method, chromosomes 1A, 2A, 6A, and 6D had a high associa-
tion with PC1, and chromosomes 2B and 6B with PC1. Almost the same results as Hubert’s were obtained for 
two PCs from the Locantore method. Interestingly, 18 MTAs were identified for components of the Locantore 
method that were not present in the others. On the other hand, the SNPs associated with the Hubert method 
components wholly overlapped with those associated with a single trait (Fig. 5B).

Gene annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Among 
all identified markers, 77 overlapped with a range of genes mainly located on chromosomes 2B, 3B, 6B, 1B, 7A, 
4A, and 6A (Supplementary Table 6). Some of these genes had biological processes and molecular functions, 
forming part of cellular components such as membranes and nuclei. Defense response, protein phosphorylation, 
regulation of transcription, and DNA template are the most visible in biological processes. On the other hand, 
protein binding, ADP binding, DNA binding, iron ion binding, etc., were molecular functions of genes. The 
results of GO enrichment analysis and testing of statistically enriched pathways were performed in the KEGG, 
and some pathways, including biosynthesis of flavonoid, carotenoid, and secondary metabolites, were identified. 
Other pathways were metabolic, ubiquitin-mediated proteolysis, protein processing, plant-pathogen interaction, 
and fatty acid elongation (Table 4). Interestingly, some KEGG pathways were detected only by Hubert’s method.

Discussion
PCA is a data dimensionality reduction method. In the analysis above, it is possible to convert many primary 
variables into a few new principal components, i.e., linear combinations of the original variables, that express 
the most variance observed in the original data. In recent years, PCA has also been used to help detect outliers. 

Figure 5.  Venn plots showing the number of common markers of GWAS analysis for traits and the first two 
components of PCA methods in well-watered (A) and rain-fed (B) environments.

Table 4.  Kyoto encyclopedia of genes and genomes (KEGG) pathways (www. kegg. jp/ kegg/ kegg1. html) for 
overlapping genes identified by different methods. CPC classical PCA, GPC Grid PCA, HPC Hubert PCA, LPC 
Locantore PCA, PPC Proj PCA.

Marker Overlapping Gene KEGG Pathway Method

rs16045 TraesCS2B02G612700, TraesCS2B02G612800 Flavonoid biosynthesis, Metabolic pathways, Biosynthesis of secondary metabolites All

rs5823 TraesCS4A02G004900 Carotenoid biosynthesis, Metabolic pathways, Biosynthesis of secondary metabolites All

rs48469 TraesCS3B02G033700 Ubiquitin mediated proteolysis CPC, GPC, LPC, PPC

rs48316 TraesCS2B02G098500 Inositol phosphate metabolism, Metabolic pathways, Phosphatidylinositol signaling system CPC, GPC, PPC

rs19833 TraesCS5B02G295400 Protein processing in endoplasmic reticulum GPC, PPC

rs62975 TraesCS4A02G191400 Phosphonate and phosphinate metabolism, Glycerophospholipid metabolism, Metabolic 
pathways HPC

rs30826 TraesCS7A02G206000 Fatty acid elongation, Metabolic pathways, Biosynthesis of secondary metabolites, Plant-
pathogen interaction HPC

rs32288 TraesCS7A02G202900,
TraesCS7A02G203000 Cutin, suberine and wax biosynthesis HPC

http://www.kegg.jp/kegg/kegg1.html
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Multivariate outlier detection includes multivariate analysis of each observation based on a combination of 
 variables19,21,63. Outliers samples are observations that fall outside the general distribution pattern, and con-
tamination of data with these samples is more of a rule than an  exception53. Outliers can be caused by various 
factors such as low seed quality, outlying response, misidentification of genotype, wrong data imputation, etc.20,64. 
Looking more closely at the outliers, we found that genotype No. 252, which was an outlier under well-watered 
by all methods, had poor seed quality and shriveled because it had high GN and low TKW. Probably, genotype 
No. 105 had a wrong classification in well-watered because its parameters were similar and even higher than the 
average of well-watered. Such deviations can have a high impact on the genotypic  average65.

In the present study, phenotypic data compared to genotypic data, different methods identify the same samples 
as outliers. This is probably due to the high dimensionality in the genotypic data. Determining outliers in high-
dimensional genomic data is  difficult17,20. However, using different methods to discover them can be useful. In 
the outlier plot obtained from the ROBPCA algorithm (Hubert), it was found that no outlier sample had high 
scores and orthogonal distances based on genotypic data. If the number of accessions is high, the outlier status 
of some samples will change. Genotype No. 161 was present in a core set designed from among 2403 Iranian 
wheat landraces, and 12% of other genotypes were in outlier  groups16. In analyzing the diversity of 80,000 wheat 
accessions worldwide, it was found that some are outliers. A closer examination indicated that some samples 
were misclassified in their passport  information66. This is an example of the application of identifying outlier 
samples. Also, tools have been developed based on PCA analysis to detect  outliers67 to, e.g., determine the SNPs 
under selection, and involved in biological adaptation, and have been used in various  crops15,68,69.

A good separation of cultivars from landraces based on PCA was expected because there are traces of foreign 
origin in the pedigree of many Iranian wheat cultivars. Some of the cultivars mixed with the landraces are old 
and the detailed information about their pedigree is not available, but they are most likely of landraces origin. 
In this regard, Khadka et al.4 have discussed the possibility of mistakenly collecting exotic germplasm instead of 
landraces in Nepalese wheat during the 1970s to 1990s. According to our results, it has been reported that PCA 
based on SNPs can divide wheat accessions into separate groups according to breeding  origin32,70. In our study, 
the distribution of landraces was not strictly based on their geographical origin where they were collected. The 
subgroups identified as population structure can represent different wheat breeding  programs33. Therefore, using 
PCs as a population structure in GWAS can avoid false positive associations.

Efforts to increase wheat yields continue to meet human needs. In this regard, evaluating spike traits is critical 
due to their direct relationship with the grain. Several studies have emphasized the importance of spike  traits71–73. 
As it was apparent, the traits studied under well-watered showed a decrease in average. SIL was an exception 
to this rule because the number of nodes decreased in parallel with the reduction in spike length. Heritability 
range varied from 50% in GY to 75% in SIL. The heritability estimated in this study for SIL is almost equal to 
that reported in a similar  study44. The high heritability of this trait might be due to being mainly controlled by 
genetic effects. While for GY, which has complex control, heritability was  low25,74. Our results demonstrate the 
distorting effect of outlier samples in estimating heritability, as previously  mentioned65. Due to the incorrect 
estimation of heritability in the presence of outliers, it is suggested to use the robust estimation of heritability 
and to pay attention to these methods along with the classical  approach18. In another study, the robust DF-
REML framework for estimating variance components was proposed, which could provide a robust estimate of 
 heritability75. However, many reports still do not pay attention to outlier data, which seems to be due to a lack 
of deep understanding of the distorting effects of this data.

We performed GWAS based on three approaches. Although these methods had a lot in common in highly 
significant MTAs, there was a difference between the methods in terms of significant SNPs at the level of −  log10 
(p) > 3. Such changes in GWAS results are because genomic data are rarely of good quality and are contaminated 
with outliers, missing values, and  noise20. Q-Q plot is a convenient tool that shows control of type I error in MTA 
detection and can be used for model selection in  GWAS76–78. Population stratification or cryptic relatedness leads 
to systematic deviation from the diagonal at the upper-right end of the Q-Q  plots79. Based on this plot, there 
was not much difference in the results. This result is probably why we did not have outlier observation in SNP 
data of the third type (both score and orthogonal distances high). However, it seems that using PCs obtained 
from Hubert’s approach can be useful in data with outlier observations of the first and second type. Also, other 
rPCA methods need to be investigated in diverse populations because we saw slight differences in the deviation 
from the diagonal at the Q-Q plots of different methods. Finally, using cPCA in genotyping data that are not 
contaminated by outlier observations is better.

The distribution of GY-related markers in different chromosomes has been observed  before29,80. 4A was the 
chromosome that contained MTAs for GY in both environments; even SNP rs12851 on this chromosome showed 
its significant association in both environmental conditions. The same result was reported in similar studies that 
observed a stable association between chromosome 4A and yield under drought  stress81,82. In addition, SNP 
rs5823, associated with GN and PC1 in all methods, was located on chromosome 4A. Interestingly, it was present 
in the carotenoid biosynthesis pathway and supported the cellular anatomical entity. When we used Hubert’s 
PC for population structure, chromosome 7A was most associated with GY. According to the annotation, SNP 
rs30826 on this chromosome played a role in the membrane structure and was present in the plant-pathogen 
interaction pathway. It has been proven that there are crosstalks between responses to biotic and abiotic stresses, 
and some stress-resistant genes can respond to biotic and abiotic  stresses83. Also, the plant-pathogen interac-
tion pathway was involved in the drought stress resistance of transgenic  wheat84. In a robust GWAS analysis, to 
overcome the problems of outlier observations, the linear mixed model approach was strengthened using the 
β-divergence method. This method performed better than the linear regression and mixed model approaches in 
the presence of outlier data and identified new SNPs that can be used in breeding  programs11. The combination 
of GWAS and t-tests help identify significant  SNPs85, confirming CAPS  markers86, and identifying favorable 
SNP  alleles87. Hence, we tracked the t-test for a more accurate assessment of the changes in phenotypic data due 
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to allelic variation. The Hubert and Proj method had the highest percentage of significant SNPs in some traits 
compared to the classical method. The non-significant SNPs between the two alleles in terms of the t-test were 
distributed in most traits in a range of chromosomes; however, 2B and 7A had the highest number of these SNPs 
for SIL and GN traits, respectively.

Principal component-based GWAS is statistically more powerful than single-trait GWAS and requires less 
computational time than multi-trait GWAS. Therefore, it is an efficient method to identify pleiotropic  markers39. 
If the first two PCs explain a high percentage of trait variation, they can be suitable enough for  GWAS38,40,41. In 
the present study, these two PCs captured more than 90% of the variation. Chromosome 7A had a high percent-
age of MTAs related to PC1 in all methods. The mentioned chromosome is important due to its association with 
multiple agronomic  traits88 and contains pleiotropic  QTL89,90. Chromosome 2B was among the other regions 
associated with PCs in both environments. Pleiotropic loci have been reported in chromosome  2B91. Interest-
ingly, under well-watered, SNP rs7805 located on chromosome 3B was associated with PC1 in all methods, 
while it was not significantly associated with any trait. 3B is a chromosome that simultaneously controls several 
yield  components25,92. Such QTLs controlling two or more traits lead to high genetic correlation in many traits. 
The presence of such QTLs in the present study is not far from expected because the correlation between spike 
traits is  certain27,44.

Although PC-GWAS increases statistical power and has led to the identification of new SNPs in some GWAS 
 studies40,41,93,94, the presence of even a single outlier has a negative effect on PCA  results95. The impact of outlier 
samples on GWAS results has already been discussed. It has been stated that the number and identity of QTLs 
identified through GWAS are influenced by the curation and preparation of phenotypic data. If the phenotypic 
data is contaminated with outliers, the number of suspicious QTLs will increase, especially in loci with unbal-
anced allelic  frequency64. Therefore, it seems necessary to identify the outliers and then enter the next steps for 
the accuracy and precision of GWAS. For this reason, we used rPCA to obtain other linear combinations of traits 
that moderate the effect of outliers as input for GWAS. As far as we searched, such an approach has not been 
investigated in any GWAS. Under well-watered, SNP rs19833 on chromosome 5B, associated with PC1 in Grid 
and Proj methods, was involved in protein processing in the endoplasmic reticulum. There is evidence of the 
consequences of protein processing in the endoplasmic reticulum on the final grain size of  wheat96, and we know 
that spike traits strongly affect the final grain size. In addition, based on the above two methods, other markers 
were identified that play a role in essential candidate genes, such as protein binding, protein phosphorylation, 
and lipid metabolic process. We saw a similar situation in the well-watered environment where SNP rs48316 
located in chromosome 2B, was not associated with any trait but was significantly associated with PC1 in different 
methods. According to KEGG results, this SNP overlapped with the TraesCS2B02G098500 gene and was present 
in pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and metabolic 
pathways. All three of these pathways play a role in tolerance to drought  stress97–99.

Conclusion
When phenotypic and genotypic data are contaminated with outlier observations, PCA and different rPCA algo-
rithms provided promising results in identifying them. We have shown that in such a situation, cPCA should be 
used cautiously in GWAS due to its sensitivity. Using robust strategies in GWAS, putative alleles for important 
agronomic traits in wheat were identified that were not found in conventional GWAS. Linear combinations of 
Hubert and Proj methods moderated the effect of phenotypic outliers to a great extent and effectively identified 
pleiotropic markers. Also, in GWAS results, the population structure provided by rPCA methods discovered 
several new QTLs associated with traits. Robust strategies in GWAS reduce the risk of missing interesting rare 
alleles. Finally, it is necessary to pay more attention to the effect of outlier samples and the above methods in 
future GWAS studies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 12 January 2023; Accepted: 30 May 2023

References
 1. Mohammadi, S. A. & Prasanna, B. M. Analysis of genetic diversity in crop plants—Salient statistical tools and considerations. Crop 

Sci. 43, 1235–1248 (2003).
 2. Alipour, H. & Abdi, H. Interactive effects of vernalization and photoperiod loci on phenological traits and grain yield and dif-

ferentiation of Iranian wheat landraces and cultivars. J. Plant Growth Regul. 40, 2105–2114 (2021).
 3. Mengistu, D. K., Kiros, A. Y. & Pè, M. E. Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. 

Crop J. 3, 190–199 (2015).
 4. Khadka, K. et al. Population structure of Nepali spring wheat (Triticum aestivum L.) germplasm. BMC Plant Biol. 20, 1–12 (2020).
 5. Nielsen, N. H., Backes, G., Stougaard, J., Andersen, S. U. & Jahoor, A. Genetic diversity and population structure analysis of Euro-

pean hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS ONE 9, e94000 (2014).
 6. Godshalk, E. B. & Timothy, D. H. Factor and principal component analyses as alternatives to index selection. Theor. Appl. Genet. 

76, 352–360 (1988).
 7. Ahakpaz, F. et al. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and 

the role of monthly rainfall. Agric. Water Manag. 245, 106665 (2021).
 8. De La Vega, A. J. & Chapman, S. C. Genotype by environment interaction and indirect selection for yield in sunflower: II. Three-

mode principal component analysis of oil and biomass yield across environments in Argentina. F. Crop. Res. 72, 39–50 (2001).



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9927  | https://doi.org/10.1038/s41598-023-36134-z

www.nature.com/scientificreports/

 9. Abdipour, M., Younessi-Hmazekhanlu, M., Ramazani, S. H. R. & Omidi, A. H. Artificial neural networks and multiple linear 
regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind. Crops Prod. 127, 185–194 
(2019).

 10. Elhaik, E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be 
reevaluated. Sci. Rep. 12, 14683 (2022).

 11. Akond, Z., Ahsan, M. A., Alam, M. & Mollah, M. N. H. Robustification of GWAS to explore effective SNPs addressing the chal-
lenges of hidden population stratification and polygenic effects. Sci. Rep. 11, 1–15 (2021).

 12. Prive, F., Luu, K., Blum, M. G. B., Mcgrath, J. J. & Vilhja, B. J. Genetics and population analysis Efficient toolkit implementing best 
practices for principal component analysis of population genetic data. Bioinformatics 36, 4449–4457 (2020).

 13. Tanaka, E. Simple robust genomic prediction and outlier detection for a multi-environmental field trial. arXiv Prepr. 1807.07268 
(2018).

 14. Nascimento, M. et al. Influential points in adaptability and stability methods based on regression models in cotton genotypes. 
Agronomy 11, 2179 (2021).

 15. Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 
7, 172–183 (2021).

 16. Vikram, P. et al. Strategic use of Iranian bread wheat landrace accessions for genetic improvement: Core set formulation and 
validation. Plant Breed. 140, 87–99 (2021).

 17. Chen, X. et al. Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinf. 21, 1–20 
(2020).

 18. Lourenço, V. M., Ogutu, J. O. & Piepho, H. P. Robust estimation of heritability and predictive accuracy in plant breeding: Evalua-
tion using simulation and empirical data. BMC Genom. 21, 1–18 (2020).

 19. Pascoal, C., Oliveira, M. R., Pacheco, A. & Valadas, R. Detection of outliers using robust principal component analysis: A simula-
tion study. Adv. Intell. Soft Comput. 77, 499–507 (2010).

 20. Budhlakoti, N., Rai, A. & Mishra, D. C. Statistical approach for improving genomic prediction accuracy through efficient diagnostic 
measure of influential observation. Sci. Rep. 10, 8408 (2020).

 21. Liu, L., Zhang, D., Liu, H. & Arendt, C. Robust methods for population stratification in genome wide association studies. BMC 
Bioinf. 14, 1–12 (2013).

 22. Monnot, S. et al. Deciphering the genetic architecture of plant virus resistance by gwas, state of the art and potential advances. 
Cells 10, 3080 (2021).

 23. Li, L. et al. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. 
Ann. Bot. 124, 993–1006 (2019).

 24. Krishnappa, G. et al. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using 
genome-wide association study. Sci. Rep. 12, 1–14 (2022).

 25. Alipour, H., Abdi, H., Rahimi, Y. & Bihamta, M. R. Dissection of the genetic basis of genotype-by-environment interactions for 
grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars. Sci. Rep. 11, 17742 (2021).

 26. Li, L. et al. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ. 42, 2540–2553 (2019).
 27. Eltaher, S. et al. Genome-wide association mapping revealed SNP alleles associated with spike traits in wheat. Agronomy 12, 1469 

(2022).
 28. Wang, X. et al. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and 

late-sown stressed environments. Theor. Appl. Genet. 134, 143–157 (2021).
 29. Eltaher, S. et al. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC 

Genom. 22, 1–14 (2021).
 30. Khan, H. et al. Genome-wide association study for grain yield and component traits in bread wheat (Triticum aestivum L.). Front. 

Genet. 13, 982589 (2022).
 31. Zheng, X. et al. Genome-wide association study of grain number in common wheat from Shanxi under different water regimes. 

Front. Plant Sci. 12, 3163 (2022).
 32. Liu, H. et al. Genomic regions controlling yield-related traits in spring wheat: a mini review and a case study for rainfed environ-

ments in Australia and China. Genomics 114, 110268 (2022).
 33. Ain, Q. U. et al. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. 

Front. Plant Sci. 6, 743 (2015).
 34. Rahimi, Y., Bihamta, M. R., Taleei, A., Alipour, H. & Ingvarsson, P. K. Genome-wide association study of agronomic traits in bread 

wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol. 19, 1–19 (2019).
 35. Rabieyan, E., Bihamta, M. R., Moghaddam, M. E., Mohammadi, V. & Alipour, H. Genome-wide association mapping and genomic 

prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions. BMC Genom. 
23, 1–25 (2022).

 36. Yoosefzadeh-Najafabadi, M., Eskandari, M., Belzile, F. & Torkamaneh, D. Genome-wide association study statistical models: A 
review. in Genome-Wide Association Studies (2022).

 37. Chaichoompu, K. et al. IPCAPS: An R package for iterative pruning to capture population structure. Source Code Biol. Med. 14, 
1–5 (2019).

 38. Safdar, L. B. et al. Identification of genetic factors controlling phosphorus utilization efficiency in wheat by genome-wide associa-
tion study with principal component analysis. Gene 768, 145301 (2021).

 39. Zhang, W. et al. PCA-based multiple-trait GWAS analysis: A powerful model for exploring pleiotropy. Animals 8, 239 (2018).
 40. Kumar, K. et al. Single trait versus principal component based association analysis for flowering related traits in pigeonpea. Sci. 

Rep. 12, 10453 (2022).
 41. Ma, L. et al. GWAS with a PCA uncovers candidate genes for accumulations of microelements in maize seedlings. Physiol. Plant. 

172, 2170–2180 (2021).
 42. Alvarez Prado, S., Hernández, F., Achilli, A. L. & Amelong, A. Preparation and curation of phenotypic datasets. Methods Mol. Biol. 

2481, 13–27 (2022).
 43. Alam, M. J., Mydam, J., Hossain, M. R., Islam, S. M. S. & Mollah, M. N. H. Robust regression based genome-wide multi-trait QTL 

analysis. Mol. Genet. Genom. 296, 1103–1119 (2021).
 44. Wolde, G. M., Trautewig, C., Mascher, M. & Schnurbusch, T. Genetic insights into morphometric inflorescence traits of wheat. 

Theor. Appl. Genet. 132, 1661–1676 (2019).
 45. Alipour, H. et al. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. 

Front. Plant Sci. 8, 1–14 (2017).
 46. Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 

(2007).
 47. Browning, B. L. & Browning, S. R. A unified approach to genotype imputation and haplotype-phase inference for large data sets 

of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2008).
 48. Alipour, H. et al. Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. 

PLoS ONE 14, 1–20 (2019).



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9927  | https://doi.org/10.1038/s41598-023-36134-z

www.nature.com/scientificreports/

 49. Alipour, H. et al. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. 
Front. Plant Sci. 8, 1293 (2017).

 50. Rousseeuw, P. J. & Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 73–79 
(2011).

 51. Croux, C., Filzmoser, P. & Oliveira, M. R. Algorithms for projection-pursuit robust principal component analysis. Chemom. Intell. 
Lab. Syst. 87, 218–225 (2007).

 52. Hubert, M., Rousseeuw, P. J. & Vanden Branden, K. ROBPCA: A new approach to robust principal component analysis. Techno-
metrics 47, 64–79 (2005).

 53. Rodrigues, P. C., Monteiro, A. & Lourenço, V. M. A robust AMMI model for the analysis of genotype-by-environment data. Bio-
informatics 32, 58–66 (2016).

 54. Locantore, N. et al. Robust principal component analysis for functional data. TEST 8, 1–73 (1999).
 55. Croux, C. & Ruiz-Gazen, A. High breakdown estimators for principal components: The projection-pursuit approach revisited. J. 

Multivar. Anal. 95, 206–226 (2005).
 56. Todorov, V. & Filzmoser, P. An object-oriented framework for robust multivariate analysis. J. Stat. Softw. 32, 1–47 (2009).
 57. Saini, D. K. et al. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. Mol. 

Breed. 42, 1–52 (2022).
 58. Kärkkäinen, H. P. et al. GAPIT: Genome association and prediction integrated tool. Bioinformatics 44, 2397–2399 (2012).
 59. Hosaka, K. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 8, 589–600 

(2018).
 60. Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).
 61. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
 62. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways 

and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
 63. Chiang, L. H., Pell, R. J. & Seasholtz, M. B. Exploring process data with the use of robust outlier detection algorithms. J. Process 

Control 13, 437–449 (2003).
 64. Alvarez Prado, S. et al. To clean or not to clean phenotypic datasets for outlier plants in genetic analyses?. J. Exp. Bot. 70, 3693–3698 

(2019).
 65. Ould Estaghvirou, S. B., Ogutu, J. O. & Piepho, H. P. Influence of outliers on accuracy estimation in genomic prediction in plant 

breeding. G3 Genes Genomes Genet. 4, 2317–2328 (2014).
 66. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. 

Nat. Commun. 11, 4572 (2020).
 67. Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component 

analysis. Mol. Ecol. Resour. 17, 67–77 (2017).
 68. Skovbjerg, C. K. et al. Genetic analysis of global faba bean germplasm maps agronomic traits and identifies strong selection sig-

natures for geographical origin. bioRxiv (2022).
 69. Bekele, W. A., Wight, C. P., Chao, S., Howarth, C. J. & Tinker, N. A. Haplotype-based genotyping-by-sequencing in oat genome 

research. Plant Biotechnol. J. 16, 1452–1463 (2018).
 70. Turuspekov, Y. et al. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in 

three regions of Kazakhstan. BMC Plant Biol. 17, 1–11 (2017).
 71. Guo, Z. et al. Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 8, 

14435 (2018).
 72. Malik, P., Kumar, J., Sharma, S., Sharma, R. & Sharma, S. Multi-locus genome-wide association mapping for spike-related traits 

in bread wheat (Triticum aestivum L.). BMC Genom. 22, 1–21 (2021).
 73. Zhang, J. et al. Identification of genetic loci on chromosome 4B for improving the grain number per spike in pre-breeding lines 

of wheat. Agronomy 12, 171 (2022).
 74. Godoy, J. et al. Genome-wide association study of agronomic traits in a spring-planted north american elite hard red spring wheat 

panel. Crop Sci. 58, 1838–1852 (2018).
 75. Lourenço, V. M., Rodrigues, P. C., Pires, A. M. & Piepho, H. P. A robust DF-REML framework for variance components estimation 

in genetic studies. Bioinformatics 33, 3584–3594 (2017).
 76. Sukumaran, S., Reynolds, M. P., Lopes, M. S. & Crossa, J. Genome-wide association study for adaptation to agronomic plant density: 

A component of high yield potential in spring wheat. Crop Sci. 55, 2609–2619 (2015).
 77. Zhou, Z. et al. Identification of novel genomic regions and superior alleles associated with zn accumulation in wheat using a 

genome-wide association analysis method. Int. J. Mol. Sci. 21, 1928 (2020).
 78. Aoun, M., Carter, A. H., Ward, B. P. & Morris, C. F. Genome-wide association mapping of the ‘super-soft’ kernel texture in white 

winter wheat. Theor. Appl. Genet. 134, 2547–2559 (2021).
 79. Turner, S. D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 3, 731 

(2018).
 80. Charity, C., Mullan, D., Roy, S., Baumann, U. & Garcia, M. Nested association mapping-based GWAS for grain yield and related 

traits in wheat grown under diverse Australian environments. Theor. Appl. Genet. 135, 4437–4456 (2022).
 81. Shokat, S., Sehgal, D., Liu, F. & Singh, S. GWAS analysis of wheat pre-breeding germplasm for terminal drought stress using next 

generation sequencing technology. Preprints 2020020272 (2020).
 82. Ballesta, P., Mora, F. & Del Pozo, A. Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 

4A. Sci. Agric. 77, e20180153 (2020).
 83. Ku, Y. S., Sintaha, M., Cheung, M. Y. & Lam, H. M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. 

Int. J. Mol. Sci. 19, 3206 (2018).
 84. Zhang, Y. et al. Nucleoredoxin gene TaNRX1 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). 

Front. Plant Sci. 12, 756338 (2021).
 85. Xiong, H. et al. A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low 

nitrogen traits by a wheat mutant population. PLoS ONE 14, e0211492 (2019).
 86. Wang, S. X. et al. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using 

SNP markers. PLoS ONE 12, e0188662 (2017).
 87. Su, J. et al. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in 

chrysanthemums. Hortic. Res. 6, 21 (2019).
 88. Jamil, M. et al. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC 

Plant Biol. 19, 1–18 (2019).
 89. Chen, Z. et al. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor. 

Appl. Genet. 133, 1825–1838 (2020).
 90. Fan, X. et al. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments 

using traditional and conditional QTL mapping. Front. Plant Sci. 10, 187 (2019).
 91. Li, F. et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 19, 1–19 

(2019).



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9927  | https://doi.org/10.1038/s41598-023-36134-z

www.nature.com/scientificreports/

 92. Bonneau, J. et al. Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor. 
Appl. Genet. 126, 747–761 (2013).

 93. Carlson, M. O. et al. Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat 
(Avena sativa L.). G3 Genes Genomes Genet. 9, 2963–2975 (2019).

 94. Yano, K. et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. 
Acad. Sci. USA 116, 2162–21267 (2019).

 95. Alkan, B. B., Atakan, C. & Alkan, N. A comparison of different procedures for principal component analysis in the presence of 
outliers. J. Appl. Stat. 42, 1716–1722 (2015).

 96. Yang, M. et al. Pattern of protein expression in developing wheat grains identified through proteomic analysis. Front. Plant Sci. 8, 
962 (2017).

 97. Guo, R. et al. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype 
seedlings. AoB Plants 10, ply016 (2018).

 98. Sharma, N., Chaudhary, C. & Khurana, P. Wheat Myo-inositol phosphate synthase influences plant growth and stress responses 
via ethylene mediated signaling. Sci. Rep. 10, 10766 (2020).

 99. Wang, X. et al. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling 
system in the early stage of drought stress. Genomics 114, 11046 (2022).

Author contributions
H.Abdi measured and analyzed the data and also wrote a draft version of the manuscript, H.Alipour provided 
the plant materials and helped in the genomic data analysis, I.B. proposed the idea, J.J. helped to edit the manu-
script. P.C.R. improved the idea and edited the manuscript. All the authors were involved in the preparation of 
the final manuscript.

Funding
This research did not receive any specifc grant from funding agencies in the public, commercial, or not-forproft 
sectors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 36134-z.

Correspondence and requests for materials should be addressed to I.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-36134-z
https://doi.org/10.1038/s41598-023-36134-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification of novel putative alleles related to important agronomic traits of wheat using robust strategies in GWAS
	Materials and methods
	Plant materials and phenotyping. 
	Genotyping. 
	Linkage disequilibrium (LD). 
	Classical and robust principal component analysis. 
	Traditional single trait-GWAS. 
	Single trait-GWAS with robust principal component covariates. 
	Classical and robust principal component-based GWAS. 
	Gene ontology (GO). 
	Complying with relevant institutional, national, and international guidelines and legislation. 
	Permission for land study. 

	Results
	Identification of outlier observations. 
	Linkage disequilibrium and population structure. 
	Traditional single trait-GWAS. 
	Single trait-GWAS with robust principal component covariates. 
	Classical and robust principal component-based GWAS. 
	Gene annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathways. 

	Discussion
	Conclusion
	References


